1/*------------------------------------------------------------------------
2 * Vulkan Conformance Tests
3 * ------------------------
4 *
5 * Copyright (c) 2016 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file  vktSparseResourcesMipmapSparseResidency.cpp
21 * \brief Sparse partially resident images with mipmaps tests
22 *//*--------------------------------------------------------------------*/
23
24#include "vktSparseResourcesMipmapSparseResidency.hpp"
25#include "vktSparseResourcesTestsUtil.hpp"
26#include "vktSparseResourcesBase.hpp"
27#include "vktTestCaseUtil.hpp"
28
29#include "vkDefs.hpp"
30#include "vkRef.hpp"
31#include "vkRefUtil.hpp"
32#include "vkPlatform.hpp"
33#include "vkPrograms.hpp"
34#include "vkMemUtil.hpp"
35#include "vkBarrierUtil.hpp"
36#include "vkBuilderUtil.hpp"
37#include "vkImageUtil.hpp"
38#include "vkQueryUtil.hpp"
39#include "vkTypeUtil.hpp"
40#include "vkCmdUtil.hpp"
41
42#include "deUniquePtr.hpp"
43#include "deStringUtil.hpp"
44#include "tcuTextureUtil.hpp"
45
46#include <string>
47#include <vector>
48
49using namespace vk;
50
51namespace vkt
52{
53namespace sparse
54{
55namespace
56{
57
58class MipmapSparseResidencyCase : public TestCase
59{
60public:
61	MipmapSparseResidencyCase		(tcu::TestContext&	testCtx,
62									 const std::string&	name,
63									 const ImageType	imageType,
64									 const tcu::UVec3&	imageSize,
65									 const VkFormat		format,
66									 const bool			useDeviceGroups);
67
68	TestInstance*	createInstance				(Context&					context) const;
69	virtual void	checkSupport				(Context&					context) const;
70
71private:
72	const bool			m_useDeviceGroups;
73	const ImageType		m_imageType;
74	const tcu::UVec3	m_imageSize;
75	const VkFormat		m_format;
76};
77
78MipmapSparseResidencyCase::MipmapSparseResidencyCase	(tcu::TestContext&	testCtx,
79														 const std::string&	name,
80														 const ImageType	imageType,
81														 const tcu::UVec3&	imageSize,
82														 const VkFormat		format,
83														 const bool			useDeviceGroups)
84	: TestCase			(testCtx, name)
85	, m_useDeviceGroups	(useDeviceGroups)
86	, m_imageType		(imageType)
87	, m_imageSize		(imageSize)
88	, m_format			(format)
89{
90}
91
92void MipmapSparseResidencyCase::checkSupport (Context& context) const
93{
94	const InstanceInterface&	instance		= context.getInstanceInterface();
95	const VkPhysicalDevice		physicalDevice	= context.getPhysicalDevice();
96
97	// Check if image size does not exceed device limits
98	if (!isImageSizeSupported(instance, physicalDevice, m_imageType, m_imageSize))
99		TCU_THROW(NotSupportedError, "Image size not supported for device");
100
101	// Check if device supports sparse operations for image type
102	if (!checkSparseSupportForImageType(instance, physicalDevice, m_imageType))
103		TCU_THROW(NotSupportedError, "Sparse residency for image type is not supported");
104
105	if (formatIsR64(m_format))
106	 {
107		context.requireDeviceFunctionality("VK_EXT_shader_image_atomic_int64");
108
109		if (context.getShaderImageAtomicInt64FeaturesEXT().sparseImageInt64Atomics == VK_FALSE)
110		{
111			TCU_THROW(NotSupportedError, "sparseImageInt64Atomics is not supported for device");
112		}
113	}
114}
115
116class MipmapSparseResidencyInstance : public SparseResourcesBaseInstance
117{
118public:
119	MipmapSparseResidencyInstance	(Context&			context,
120									 const ImageType	imageType,
121									 const tcu::UVec3&	imageSize,
