1cb93a386Sopenharmony_ci/*
2cb93a386Sopenharmony_ci * jquant2.c
3cb93a386Sopenharmony_ci *
4cb93a386Sopenharmony_ci * This file was part of the Independent JPEG Group's software:
5cb93a386Sopenharmony_ci * Copyright (C) 1991-1996, Thomas G. Lane.
6cb93a386Sopenharmony_ci * libjpeg-turbo Modifications:
7cb93a386Sopenharmony_ci * Copyright (C) 2009, 2014-2015, 2020, D. R. Commander.
8cb93a386Sopenharmony_ci * For conditions of distribution and use, see the accompanying README.ijg
9cb93a386Sopenharmony_ci * file.
10cb93a386Sopenharmony_ci *
11cb93a386Sopenharmony_ci * This file contains 2-pass color quantization (color mapping) routines.
12cb93a386Sopenharmony_ci * These routines provide selection of a custom color map for an image,
13cb93a386Sopenharmony_ci * followed by mapping of the image to that color map, with optional
14cb93a386Sopenharmony_ci * Floyd-Steinberg dithering.
15cb93a386Sopenharmony_ci * It is also possible to use just the second pass to map to an arbitrary
16cb93a386Sopenharmony_ci * externally-given color map.
17cb93a386Sopenharmony_ci *
18cb93a386Sopenharmony_ci * Note: ordered dithering is not supported, since there isn't any fast
19cb93a386Sopenharmony_ci * way to compute intercolor distances; it's unclear that ordered dither's
20cb93a386Sopenharmony_ci * fundamental assumptions even hold with an irregularly spaced color map.
21cb93a386Sopenharmony_ci */
22cb93a386Sopenharmony_ci
23cb93a386Sopenharmony_ci#define JPEG_INTERNALS
24cb93a386Sopenharmony_ci#include "jinclude.h"
25cb93a386Sopenharmony_ci#include "jpeglib.h"
26cb93a386Sopenharmony_ci
27cb93a386Sopenharmony_ci#ifdef QUANT_2PASS_SUPPORTED
28cb93a386Sopenharmony_ci
29cb93a386Sopenharmony_ci
30cb93a386Sopenharmony_ci/*
31cb93a386Sopenharmony_ci * This module implements the well-known Heckbert paradigm for color
32cb93a386Sopenharmony_ci * quantization.  Most of the ideas used here can be traced back to
33cb93a386Sopenharmony_ci * Heckbert's seminal paper
34cb93a386Sopenharmony_ci *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
35cb93a386Sopenharmony_ci *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
36cb93a386Sopenharmony_ci *
37cb93a386Sopenharmony_ci * In the first pass over the image, we accumulate a histogram showing the
38cb93a386Sopenharmony_ci * usage count of each possible color.  To keep the histogram to a reasonable
39cb93a386Sopenharmony_ci * size, we reduce the precision of the input; typical practice is to retain
40cb93a386Sopenharmony_ci * 5 or 6 bits per color, so that 8 or 4 different input values are counted
41cb93a386Sopenharmony_ci * in the same histogram cell.
42cb93a386Sopenharmony_ci *
43cb93a386Sopenharmony_ci * Next, the color-selection step begins with a box representing the whole
44cb93a386Sopenharmony_ci * color space, and repeatedly splits the "largest" remaining box until we
45cb93a386Sopenharmony_ci * have as many boxes as desired colors.  Then the mean color in each
46cb93a386Sopenharmony_ci * remaining box becomes one of the possible output colors.
47cb93a386Sopenharmony_ci *
48cb93a386Sopenharmony_ci * The second pass over the image maps each input pixel to the closest output
49cb93a386Sopenharmony_ci * color (optionally after applying a Floyd-Steinberg dithering correction).
50cb93a386Sopenharmony_ci * This mapping is logically trivial, but making it go fast enough requires
51cb93a386Sopenharmony_ci * considerable care.
52cb93a386Sopenharmony_ci *
53cb93a386Sopenharmony_ci * Heckbert-style quantizers vary a good deal in their policies for choosing
54cb93a386Sopenharmony_ci * the "largest" box and deciding where to cut it.  The particular policies
55cb93a386Sopenharmony_ci * used here have proved out well in experimental comparisons, but better ones
56cb93a386Sopenharmony_ci * may yet be found.
