1/* 2 * jquanti-neon.c - sample data conversion and quantization (Arm Neon) 3 * 4 * Copyright (C) 2020, Arm Limited. All Rights Reserved. 5 * 6 * This software is provided 'as-is', without any express or implied 7 * warranty. In no event will the authors be held liable for any damages 8 * arising from the use of this software. 9 * 10 * Permission is granted to anyone to use this software for any purpose, 11 * including commercial applications, and to alter it and redistribute it 12 * freely, subject to the following restrictions: 13 * 14 * 1. The origin of this software must not be misrepresented; you must not 15 * claim that you wrote the original software. If you use this software 16 * in a product, an acknowledgment in the product documentation would be 17 * appreciated but is not required. 18 * 2. Altered source versions must be plainly marked as such, and must not be 19 * misrepresented as being the original software. 20 * 3. This notice may not be removed or altered from any source distribution. 21 */ 22 23#define JPEG_INTERNALS 24#include "../../jinclude.h" 25#include "../../jpeglib.h" 26#include "../../jsimd.h" 27#include "../../jdct.h" 28#include "../../jsimddct.h" 29#include "../jsimd.h" 30 31#include <arm_neon.h> 32 33 34/* After downsampling, the resulting sample values are in the range [0, 255], 35 * but the Discrete Cosine Transform (DCT) operates on values centered around 36 * 0. 37 * 38 * To prepare sample values for the DCT, load samples into a DCT workspace, 39 * subtracting CENTERJSAMPLE (128). The samples, now in the range [-128, 127], 40 * are also widened from 8- to 16-bit. 41 * 42 * The equivalent scalar C function convsamp() can be found in jcdctmgr.c. 43 */ 44 45void jsimd_convsamp_neon(JSAMPARRAY sample_data, JDIMENSION start_col, 46 DCTELEM *workspace) 47{ 48 uint8x8_t samp_row0 = vld1_u8(sample_data[0] + start_col); 49 uint8x8_t samp_row1 = vld1_u8(sample_data[1] + start_col); 50 uint8x8_t samp_row2 = vld1_u8(sample_data[2] + start_col); 51 uint8x8_t samp_row3 = vld1_u8(sample_data[3] + start_col); 52 uint8x8_t samp_row4 = vld1_u8(sample_data[4] + start_col); 53 uint8x8_t samp_row5 = vld1_u8(sample_data[5] + start_col); 54 uint8x8_t samp_row6 = vld1_u8(sample_data[6] + start_col); 55 uint8x8_t samp_row7 = vld1_u8(sample_data[7] + start_col); 56 57 int16x8_t row0 = 58 vreinterpretq_s16_u16(vsubl_u8(samp_row0, vdup_n_u8(CENTERJSAMPLE))); 59 int16x8_t row1 = 60 vreinterpretq_s16_u16(vsubl_u8(samp_row1, vdup_n_u8(CENTERJSAMPLE))); 61 int16x8_t row2 = 62 vreinterpretq_s16_u16(vsubl_u8(samp_row2, vdup_n_u8(CENTERJSAMPLE))); 63 int16x8_t row3 = 64 vreinterpretq_s16_u16(vsubl_u8(samp_row3, vdup_n_u8(CENTERJSAMPLE))); 65 int16x8_t row4 = 66 vreinterpretq_s16_u16(vsubl_u8(samp_row4, vdup_n_u8(CENTERJSAMPLE))); 67 int16x8_t row5 = 68 vreinterpretq_s16_u16(vsubl_u8(samp_row5, vdup_n_u8(CENTERJSAMPLE))); 69 int16x8_t row6 = 70 vreinterpretq_s16_u16(vsubl_u8(samp_row6, vdup_n_u8(CENTERJSAMPLE))); 71 int16x8_t row7 = 72 vreinterpretq_s16_u16(vsubl_u8(samp_row7, vdup_n_u8(CENTERJSAMPLE))); 73 74 vst1q_s16(workspace + 0 * DCTSIZE, row0); 75 vst1q_s16(workspace + 1 * DCTSIZE, row1); 76 vst1q_s16(workspace + 2 * DCTSIZE, row2); 77 vst1q_s16(workspace + 3 * DCTSIZE, row3); 78 vst1q_s16(workspace + 4 * DCTSIZE, row4); 79 vst1q_s16(workspace + 5 * DCTSIZE, row5); 80 vst1q_s16(workspace + 6 * DCTSIZE, row6); 81 vst1q_s16(workspace + 7 * DCTSIZE, row7); 82} 83 84 85/* After the DCT, the resulting array of coefficient values needs to be divided 86 * by an array of quantization values. 87 * 88 * To avoid a slow division operation, the DCT coefficients are multiplied by 89 * the (scaled) reciprocals of the quantization values and then right-shifted. 