122									 const VkFormat		format,
123									 const bool			useDeviceGroups);
124
125
126	tcu::TestStatus	iterate			(void);
127
128private:
129	const bool			m_useDeviceGroups;
130	const ImageType		m_imageType;
131	const tcu::UVec3	m_imageSize;
132	const VkFormat		m_format;
133};
134
135MipmapSparseResidencyInstance::MipmapSparseResidencyInstance	(Context&			context,
136																 const ImageType	imageType,
137																 const tcu::UVec3&	imageSize,
138																 const VkFormat		format,
139																 const bool			useDeviceGroups)
140	: SparseResourcesBaseInstance	(context, useDeviceGroups)
141	, m_useDeviceGroups				(useDeviceGroups)
142	, m_imageType					(imageType)
143	, m_imageSize					(imageSize)
144	, m_format						(format)
145{
146}
147
148tcu::TestStatus MipmapSparseResidencyInstance::iterate (void)
149{
150	const InstanceInterface&	instance		= m_context.getInstanceInterface();
151	{
152		// Create logical device supporting both sparse and compute operations
153		QueueRequirementsVec queueRequirements;
154		queueRequirements.push_back(QueueRequirements(VK_QUEUE_SPARSE_BINDING_BIT, 1u));
155		queueRequirements.push_back(QueueRequirements(VK_QUEUE_COMPUTE_BIT, 1u));
156
157		createDeviceSupportingQueues(queueRequirements);
158	}
159
160	const VkPhysicalDevice		physicalDevice	= getPhysicalDevice();
161	VkImageCreateInfo			imageSparseInfo;
162	std::vector<DeviceMemorySp>	deviceMemUniquePtrVec;
163
164	const DeviceInterface&			deviceInterface		= getDeviceInterface();
165	const Queue&					sparseQueue			= getQueue(VK_QUEUE_SPARSE_BINDING_BIT, 0);
166	const Queue&					computeQueue		= getQueue(VK_QUEUE_COMPUTE_BIT, 0);
167	const PlanarFormatDescription	formatDescription	= getPlanarFormatDescription(m_format);
168
169	// Go through all physical devices
170	for (deUint32 physDevID = 0; physDevID < m_numPhysicalDevices; physDevID++)
171	{
172		const deUint32	firstDeviceID			= physDevID;
173		const deUint32	secondDeviceID			= (firstDeviceID + 1) % m_numPhysicalDevices;
174
175		imageSparseInfo.sType					= VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
176		imageSparseInfo.pNext					= DE_NULL;
177		imageSparseInfo.flags					= VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT | VK_IMAGE_CREATE_SPARSE_BINDING_BIT;
178		imageSparseInfo.imageType				= mapImageType(m_imageType);
179		imageSparseInfo.format					= m_format;
180		imageSparseInfo.extent					= makeExtent3D(getLayerSize(m_imageType, m_imageSize));
181		imageSparseInfo.arrayLayers				= getNumLayers(m_imageType, m_imageSize);
182		imageSparseInfo.samples					= VK_SAMPLE_COUNT_1_BIT;
183		imageSparseInfo.tiling					= VK_IMAGE_TILING_OPTIMAL;
184		imageSparseInfo.initialLayout			= VK_IMAGE_LAYOUT_UNDEFINED;
185		imageSparseInfo.usage					= VK_IMAGE_USAGE_TRANSFER_DST_BIT |
186												  VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
187		imageSparseInfo.sharingMode				= VK_SHARING_MODE_EXCLUSIVE;
188		imageSparseInfo.queueFamilyIndexCount	= 0u;
189		imageSparseInfo.pQueueFamilyIndices		= DE_NULL;
190
191		if (m_imageType == IMAGE_TYPE_CUBE || m_imageType == IMAGE_TYPE_CUBE_ARRAY)
192		{
193			imageSparseInfo.flags |= VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
194		}
195
196		// Check if device supports sparse operations for image format
197		if (!checkSparseSupportForImageFormat(instance, physicalDevice, imageSparseInfo))
198			TCU_THROW(NotSupportedError, "The image format does not support sparse operations");
