1/*-------------------------------------------------------------------------
2 * OpenGL Conformance Test Suite
3 * -----------------------------
4 *
5 * Copyright (c) 2017 The Khronos Group Inc.
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 *      http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19  * \file  glcShaderConstExprTests.cpp
20 * \brief Declares shader constant expressions tests.
21 */ /*-------------------------------------------------------------------*/
22
23#include "glcShaderConstExprTests.hpp"
24#include "deMath.h"
25#include "deSharedPtr.hpp"
26#include "glsShaderExecUtil.hpp"
27#include "gluContextInfo.hpp"
28#include "gluShaderUtil.hpp"
29#include "tcuFloat.hpp"
30#include "tcuStringTemplate.hpp"
31#include "tcuTestLog.hpp"
32#include <map>
33
34using namespace deqp::gls::ShaderExecUtil;
35
36namespace glcts
37{
38
39namespace ShaderConstExpr
40{
41
42struct TestParams
43{
44	const char* name;
45	const char* expression;
46
47	glu::DataType inType;
48	int			  minComponents;
49	int			  maxComponents;
50
51	glu::DataType outType;
52	union {
53		float outputFloat;
54		int   outputInt;
55	};
56};
57
58struct ShaderExecutorParams
59{
60	deqp::Context* context;
61
62	std::string caseName;
63	std::string source;
64
65	glu::DataType outType;
66	union {
67		float outputFloat;
68		int   outputInt;
69	};
70};
71
72template <typename OutputType>
73class ExecutorTestCase : public deqp::TestCase
74{
75public:
76	ExecutorTestCase(deqp::Context& context, const char* name, glu::ShaderType shaderType, const ShaderSpec& shaderSpec,
77					 OutputType expectedOutput);
78	virtual ~ExecutorTestCase(void);
79	virtual tcu::TestNode::IterateResult iterate(void);
80
81protected:
82	void validateOutput(de::SharedPtr<ShaderExecutor> executor);
83
84	glu::ShaderType m_shaderType;
85	ShaderSpec		m_shaderSpec;
86	OutputType		m_expectedOutput;
87};
88
89template <typename OutputType>
90ExecutorTestCase<OutputType>::ExecutorTestCase(deqp::Context& context, const char* name, glu::ShaderType shaderType,
91											   const ShaderSpec& shaderSpec, OutputType expectedOutput)
92	: deqp::TestCase(context, name, "")
93	, m_shaderType(shaderType)
94	, m_shaderSpec(shaderSpec)
95	, m_expectedOutput(expectedOutput)
96{
97}
98
99template <typename OutputType>
100ExecutorTestCase<OutputType>::~ExecutorTestCase(void)
101{
102}
103
104template <>
105void ExecutorTestCase<float>::validateOutput(de::SharedPtr<ShaderExecutor> executor)
106{
107	float		result  = 0.0f;
108	void* const outputs = &result;
109	executor->execute(1, DE_NULL, &outputs);
110
111	const float epsilon = 0.01f;
112	if (de::abs(m_expectedOutput - result) > epsilon)
113	{
114		m_context.getTestContext().getLog()
115			<< tcu::TestLog::Message << "Expected: " << m_expectedOutput << " ("
116			<< tcu::toHex(tcu::Float32(m_expectedOutput).bits()) << ") but constant expresion returned: " << result
117			<< " (" << tcu::toHex(tcu::Float32(result).bits()) << "), used " << epsilon << " epsilon for comparison"
118			<< tcu::TestLog::EndMessage;
119		m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail");
120		return;
121	}
122
123	m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
124	return;
125}
126
127template <>
128void ExecutorTestCase<int>::validateOutput(de::SharedPtr<ShaderExecutor> executor)
129{
130	int			result  = 0;
131	void* const outputs = &result;
132	executor->execute(1, DE_NULL, &outputs);
133
134	if (result == m_expectedOutput)
135	{
136		m_testCtx.setTestResult(QP_TEST_RESULT_PASS, "Pass");
137		return;
138	}
139
140	m_context.getTestContext().getLog() << tcu::TestLog::Message << "Expected: " << m_expectedOutput
141										<< " but constant expresion returned: " << result << tcu::TestLog::EndMessage;
142	m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, "Fail");
143}
144
145template <typename OutputType>
146tcu::TestNode::IterateResult ExecutorTestCase<OutputType>::iterate(void)
147{
148	de::SharedPtr<ShaderExecutor> executor(createExecutor(m_context.getRenderContext(), m_shaderType, m_shaderSpec));
149
150	DE_ASSERT(executor.get());
151
152	executor->log(m_context.getTestContext().getLog());
153
154	try
155	{
156		if (!executor->isOk())