57cb93a386Sopenharmony_ci *
58cb93a386Sopenharmony_ci * In earlier versions of the IJG code, this module quantized in YCbCr color
59cb93a386Sopenharmony_ci * space, processing the raw upsampled data without a color conversion step.
60cb93a386Sopenharmony_ci * This allowed the color conversion math to be done only once per colormap
61cb93a386Sopenharmony_ci * entry, not once per pixel.  However, that optimization precluded other
62cb93a386Sopenharmony_ci * useful optimizations (such as merging color conversion with upsampling)
63cb93a386Sopenharmony_ci * and it also interfered with desired capabilities such as quantizing to an
64cb93a386Sopenharmony_ci * externally-supplied colormap.  We have therefore abandoned that approach.
65cb93a386Sopenharmony_ci * The present code works in the post-conversion color space, typically RGB.
66cb93a386Sopenharmony_ci *
67cb93a386Sopenharmony_ci * To improve the visual quality of the results, we actually work in scaled
68cb93a386Sopenharmony_ci * RGB space, giving G distances more weight than R, and R in turn more than
69cb93a386Sopenharmony_ci * B.  To do everything in integer math, we must use integer scale factors.
70cb93a386Sopenharmony_ci * The 2/3/1 scale factors used here correspond loosely to the relative
71cb93a386Sopenharmony_ci * weights of the colors in the NTSC grayscale equation.
72cb93a386Sopenharmony_ci * If you want to use this code to quantize a non-RGB color space, you'll
73cb93a386Sopenharmony_ci * probably need to change these scale factors.
74cb93a386Sopenharmony_ci */
75cb93a386Sopenharmony_ci
76cb93a386Sopenharmony_ci#define R_SCALE  2              /* scale R distances by this much */
77cb93a386Sopenharmony_ci#define G_SCALE  3              /* scale G distances by this much */
78cb93a386Sopenharmony_ci#define B_SCALE  1              /* and B by this much */
79cb93a386Sopenharmony_ci
80cb93a386Sopenharmony_cistatic const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE };
81cb93a386Sopenharmony_ci#define C0_SCALE  c_scales[rgb_red[cinfo->out_color_space]]
82cb93a386Sopenharmony_ci#define C1_SCALE  c_scales[rgb_green[cinfo->out_color_space]]
83cb93a386Sopenharmony_ci#define C2_SCALE  c_scales[rgb_blue[cinfo->out_color_space]]
84cb93a386Sopenharmony_ci
85cb93a386Sopenharmony_ci/*
86cb93a386Sopenharmony_ci * First we have the histogram data structure and routines for creating it.
87cb93a386Sopenharmony_ci *
88cb93a386Sopenharmony_ci * The number of bits of precision can be adjusted by changing these symbols.
89cb93a386Sopenharmony_ci * We recommend keeping 6 bits for G and 5 each for R and B.
90cb93a386Sopenharmony_ci * If you have plenty of memory and cycles, 6 bits all around gives marginally
91cb93a386Sopenharmony_ci * better results; if you are short of memory, 5 bits all around will save
92cb93a386Sopenharmony_ci * some space but degrade the results.
93cb93a386Sopenharmony_ci * To maintain a fully accurate histogram, we'd need to allocate a "long"
94cb93a386Sopenharmony_ci * (preferably unsigned long) for each cell.  In practice this is overkill;
95cb93a386Sopenharmony_ci * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
96cb93a386Sopenharmony_ci * and clamping those that do overflow to the maximum value will give close-
97cb93a386Sopenharmony_ci * enough results.  This reduces the recommended histogram size from 256Kb
98cb93a386Sopenharmony_ci * to 128Kb, which is a useful savings on PC-class machines.
99cb93a386Sopenharmony_ci * (In the second pass the histogram space is re-used for pixel mapping data;
100cb93a386Sopenharmony_ci * in that capacity, each cell must be able to store zero to the number of
101cb93a386Sopenharmony_ci * desired colors.  16 bits/cell is plenty for that too.)
102cb93a386Sopenharmony_ci * Since the JPEG code is intended to run in small memory model on 80x86
103cb93a386Sopenharmony_ci * machines, we can't just allocate the histogram in one chunk.  Instead
104cb93a386Sopenharmony_ci * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
105cb93a386Sopenharmony_ci * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
106cb93a386Sopenharmony_ci * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.