199
200		{
201			VkImageFormatProperties imageFormatProperties;
202			if (instance.getPhysicalDeviceImageFormatProperties(physicalDevice,
203				imageSparseInfo.format,
204				imageSparseInfo.imageType,
205				imageSparseInfo.tiling,
206				imageSparseInfo.usage,
207				imageSparseInfo.flags,
208				&imageFormatProperties) == VK_ERROR_FORMAT_NOT_SUPPORTED)
209			{
210				TCU_THROW(NotSupportedError, "Image format does not support sparse operations");
211			}
212
213			imageSparseInfo.mipLevels = getMipmapCount(m_format, formatDescription, imageFormatProperties, imageSparseInfo.extent);
214		}
215
216		// Create sparse image
217		const Unique<VkImage>							imageSparse(createImage(deviceInterface, getDevice(), &imageSparseInfo));
218
219		// Create sparse image memory bind semaphore
220		const Unique<VkSemaphore>						imageMemoryBindSemaphore(createSemaphore(deviceInterface, getDevice()));
221
222		std::vector<VkSparseImageMemoryRequirements>	sparseMemoryRequirements;
223
224		{
225			// Get sparse image general memory requirements
226			const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
227
228			// Check if required image memory size does not exceed device limits
229			if (imageMemoryRequirements.size > getPhysicalDeviceProperties(instance, physicalDevice).limits.sparseAddressSpaceSize)
230				TCU_THROW(NotSupportedError, "Required memory size for sparse resource exceeds device limits");
231
232			DE_ASSERT((imageMemoryRequirements.size % imageMemoryRequirements.alignment) == 0);
233
234			const deUint32							memoryType = findMatchingMemoryType(instance, getPhysicalDevice(secondDeviceID), imageMemoryRequirements, MemoryRequirement::Any);
235
236			if (memoryType == NO_MATCH_FOUND)
237				return tcu::TestStatus::fail("No matching memory type found");
238
239			if (firstDeviceID != secondDeviceID)
240			{
241				VkPeerMemoryFeatureFlags	peerMemoryFeatureFlags = (VkPeerMemoryFeatureFlags)0;
242				const deUint32				heapIndex = getHeapIndexForMemoryType(instance, getPhysicalDevice(secondDeviceID), memoryType);
243				deviceInterface.getDeviceGroupPeerMemoryFeatures(getDevice(), heapIndex, firstDeviceID, secondDeviceID, &peerMemoryFeatureFlags);
244
245				if (((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_SRC_BIT) == 0) ||
246					((peerMemoryFeatureFlags & VK_PEER_MEMORY_FEATURE_COPY_DST_BIT) == 0))
247				{
248					TCU_THROW(NotSupportedError, "Peer memory does not support COPY_SRC and COPY_DST");
249				}
250			}
251
252			// Get sparse image sparse memory requirements
253			sparseMemoryRequirements = getImageSparseMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
254			DE_ASSERT(sparseMemoryRequirements.size() != 0);
255
256			const deUint32 metadataAspectIndex	= getSparseAspectRequirementsIndex(sparseMemoryRequirements, VK_IMAGE_ASPECT_METADATA_BIT);
257
258			std::vector<VkSparseImageMemoryBind>	imageResidencyMemoryBinds;
259			std::vector<VkSparseMemoryBind>			imageMipTailMemoryBinds;
260
261			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
262			{
263				const VkImageAspectFlags		aspect				= (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
264				const deUint32					aspectIndex			= getSparseAspectRequirementsIndex(sparseMemoryRequirements, aspect);
265
266				if (aspectIndex == NO_MATCH_FOUND)
267					TCU_THROW(NotSupportedError, "Not supported image aspect");
268
269				VkSparseImageMemoryRequirements	aspectRequirements	= sparseMemoryRequirements[aspectIndex];