157			TCU_FAIL("Compilation failed");
158
159		executor->useProgram();
160
161		validateOutput(executor);
162	}
163	catch (const tcu::NotSupportedError& e)
164	{
165		m_testCtx.getLog() << tcu::TestLog::Message << e.what() << tcu::TestLog::EndMessage;
166		m_testCtx.setTestResult(QP_TEST_RESULT_NOT_SUPPORTED, e.getMessage());
167	}
168	catch (const tcu::TestError& e)
169	{
170		m_testCtx.getLog() << tcu::TestLog::Message << e.what() << tcu::TestLog::EndMessage;
171		m_testCtx.setTestResult(QP_TEST_RESULT_FAIL, e.getMessage());
172	}
173
174	return tcu::TestNode::STOP;
175}
176
177template <typename OutputType>
178void createTestCasesForAllShaderTypes(const ShaderExecutorParams& params, std::vector<tcu::TestNode*>& outputTests)
179{
180	DE_ASSERT(params.context);
181
182	deqp::Context&   context	 = *(params.context);
183	glu::ContextType contextType = context.getRenderContext().getType();
184
185	ShaderSpec shaderSpec;
186	shaderSpec.version = glu::getContextTypeGLSLVersion(contextType);
187	shaderSpec.source  = params.source;
188	shaderSpec.outputs.push_back(Symbol("out0", glu::VarType(params.outType, glu::PRECISION_HIGHP)));
189
190	// Construct list of shaders for which tests can be created
191	std::vector<glu::ShaderType> shaderTypes;
192
193	if (glu::contextSupports(contextType, glu::ApiType::core(4, 3)))
194	{
195		shaderTypes.push_back(glu::SHADERTYPE_VERTEX);
196		shaderTypes.push_back(glu::SHADERTYPE_FRAGMENT);
197		shaderTypes.push_back(glu::SHADERTYPE_COMPUTE);
198		shaderTypes.push_back(glu::SHADERTYPE_GEOMETRY);
199		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_CONTROL);
200		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_EVALUATION);
201	}
202	else if (glu::contextSupports(contextType, glu::ApiType::es(3, 2)))
203	{
204		shaderSpec.version = glu::GLSL_VERSION_320_ES;
205		shaderTypes.push_back(glu::SHADERTYPE_GEOMETRY);
206		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_CONTROL);
207		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_EVALUATION);
208	}
209	else if (glu::contextSupports(contextType, glu::ApiType::es(3, 1)))
210	{
211		shaderSpec.version = glu::GLSL_VERSION_310_ES;
212		shaderTypes.push_back(glu::SHADERTYPE_COMPUTE);
213		shaderTypes.push_back(glu::SHADERTYPE_GEOMETRY);
214		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_CONTROL);
215		shaderTypes.push_back(glu::SHADERTYPE_TESSELLATION_EVALUATION);
216	}
217	else
218	{
219		shaderTypes.push_back(glu::SHADERTYPE_VERTEX);
220		shaderTypes.push_back(glu::SHADERTYPE_FRAGMENT);
221	}
222
223	shaderSpec.globalDeclarations += "precision highp float;\n";
224
225	for (std::size_t typeIndex = 0; typeIndex < shaderTypes.size(); ++typeIndex)
226	{
227		glu::ShaderType shaderType = shaderTypes[typeIndex];
228		std::string		caseName(params.caseName + '_' + getShaderTypeName(shaderType));
229
230		outputTests.push_back(
231			new ExecutorTestCase<OutputType>(context, caseName.c_str(), shaderType, shaderSpec, static_cast<OutputType>(params.outputFloat)));
232	}
233}
234
235void createTests(deqp::Context& context, const TestParams* cases, int numCases, const char* shaderTemplateSrc,
236				 const char* casePrefix, std::vector<tcu::TestNode*>& outputTests)
237{
238	const tcu::StringTemplate shaderTemplate(shaderTemplateSrc);
239	const char*				  componentAccess[] = { "", ".y", ".z", ".w" };
240
241	ShaderExecutorParams shaderExecutorParams;
242	shaderExecutorParams.context = &context;
243
244	for (int caseIndex = 0; caseIndex < numCases; caseIndex++)
245	{
246		const TestParams&   testCase	  = cases[caseIndex];
247		const std::string   baseName	  = testCase.name;
248		const int			minComponents = testCase.minComponents;
249		const int			maxComponents = testCase.maxComponents;
250		const glu::DataType inType		  = testCase.inType;
251		const std::string   expression	= testCase.expression;
252
253		// Check for presence of func(vec, scalar) style specialization,
254		// use as gatekeeper for applying said specialization
255		const bool alwaysScalar = expression.find("${MT}") != std::string::npos;
256
257		std::map<std::string, std::string> shaderTemplateParams;
258		shaderTemplateParams["CASE_BASE_TYPE"] = glu::getDataTypeName(testCase.outType);
259