107cb93a386Sopenharmony_ci */
108cb93a386Sopenharmony_ci
109cb93a386Sopenharmony_ci#define MAXNUMCOLORS  (MAXJSAMPLE + 1) /* maximum size of colormap */
110cb93a386Sopenharmony_ci
111cb93a386Sopenharmony_ci/* These will do the right thing for either R,G,B or B,G,R color order,
112cb93a386Sopenharmony_ci * but you may not like the results for other color orders.
113cb93a386Sopenharmony_ci */
114cb93a386Sopenharmony_ci#define HIST_C0_BITS  5         /* bits of precision in R/B histogram */
115cb93a386Sopenharmony_ci#define HIST_C1_BITS  6         /* bits of precision in G histogram */
116cb93a386Sopenharmony_ci#define HIST_C2_BITS  5         /* bits of precision in B/R histogram */
117cb93a386Sopenharmony_ci
118cb93a386Sopenharmony_ci/* Number of elements along histogram axes. */
119cb93a386Sopenharmony_ci#define HIST_C0_ELEMS  (1 << HIST_C0_BITS)
120cb93a386Sopenharmony_ci#define HIST_C1_ELEMS  (1 << HIST_C1_BITS)
121cb93a386Sopenharmony_ci#define HIST_C2_ELEMS  (1 << HIST_C2_BITS)
122cb93a386Sopenharmony_ci
123cb93a386Sopenharmony_ci/* These are the amounts to shift an input value to get a histogram index. */
124cb93a386Sopenharmony_ci#define C0_SHIFT  (BITS_IN_JSAMPLE - HIST_C0_BITS)
125cb93a386Sopenharmony_ci#define C1_SHIFT  (BITS_IN_JSAMPLE - HIST_C1_BITS)
126cb93a386Sopenharmony_ci#define C2_SHIFT  (BITS_IN_JSAMPLE - HIST_C2_BITS)
127cb93a386Sopenharmony_ci
128cb93a386Sopenharmony_ci
129cb93a386Sopenharmony_citypedef UINT16 histcell;        /* histogram cell; prefer an unsigned type */
130cb93a386Sopenharmony_ci
131cb93a386Sopenharmony_citypedef histcell *histptr;      /* for pointers to histogram cells */
132cb93a386Sopenharmony_ci
133cb93a386Sopenharmony_citypedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
134cb93a386Sopenharmony_citypedef hist1d *hist2d;         /* type for the 2nd-level pointers */
135cb93a386Sopenharmony_citypedef hist2d *hist3d;         /* type for top-level pointer */
136cb93a386Sopenharmony_ci
137cb93a386Sopenharmony_ci
138cb93a386Sopenharmony_ci/* Declarations for Floyd-Steinberg dithering.
139cb93a386Sopenharmony_ci *
140cb93a386Sopenharmony_ci * Errors are accumulated into the array fserrors[], at a resolution of
141cb93a386Sopenharmony_ci * 1/16th of a pixel count.  The error at a given pixel is propagated
142cb93a386Sopenharmony_ci * to its not-yet-processed neighbors using the standard F-S fractions,
143cb93a386Sopenharmony_ci *              ...     (here)  7/16
144cb93a386Sopenharmony_ci *              3/16    5/16    1/16
145cb93a386Sopenharmony_ci * We work left-to-right on even rows, right-to-left on odd rows.
146cb93a386Sopenharmony_ci *
147cb93a386Sopenharmony_ci * We can get away with a single array (holding one row's worth of errors)
148cb93a386Sopenharmony_ci * by using it to store the current row's errors at pixel columns not yet
149cb93a386Sopenharmony_ci * processed, but the next row's errors at columns already processed.  We
150cb93a386Sopenharmony_ci * need only a few extra variables to hold the errors immediately around the
151cb93a386Sopenharmony_ci * current column.  (If we are lucky, those variables are in registers, but
152cb93a386Sopenharmony_ci * even if not, they're probably cheaper to access than array elements are.)
153cb93a386Sopenharmony_ci *
154cb93a386Sopenharmony_ci * The fserrors[] array has (#columns + 2) entries; the extra entry at
155cb93a386Sopenharmony_ci * each end saves us from special-casing the first and last pixels.