270
271				DE_ASSERT((aspectRequirements.imageMipTailSize % imageMemoryRequirements.alignment) == 0);
272
273				VkExtent3D						imageGranularity	= aspectRequirements.formatProperties.imageGranularity;
274
275				// Bind memory for each layer
276				for (deUint32 layerNdx = 0; layerNdx < imageSparseInfo.arrayLayers; ++layerNdx)
277				{
278					for (deUint32 mipLevelNdx = 0; mipLevelNdx < aspectRequirements.imageMipTailFirstLod; ++mipLevelNdx)
279					{
280						const VkExtent3D			mipExtent			= getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipLevelNdx);
281						const tcu::UVec3			sparseBlocks		= alignedDivide(mipExtent, imageGranularity);
282						const deUint32				numSparseBlocks		= sparseBlocks.x() * sparseBlocks.y() * sparseBlocks.z();
283						const VkImageSubresource	subresource			= { aspect, mipLevelNdx, layerNdx };
284
285						const VkSparseImageMemoryBind imageMemoryBind = makeSparseImageMemoryBind(deviceInterface, getDevice(),
286							imageMemoryRequirements.alignment * numSparseBlocks, memoryType, subresource, makeOffset3D(0u, 0u, 0u), mipExtent);
287
288						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
289
290						imageResidencyMemoryBinds.push_back(imageMemoryBind);
291					}
292
293					if (!(aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
294					{
295						const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
296							aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset + layerNdx * aspectRequirements.imageMipTailStride);
297
298						deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
299
300						imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
301					}
302
303					// Metadata
304					if (metadataAspectIndex != NO_MATCH_FOUND)
305					{
306						const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
307
308						if (!(metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT))
309						{
310							const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
311								metadataAspectRequirements.imageMipTailSize, memoryType,
312								metadataAspectRequirements.imageMipTailOffset + layerNdx * metadataAspectRequirements.imageMipTailStride,
313								VK_SPARSE_MEMORY_BIND_METADATA_BIT);
314
315							deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
316
317							imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
318						}
319					}
320				}
321
322				if ((aspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT) && aspectRequirements.imageMipTailFirstLod < imageSparseInfo.mipLevels)
323				{
324					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
325						aspectRequirements.imageMipTailSize, memoryType, aspectRequirements.imageMipTailOffset);
326
327					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
328
329					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
330				}
331			}
332
333			// Metadata
334			if (metadataAspectIndex != NO_MATCH_FOUND)
335			{
336				const VkSparseImageMemoryRequirements metadataAspectRequirements = sparseMemoryRequirements[metadataAspectIndex];
337
338				if (metadataAspectRequirements.formatProperties.flags & VK_SPARSE_IMAGE_FORMAT_SINGLE_MIPTAIL_BIT)
339				{
340					const VkSparseMemoryBind imageMipTailMemoryBind = makeSparseMemoryBind(deviceInterface, getDevice(),
341						metadataAspectRequirements.imageMipTailSize, memoryType, metadataAspectRequirements.imageMipTailOffset,
342						VK_SPARSE_MEMORY_BIND_METADATA_BIT);