260		shaderExecutorParams.outType	 = testCase.outType;
261		shaderExecutorParams.outputFloat = testCase.outputFloat;
262
263		for (int component = minComponents - 1; component < maxComponents; component++)
264		{
265			// Get type name eg. float, vec2, vec3, vec4 (same for other primitive types)
266			glu::DataType dataType = static_cast<glu::DataType>(inType + component);
267			std::string   typeName = glu::getDataTypeName(dataType);
268
269			// ${T} => final type, ${MT} => final type but with scalar version usable even when T is a vector
270			std::map<std::string, std::string> expressionTemplateParams;
271			expressionTemplateParams["T"]  = typeName;
272			expressionTemplateParams["MT"] = typeName;
273
274			const tcu::StringTemplate expressionTemplate(expression);
275
276			// Add vector access to expression as needed
277			shaderTemplateParams["CASE_EXPRESSION"] =
278				expressionTemplate.specialize(expressionTemplateParams) + componentAccess[component];
279
280			{
281				// Add type to case name if we are generating multiple versions
282				shaderExecutorParams.caseName = (casePrefix + baseName);
283				if (minComponents != maxComponents)
284					shaderExecutorParams.caseName += ("_" + typeName);
285
286				shaderExecutorParams.source = shaderTemplate.specialize(shaderTemplateParams);
287				if (shaderExecutorParams.outType == glu::TYPE_FLOAT)
288					createTestCasesForAllShaderTypes<float>(shaderExecutorParams, outputTests);
289				else
290					createTestCasesForAllShaderTypes<int>(shaderExecutorParams, outputTests);
291			}
292
293			// Deal with functions that allways accept one ore more scalar parameters even when others are vectors
294			if (alwaysScalar && component > 0)
295			{
296				shaderExecutorParams.caseName =
297					casePrefix + baseName + "_" + typeName + "_" + glu::getDataTypeName(inType);
298
299				expressionTemplateParams["MT"] = glu::getDataTypeName(inType);
300				shaderTemplateParams["CASE_EXPRESSION"] =
301					expressionTemplate.specialize(expressionTemplateParams) + componentAccess[component];
302
303				shaderExecutorParams.source = shaderTemplate.specialize(shaderTemplateParams);
304				if (shaderExecutorParams.outType == glu::TYPE_FLOAT)
305					createTestCasesForAllShaderTypes<float>(shaderExecutorParams, outputTests);
306				else
307					createTestCasesForAllShaderTypes<int>(shaderExecutorParams, outputTests);
308			}
309		} // component loop
310	}
311}
312
313} // namespace ShaderConstExpr
314
315ShaderConstExprTests::ShaderConstExprTests(deqp::Context& context)
316	: deqp::TestCaseGroup(context, "constant_expressions", "Constant expressions")
317{
318}
319
320ShaderConstExprTests::~ShaderConstExprTests(void)
321{
322}
323
324void ShaderConstExprTests::init(void)
325{
326	// Needed for autogenerating shader code for increased component counts
327	DE_STATIC_ASSERT(glu::TYPE_FLOAT + 1 == glu::TYPE_FLOAT_VEC2);
328	DE_STATIC_ASSERT(glu::TYPE_FLOAT + 2 == glu::TYPE_FLOAT_VEC3);
329	DE_STATIC_ASSERT(glu::TYPE_FLOAT + 3 == glu::TYPE_FLOAT_VEC4);
330
331	DE_STATIC_ASSERT(glu::TYPE_INT + 1 == glu::TYPE_INT_VEC2);
332	DE_STATIC_ASSERT(glu::TYPE_INT + 2 == glu::TYPE_INT_VEC3);
333	DE_STATIC_ASSERT(glu::TYPE_INT + 3 == glu::TYPE_INT_VEC4);
334
335	DE_STATIC_ASSERT(glu::TYPE_UINT + 1 == glu::TYPE_UINT_VEC2);
336	DE_STATIC_ASSERT(glu::TYPE_UINT + 2 == glu::TYPE_UINT_VEC3);
337	DE_STATIC_ASSERT(glu::TYPE_UINT + 3 == glu::TYPE_UINT_VEC4);
338
339	DE_STATIC_ASSERT(glu::TYPE_BOOL + 1 == glu::TYPE_BOOL_VEC2);
340	DE_STATIC_ASSERT(glu::TYPE_BOOL + 2 == glu::TYPE_BOOL_VEC3);
341	DE_STATIC_ASSERT(glu::TYPE_BOOL + 3 == glu::TYPE_BOOL_VEC4);
342
343	// ${T} => final type, ${MT} => final type but with scalar version usable even when T is a vector
344	const ShaderConstExpr::TestParams baseCases[] = {
345		{ "radians",			"radians(${T} (90.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatRadians(90.0f) } },
346		{ "degrees",			"degrees(${T} (2.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatDegrees(2.0f) } },
347		{ "sin",				"sin(${T} (3.0))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatSin(3.0f) } },
348		{ "cos",				"cos(${T} (3.2))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatCos(3.2f) } },