90 * 91 * The equivalent scalar C function quantize() can be found in jcdctmgr.c. 92 */ 93 94void jsimd_quantize_neon(JCOEFPTR coef_block, DCTELEM *divisors, 95 DCTELEM *workspace) 96{ 97 JCOEFPTR out_ptr = coef_block; 98 UDCTELEM *recip_ptr = (UDCTELEM *)divisors; 99 UDCTELEM *corr_ptr = (UDCTELEM *)divisors + DCTSIZE2; 100 DCTELEM *shift_ptr = divisors + 3 * DCTSIZE2; 101 int i; 102 103 for (i = 0; i < DCTSIZE; i += DCTSIZE / 2) { 104 /* Load DCT coefficients. */ 105 int16x8_t row0 = vld1q_s16(workspace + (i + 0) * DCTSIZE); 106 int16x8_t row1 = vld1q_s16(workspace + (i + 1) * DCTSIZE); 107 int16x8_t row2 = vld1q_s16(workspace + (i + 2) * DCTSIZE); 108 int16x8_t row3 = vld1q_s16(workspace + (i + 3) * DCTSIZE); 109 /* Load reciprocals of quantization values. */ 110 uint16x8_t recip0 = vld1q_u16(recip_ptr + (i + 0) * DCTSIZE); 111 uint16x8_t recip1 = vld1q_u16(recip_ptr + (i + 1) * DCTSIZE); 112 uint16x8_t recip2 = vld1q_u16(recip_ptr + (i + 2) * DCTSIZE); 113 uint16x8_t recip3 = vld1q_u16(recip_ptr + (i + 3) * DCTSIZE); 114 uint16x8_t corr0 = vld1q_u16(corr_ptr + (i + 0) * DCTSIZE); 115 uint16x8_t corr1 = vld1q_u16(corr_ptr + (i + 1) * DCTSIZE); 116 uint16x8_t corr2 = vld1q_u16(corr_ptr + (i + 2) * DCTSIZE); 117 uint16x8_t corr3 = vld1q_u16(corr_ptr + (i + 3) * DCTSIZE); 118 int16x8_t shift0 = vld1q_s16(shift_ptr + (i + 0) * DCTSIZE); 119 int16x8_t shift1 = vld1q_s16(shift_ptr + (i + 1) * DCTSIZE); 120 int16x8_t shift2 = vld1q_s16(shift_ptr + (i + 2) * DCTSIZE); 121 int16x8_t shift3 = vld1q_s16(shift_ptr + (i + 3) * DCTSIZE); 122 123 /* Extract sign from coefficients. */ 124 int16x8_t sign_row0 = vshrq_n_s16(row0, 15); 125 int16x8_t sign_row1 = vshrq_n_s16(row1, 15); 126 int16x8_t sign_row2 = vshrq_n_s16(row2, 15); 127 int16x8_t sign_row3 = vshrq_n_s16(row3, 15); 128 /* Get absolute value of DCT coefficients. */ 129 uint16x8_t abs_row0 = vreinterpretq_u16_s16(vabsq_s16(row0)); 130 uint16x8_t abs_row1 = vreinterpretq_u16_s16(vabsq_s16(row1)); 131 uint16x8_t abs_row2 = vreinterpretq_u16_s16(vabsq_s16(row2)); 132 uint16x8_t abs_row3 = vreinterpretq_u16_s16(vabsq_s16(row3)); 133 /* Add correction. */ 134 abs_row0 = vaddq_u16(abs_row0, corr0); 135 abs_row1 = vaddq_u16(abs_row1, corr1); 136 abs_row2 = vaddq_u16(abs_row2, corr2); 137 abs_row3 = vaddq_u16(abs_row3, corr3); 138 139 /* Multiply DCT coefficients by quantization reciprocals. */ 140 int32x4_t row0_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row0), 141 vget_low_u16(recip0))); 142 int32x4_t row0_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row0), 143 vget_high_u16(recip0))); 144 int32x4_t row1_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row1), 145 vget_low_u16(recip1))); 146 int32x4_t row1_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row1), 147 vget_high_u16(recip1))); 148 int32x4_t row2_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row2), 149 vget_low_u16(recip2))); 150 int32x4_t row2_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row2), 151 vget_high_u16(recip2))); 152 int32x4_t row3_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row3), 153 vget_low_u16(recip3))); 154 int32x4_t row3_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row3), 155 vget_high_u16(recip3))); 156 /* Narrow back to 16-bit. */ 157 row0 = vcombine_s16(vshrn_n_s32(row0_l, 16), vshrn_n_s32(row0_h, 16)); 158 row1 = vcombine_s16(vshrn_n_s32(row1_l, 16), vshrn_n_s32(row1_h, 16)); 159 row2 = vcombine_s16(vshrn_n_s32(row2_l, 16), vshrn_n_s32(row2_h, 16)); 160 row3 = vcombine_s16(vshrn_n_s32(row3_l, 16), vshrn_n_s32(row3_h, 16)); 161 162 /* Since VSHR only supports an immediate as its second argument, negate the 163 * shift value and shift left. 164 */ 165 row0 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row0), 166 vnegq_s16(shift0))); 167 row1 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row1), 168 vnegq_s16(shift1))); 169 row2 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row2), 170 vnegq_s16(shift2))); 171 row3 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row3), 172 vnegq_s16(shift3))); 173 174 /* Restore sign to original product. */ 175 row0 = veorq_s16(row0, sign_row0); 176 row0 = vsubq_s16(row0, sign_row0); 177 row1 = veorq_s16(row1, sign_row1); 178 row1 = vsubq_s16(row1, sign_row1); 179 row2 = veorq_s16(row2, sign_row2); 180 row2 = vsubq_s16(row2, sign_row2); 181 row3 = veorq_s16(row3, sign_row3); 182 row3 = vsubq_s16(row3, sign_row3); 183 184 /* Store quantized coefficients to memory. */ 185 vst1q_s16(out_ptr + (i + 0) * DCTSIZE, row0); 186 vst1q_s16(out_ptr + (i + 1) * DCTSIZE, row1); 187 vst1q_s16(out_ptr + (i + 2) * DCTSIZE, row2); 188 vst1q_s16(out_ptr + (i + 3) * DCTSIZE, row3); 189 } 190} 191