343
344					deviceMemUniquePtrVec.push_back(makeVkSharedPtr(Move<VkDeviceMemory>(check<VkDeviceMemory>(imageMipTailMemoryBind.memory), Deleter<VkDeviceMemory>(deviceInterface, getDevice(), DE_NULL))));
345
346					imageMipTailMemoryBinds.push_back(imageMipTailMemoryBind);
347				}
348			}
349
350			const VkDeviceGroupBindSparseInfo devGroupBindSparseInfo =
351			{
352				VK_STRUCTURE_TYPE_DEVICE_GROUP_BIND_SPARSE_INFO,		//VkStructureType							sType;
353				DE_NULL,												//const void*								pNext;
354				firstDeviceID,											//deUint32									resourceDeviceIndex;
355				secondDeviceID,											//deUint32									memoryDeviceIndex;
356			};
357
358			VkBindSparseInfo bindSparseInfo =
359			{
360				VK_STRUCTURE_TYPE_BIND_SPARSE_INFO,						//VkStructureType							sType;
361				m_useDeviceGroups ? &devGroupBindSparseInfo : DE_NULL,	//const void*								pNext;
362				0u,														//deUint32									waitSemaphoreCount;
363				DE_NULL,												//const VkSemaphore*						pWaitSemaphores;
364				0u,														//deUint32									bufferBindCount;
365				DE_NULL,												//const VkSparseBufferMemoryBindInfo*		pBufferBinds;
366				0u,														//deUint32									imageOpaqueBindCount;
367				DE_NULL,												//const VkSparseImageOpaqueMemoryBindInfo*	pImageOpaqueBinds;
368				0u,														//deUint32									imageBindCount;
369				DE_NULL,												//const VkSparseImageMemoryBindInfo*		pImageBinds;
370				1u,														//deUint32									signalSemaphoreCount;
371				&imageMemoryBindSemaphore.get()							//const VkSemaphore*						pSignalSemaphores;
372			};
373
374			VkSparseImageMemoryBindInfo			imageResidencyBindInfo;
375			VkSparseImageOpaqueMemoryBindInfo	imageMipTailBindInfo;
376
377			if (imageResidencyMemoryBinds.size() > 0)
378			{
379				imageResidencyBindInfo.image		= *imageSparse;
380				imageResidencyBindInfo.bindCount	= static_cast<deUint32>(imageResidencyMemoryBinds.size());
381				imageResidencyBindInfo.pBinds		= imageResidencyMemoryBinds.data();
382
383				bindSparseInfo.imageBindCount		= 1u;
384				bindSparseInfo.pImageBinds			= &imageResidencyBindInfo;
385			}
386
387			if (imageMipTailMemoryBinds.size() > 0)
388			{
389				imageMipTailBindInfo.image			= *imageSparse;
390				imageMipTailBindInfo.bindCount		= static_cast<deUint32>(imageMipTailMemoryBinds.size());
391				imageMipTailBindInfo.pBinds			= imageMipTailMemoryBinds.data();
392
393				bindSparseInfo.imageOpaqueBindCount	= 1u;
394				bindSparseInfo.pImageOpaqueBinds	= &imageMipTailBindInfo;
395			}
396
397			// Submit sparse bind commands for execution
398			VK_CHECK(deviceInterface.queueBindSparse(sparseQueue.queueHandle, 1u, &bindSparseInfo, DE_NULL));
399		}
400
401		deUint32 imageSizeInBytes = 0;
402
403		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
404			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
405				imageSizeInBytes += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
406
407		std::vector <VkBufferImageCopy>	bufferImageCopy(formatDescription.numPlanes*imageSparseInfo.mipLevels);
408		{
409			deUint32 bufferOffset = 0;
410
411			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
412			{
413				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
414
415				for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
416				{
417					bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx] =
418					{
419						bufferOffset,																		//	VkDeviceSize				bufferOffset;