349		{ "asin",				"asin(${T} (0.0))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatAsin(0.0f) } },
350		{ "acos",				"acos(${T} (1.0))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatAcos(1.0f) } },
351		{ "pow",				"pow(${T} (1.7), ${T} (3.5))",						glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatPow(1.7f, 3.5f) } },
352		{ "exp",				"exp(${T} (4.2))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatExp(4.2f) } },
353		{ "log",				"log(${T} (42.12))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatLog(42.12f) } },
354		{ "exp2",				"exp2(${T} (6.7))",									glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatExp2(6.7f) } },
355		{ "log2",				"log2(${T} (100.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatLog2(100.0f) } },
356		{ "sqrt",				"sqrt(${T} (10.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatSqrt(10.0f) } },
357		{ "inversesqrt",		"inversesqrt(${T} (10.0))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatRsq(10.0f) } },
358		{ "abs",				"abs(${T} (-42))",									glu::TYPE_INT,		1,	4,	glu::TYPE_INT,		{ 42 } },
359		{ "sign",				"sign(${T} (-18.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ -1.0f } },
360		{ "floor",				"floor(${T} (37.3))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatFloor(37.3f) } },
361		{ "trunc",				"trunc(${T} (-1.8))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ -1.0f } },
362		{ "round",				"round(${T} (42.1))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ 42.0f } },
363		{ "ceil",				"ceil(${T} (82.2))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatCeil(82.2f) } },
364		{ "mod",				"mod(${T} (87.65), ${MT} (3.7))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ deFloatMod(87.65f, 3.7f) } },
365		{ "min",				"min(${T} (12.3), ${MT} (32.1))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ 12.3f } },
366		{ "max",				"max(${T} (12.3), ${MT} (32.1))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ 32.1f } },
367		{ "clamp",				"clamp(${T} (42.1),	${MT} (10.0), ${MT} (15.0))",	glu::TYPE_FLOAT,	1,	4,	glu::TYPE_FLOAT,	{ 15.0f } },
368		{ "length_float",		"length(1.0)",										glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 1.0f } },
369		{ "length_vec2",		"length(vec2(1.0))",								glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatSqrt(2.0f) } },
370		{ "length_vec3",		"length(vec3(1.0))",								glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatSqrt(3.0f) } },
371		{ "length_vec4",		"length(vec4(1.0))",								glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatSqrt(4.0f) } },
372		{ "dot_float",			"dot(1.0, 1.0)",									glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 1.0f } },
373		{ "dot_vec2",			"dot(vec2(1.0), vec2(1.0))",						glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 2.0f } },
374		{ "dot_vec3",			"dot(vec3(1.0), vec3(1.0))",						glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 3.0f } },
375		{ "dot_vec4",			"dot(vec4(1.0), vec4(1.0))",						glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 4.0f } },
376		{ "normalize_float",	"normalize(1.0)",									glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ 1.0f } },
377		{ "normalize_vec2",		"normalize(vec2(1.0)).x",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatRsq(2.0f) } },
378		{ "normalize_vec3",		"normalize(vec3(1.0)).x",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatRsq(3.0f) } },
379		{ "normalize_vec4",		"normalize(vec4(1.0)).x",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_FLOAT,	{ deFloatRsq(4.0f) } },
380	};
381
382	const ShaderConstExpr::TestParams arrayCases[] = {
383		{ "radians",			"radians(${T} (60.0))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatRadians(60.0f) } },
384		{ "degrees",			"degrees(${T} (0.11))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatDegrees(0.11f) } },
385		{ "sin",				"${T} (1.0) + sin(${T} (0.7))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ 1.0f + deFloatSin(0.7f) } },
386		{ "cos",				"${T} (1.0) + cos(${T} (0.7))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ 1.0f + deFloatCos(0.7f) } },
387		{ "asin",				"asin(${T} (0.9))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatAsin(0.9f) } },