420						0u,																					//	deUint32					bufferRowLength;
421						0u,																					//	deUint32					bufferImageHeight;
422						makeImageSubresourceLayers(aspect, mipmapNdx, 0u, imageSparseInfo.arrayLayers),		//	VkImageSubresourceLayers	imageSubresource;
423						makeOffset3D(0, 0, 0),																//	VkOffset3D					imageOffset;
424						vk::getPlaneExtent(formatDescription, imageSparseInfo.extent, planeNdx, mipmapNdx)	//	VkExtent3D					imageExtent;
425					};
426					bufferOffset += getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx, BUFFER_IMAGE_COPY_OFFSET_GRANULARITY);
427				}
428			}
429		}
430
431		// Create command buffer for compute and transfer operations
432		const Unique<VkCommandPool>		commandPool(makeCommandPool(deviceInterface, getDevice(), computeQueue.queueFamilyIndex));
433		const Unique<VkCommandBuffer>	commandBuffer(allocateCommandBuffer(deviceInterface, getDevice(), *commandPool, VK_COMMAND_BUFFER_LEVEL_PRIMARY));
434
435		// Start recording commands
436		beginCommandBuffer(deviceInterface, *commandBuffer);
437
438		const VkBufferCreateInfo		inputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_SRC_BIT);
439		const Unique<VkBuffer>			inputBuffer				(createBuffer(deviceInterface, getDevice(), &inputBufferCreateInfo));
440		const de::UniquePtr<Allocation>	inputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *inputBuffer, MemoryRequirement::HostVisible));
441
442		std::vector<deUint8> referenceData(imageSizeInBytes);
443
444		const VkMemoryRequirements imageMemoryRequirements = getImageMemoryRequirements(deviceInterface, getDevice(), *imageSparse);
445
446		for (deUint32 valueNdx = 0; valueNdx < imageSizeInBytes; ++valueNdx)
447		{
448			referenceData[valueNdx] = static_cast<deUint8>((valueNdx % imageMemoryRequirements.alignment) + 1u);
449		}
450
451		{
452			deMemcpy(inputBufferAlloc->getHostPtr(), referenceData.data(), imageSizeInBytes);
453			flushAlloc(deviceInterface, getDevice(), *inputBufferAlloc);
454
455			const VkBufferMemoryBarrier inputBufferBarrier = makeBufferMemoryBarrier
456			(
457				VK_ACCESS_HOST_WRITE_BIT,
458				VK_ACCESS_TRANSFER_READ_BIT,
459				*inputBuffer,
460				0u,
461				imageSizeInBytes
462			);
463
464			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_HOST_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 1u, &inputBufferBarrier, 0u, DE_NULL);
465		}
466
467		{
468			std::vector<VkImageMemoryBarrier> imageSparseTransferDstBarriers;
469
470			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
471			{
472				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
473
474				imageSparseTransferDstBarriers.emplace_back ( makeImageMemoryBarrier
475				(
476					0u,
477					VK_ACCESS_TRANSFER_WRITE_BIT,
478					VK_IMAGE_LAYOUT_UNDEFINED,
479					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
480					*imageSparse,
481					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers),
482					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? sparseQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED,
483					sparseQueue.queueFamilyIndex != computeQueue.queueFamilyIndex ? computeQueue.queueFamilyIndex : VK_QUEUE_FAMILY_IGNORED
484				));
485			}
486			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferDstBarriers.size()), imageSparseTransferDstBarriers.data());
487		}
488
489		deviceInterface.cmdCopyBufferToImage(*commandBuffer, *inputBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, static_cast<deUint32>(bufferImageCopy.size()), &bufferImageCopy[0]);
490
491		{
492			std::vector<VkImageMemoryBarrier> imageSparseTransferSrcBarriers;
493
494			for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
495			{
496				const VkImageAspectFlags aspect = (formatDescription.numPlanes > 1) ? getPlaneAspect(planeNdx) : VK_IMAGE_ASPECT_COLOR_BIT;
497
498				imageSparseTransferSrcBarriers.emplace_back(makeImageMemoryBarrier
499				(
500					VK_ACCESS_TRANSFER_WRITE_BIT,
501					VK_ACCESS_TRANSFER_READ_BIT,
502					VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
503					VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
504					*imageSparse,
505					makeImageSubresourceRange(aspect, 0u, imageSparseInfo.mipLevels, 0u, imageSparseInfo.arrayLayers)
506				));
507			}
508
509			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0u, 0u, DE_NULL, 0u, DE_NULL, static_cast<deUint32>(imageSparseTransferSrcBarriers.size()), imageSparseTransferSrcBarriers.data());
510		}
511
512		const VkBufferCreateInfo		outputBufferCreateInfo	= makeBufferCreateInfo(imageSizeInBytes, VK_BUFFER_USAGE_TRANSFER_DST_BIT);
513		const Unique<VkBuffer>			outputBuffer			(createBuffer(deviceInterface, getDevice(), &outputBufferCreateInfo));
514		const de::UniquePtr<Allocation>	outputBufferAlloc		(bindBuffer(deviceInterface, getDevice(), getAllocator(), *outputBuffer, MemoryRequirement::HostVisible));
515
516		deviceInterface.cmdCopyImageToBuffer(*commandBuffer, *imageSparse, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, *outputBuffer, static_cast<deUint32>(bufferImageCopy.size()), bufferImageCopy.data());
517
518		{
519			const VkBufferMemoryBarrier outputBufferBarrier = makeBufferMemoryBarrier
520			(
521				VK_ACCESS_TRANSFER_WRITE_BIT,
522				VK_ACCESS_HOST_READ_BIT,
523				*outputBuffer,
524				0u,
525				imageSizeInBytes
526			);
527
528			deviceInterface.cmdPipelineBarrier(*commandBuffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0u, 0u, DE_NULL, 1u, &outputBufferBarrier, 0u, DE_NULL);
529		}
530
531		// End recording commands
532		endCommandBuffer(deviceInterface, *commandBuffer);
533
534		const VkPipelineStageFlags stageBits[] = { VK_PIPELINE_STAGE_TRANSFER_BIT };
535
536		// Submit commands for execution and wait for completion
537		submitCommandsAndWait(deviceInterface, getDevice(), computeQueue.queueHandle, *commandBuffer, 1u, &imageMemoryBindSemaphore.get(), stageBits,
538			0, DE_NULL, m_useDeviceGroups, firstDeviceID);
539
540		// Retrieve data from buffer to host memory
541		invalidateAlloc(deviceInterface, getDevice(), *outputBufferAlloc);
542
543		const deUint8* outputData = static_cast<const deUint8*>(outputBufferAlloc->getHostPtr());
544
545		// Wait for sparse queue to become idle
546		deviceInterface.queueWaitIdle(sparseQueue.queueHandle);
547
548		for (deUint32 planeNdx = 0; planeNdx < formatDescription.numPlanes; ++planeNdx)
549		{
550			for (deUint32 mipmapNdx = 0; mipmapNdx < imageSparseInfo.mipLevels; ++mipmapNdx)
551			{
552				const deUint32 mipLevelSizeInBytes	= getImageMipLevelSizeInBytes(imageSparseInfo.extent, imageSparseInfo.arrayLayers, formatDescription, planeNdx, mipmapNdx);
553				const deUint32 bufferOffset			= static_cast<deUint32>(bufferImageCopy[planeNdx*imageSparseInfo.mipLevels + mipmapNdx].bufferOffset);
554
555				if (deMemCmp(outputData + bufferOffset, &referenceData[bufferOffset], mipLevelSizeInBytes) != 0)