388		{ "acos",				"acos(${T} (-0.5))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatAcos(-0.5f) } },
389		{ "pow",				"pow(${T} (2.0), ${T} (2.0))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatPow(2.0f, 2.0f) } },
390		{ "exp",				"exp(${T} (1.2))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatExp(1.2f) } },
391		{ "log",				"log(${T} (8.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatLog(8.0f) } },
392		{ "exp2",				"exp2(${T} (2.1))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatExp2(2.1f) } },
393		{ "log2",				"log2(${T} (9.0))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatLog2(9.0) } },
394		{ "sqrt",				"sqrt(${T} (4.5))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatSqrt(4.5f) } },
395		{ "inversesqrt",		"inversesqrt(${T} (0.26))",						glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatRsq(0.26f) } },
396		{ "abs",				"abs(${T} (-2))",								glu::TYPE_INT,		1,	4,	glu::TYPE_INT,	{ 2 } },
397		{ "sign",				"sign(${T} (18.0))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatSign(18.0f) } },
398		{ "floor",				"floor(${T} (3.3))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatFloor(3.3f) } },
399		{ "trunc",				"trunc(${T} (2.8))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ 2 } },
400		{ "round",				"round(${T} (2.2))",							glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatRound(2.2f) } },
401		{ "ceil",				"ceil(${T} (2.2))",								glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatCeil(2.2f) } },
402		{ "mod",				"mod(${T} (7.1), ${MT} (4.0))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatMod(7.1f, 4.0f) } },
403		{ "min",				"min(${T} (2.3), ${MT} (3.1))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatMin(2.3f, 3.1f) } },
404		{ "max",				"max(${T} (2.3), ${MT} (3.1))",					glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ deFloatMax(2.3f, 3.1f) } },
405		{ "clamp",				"clamp(${T} (4.1),	${MT} (2.1), ${MT} (3.1))",	glu::TYPE_FLOAT,	1,	4,	glu::TYPE_INT,	{ 3 } },
406		{ "length_float",		"length(2.1)",									glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 2 } },
407		{ "length_vec2",		"length(vec2(1.0))",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ deFloatSqrt(2.0f) } },
408		{ "length_vec3",		"length(vec3(1.0))",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ deFloatSqrt(3.0f) } },
409		{ "length_vec4",		"length(vec4(1.0))",							glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ deFloatSqrt(4.0f) } },
410		{ "dot_float",			"dot(1.0, 1.0)",								glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 1 } },
411		{ "dot_vec2",			"dot(vec2(1.0), vec2(1.01))",					glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 2 } },
412		{ "dot_vec3",			"dot(vec3(1.0), vec3(1.1))",					glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 3 } },
413		{ "dot_vec4",			"dot(vec4(1.0), vec4(1.1))",					glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 4 } },
414		{ "normalize_float",	"${T} (1.0) + normalize(2.0)",					glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 2 } },
415		{ "normalize_vec2",		"${T} (1.0) + normalize(vec2(1.0)).x",			glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 1.0f + deFloatRsq(2.0f) } },
416		{ "normalize_vec3",		"${T} (1.0) + normalize(vec3(1.0)).x",			glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 1.0f + deFloatRsq(3.0f) } },
417		{ "normalize_vec4",		"${T} (1.0) + normalize(vec4(1.0)).x",			glu::TYPE_FLOAT,	1,	1,	glu::TYPE_INT,	{ 1.0f + deFloatRsq(4.0f) } },
418	};
419
420	const char* basicShaderTemplate = "const ${CASE_BASE_TYPE} cval = ${CASE_EXPRESSION};\n"
421									  "out0 = cval;\n";
422
423	std::vector<tcu::TestNode*> children;
424	ShaderConstExpr::createTests(m_context, baseCases, DE_LENGTH_OF_ARRAY(baseCases), basicShaderTemplate, "basic_",
425								 children);
426
427	const char* arrayShaderTemplate = "float array[int(${CASE_EXPRESSION})];\n"
428									  "out0 = array.length();\n";
429
430	ShaderConstExpr::createTests(m_context, arrayCases, DE_LENGTH_OF_ARRAY(arrayCases), arrayShaderTemplate, "array_",
431								 children);
432
433	for (std::size_t i = 0; i < children.size(); i++)
434		addChild(children[i]);
435}
436
437} // glcts
438