556					return tcu::TestStatus::fail("Failed");
557			}
558		}
559	}
560	return tcu::TestStatus::pass("Passed");
561}
562
563TestInstance* MipmapSparseResidencyCase::createInstance (Context& context) const
564{
565	return new MipmapSparseResidencyInstance(context, m_imageType, m_imageSize, m_format, m_useDeviceGroups);
566}
567
568} // anonymous ns
569
570tcu::TestCaseGroup* createMipmapSparseResidencyTestsCommon (tcu::TestContext& testCtx, de::MovePtr<tcu::TestCaseGroup> testGroup, const bool useDeviceGroup = false)
571{
572	const std::vector<TestImageParameters> imageParameters
573	{
574		{ IMAGE_TYPE_2D,			{ tcu::UVec3(512u, 256u, 1u),	tcu::UVec3(1024u, 128u, 1u),	tcu::UVec3(11u,  137u, 1u) },	getTestFormats(IMAGE_TYPE_2D) },
575		{ IMAGE_TYPE_2D_ARRAY,		{ tcu::UVec3(512u, 256u, 6u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_2D_ARRAY) },
576		{ IMAGE_TYPE_CUBE,			{ tcu::UVec3(256u, 256u, 1u),	tcu::UVec3(128u,  128u, 1u),	tcu::UVec3(137u, 137u, 1u) },	getTestFormats(IMAGE_TYPE_CUBE) },
577		{ IMAGE_TYPE_CUBE_ARRAY,	{ tcu::UVec3(256u, 256u, 6u),	tcu::UVec3(128u,  128u, 8u),	tcu::UVec3(137u, 137u, 3u) },	getTestFormats(IMAGE_TYPE_CUBE_ARRAY) },
578		{ IMAGE_TYPE_3D,			{ tcu::UVec3(256u, 256u, 16u),	tcu::UVec3(1024u, 128u, 8u),	tcu::UVec3(11u,  137u, 3u) },	getTestFormats(IMAGE_TYPE_3D) }
579	};
580
581	for (size_t imageTypeNdx = 0; imageTypeNdx < imageParameters.size(); ++imageTypeNdx)
582	{
583		const ImageType					imageType = imageParameters[imageTypeNdx].imageType;
584		de::MovePtr<tcu::TestCaseGroup> imageTypeGroup(new tcu::TestCaseGroup(testCtx, getImageTypeName(imageType).c_str()));
585
586		for (size_t formatNdx = 0; formatNdx < imageParameters[imageTypeNdx].formats.size(); ++formatNdx)
587		{
588			VkFormat						format				= imageParameters[imageTypeNdx].formats[formatNdx].format;
589			tcu::UVec3						imageSizeAlignment	= getImageSizeAlignment(format);
590			de::MovePtr<tcu::TestCaseGroup> formatGroup			(new tcu::TestCaseGroup(testCtx, getImageFormatID(format).c_str()));
591
592			for (size_t imageSizeNdx = 0; imageSizeNdx < imageParameters[imageTypeNdx].imageSizes.size(); ++imageSizeNdx)
593			{
594				const tcu::UVec3 imageSize = imageParameters[imageTypeNdx].imageSizes[imageSizeNdx];
595
596				// skip test for images with odd sizes for some YCbCr formats
597				if ((imageSize.x() % imageSizeAlignment.x()) != 0)
598					continue;
599				if ((imageSize.y() % imageSizeAlignment.y()) != 0)
600					continue;
601
602				std::ostringstream stream;
603				stream << imageSize.x() << "_" << imageSize.y() << "_" << imageSize.z();
604
605				formatGroup->addChild(new MipmapSparseResidencyCase(testCtx, stream.str(), imageType, imageSize, format, useDeviceGroup));
606			}
607			imageTypeGroup->addChild(formatGroup.release());
608		}
609		testGroup->addChild(imageTypeGroup.release());
610	}
611
612	return testGroup.release();
613}
614
615tcu::TestCaseGroup* createMipmapSparseResidencyTests (tcu::TestContext& testCtx)
616{
617	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "mipmap_sparse_residency"));
618	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup);
619}
620
621tcu::TestCaseGroup* createDeviceGroupMipmapSparseResidencyTests (tcu::TestContext& testCtx)
622{
623	de::MovePtr<tcu::TestCaseGroup> testGroup(new tcu::TestCaseGroup(testCtx, "device_group_mipmap_sparse_residency"));
624	return createMipmapSparseResidencyTestsCommon(testCtx, testGroup, true);
625}
626
627} // sparse
628} // vkt
629