156cb93a386Sopenharmony_ci * Each entry is three values long, one value for each color component.
157cb93a386Sopenharmony_ci */
158cb93a386Sopenharmony_ci
159cb93a386Sopenharmony_ci#if BITS_IN_JSAMPLE == 8
160cb93a386Sopenharmony_citypedef INT16 FSERROR;          /* 16 bits should be enough */
161cb93a386Sopenharmony_citypedef int LOCFSERROR;         /* use 'int' for calculation temps */
162cb93a386Sopenharmony_ci#else
163cb93a386Sopenharmony_citypedef JLONG FSERROR;          /* may need more than 16 bits */
164cb93a386Sopenharmony_citypedef JLONG LOCFSERROR;       /* be sure calculation temps are big enough */
165cb93a386Sopenharmony_ci#endif
166cb93a386Sopenharmony_ci
167cb93a386Sopenharmony_citypedef FSERROR *FSERRPTR;      /* pointer to error array */
168cb93a386Sopenharmony_ci
169cb93a386Sopenharmony_ci
170cb93a386Sopenharmony_ci/* Private subobject */
171cb93a386Sopenharmony_ci
172cb93a386Sopenharmony_citypedef struct {
173cb93a386Sopenharmony_ci  struct jpeg_color_quantizer pub; /* public fields */
174cb93a386Sopenharmony_ci
175cb93a386Sopenharmony_ci  /* Space for the eventually created colormap is stashed here */
176cb93a386Sopenharmony_ci  JSAMPARRAY sv_colormap;       /* colormap allocated at init time */
177cb93a386Sopenharmony_ci  int desired;                  /* desired # of colors = size of colormap */
178cb93a386Sopenharmony_ci
179cb93a386Sopenharmony_ci  /* Variables for accumulating image statistics */
180cb93a386Sopenharmony_ci  hist3d histogram;             /* pointer to the histogram */
181cb93a386Sopenharmony_ci
182cb93a386Sopenharmony_ci  boolean needs_zeroed;         /* TRUE if next pass must zero histogram */
183cb93a386Sopenharmony_ci
184cb93a386Sopenharmony_ci  /* Variables for Floyd-Steinberg dithering */
185cb93a386Sopenharmony_ci  FSERRPTR fserrors;            /* accumulated errors */
186cb93a386Sopenharmony_ci  boolean on_odd_row;           /* flag to remember which row we are on */
187cb93a386Sopenharmony_ci  int *error_limiter;           /* table for clamping the applied error */
188cb93a386Sopenharmony_ci} my_cquantizer;
189cb93a386Sopenharmony_ci
190cb93a386Sopenharmony_citypedef my_cquantizer *my_cquantize_ptr;
191cb93a386Sopenharmony_ci
192cb93a386Sopenharmony_ci
193cb93a386Sopenharmony_ci/*
194cb93a386Sopenharmony_ci * Prescan some rows of pixels.
195cb93a386Sopenharmony_ci * In this module the prescan simply updates the histogram, which has been
196cb93a386Sopenharmony_ci * initialized to zeroes by start_pass.
197cb93a386Sopenharmony_ci * An output_buf parameter is required by the method signature, but no data
198cb93a386Sopenharmony_ci * is actually output (in fact the buffer controller is probably passing a
199cb93a386Sopenharmony_ci * NULL pointer).
200cb93a386Sopenharmony_ci */
201cb93a386Sopenharmony_ci
202cb93a386Sopenharmony_ciMETHODDEF(void)
203cb93a386Sopenharmony_ciprescan_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
204cb93a386Sopenharmony_ci                 JSAMPARRAY output_buf, int num_rows)
205cb93a386Sopenharmony_ci{
206cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
207cb93a386Sopenharmony_ci  register JSAMPROW ptr;
208cb93a386Sopenharmony_ci  register histptr histp;
209cb93a386Sopenharmony_ci  register hist3d histogram = cquantize->histogram;
210cb93a386Sopenharmony_ci  int row;
211cb93a386Sopenharmony_ci  JDIMENSION col;
212cb93a386Sopenharmony_ci  JDIMENSION width = cinfo->output_width;
213cb93a386Sopenharmony_ci
214cb93a386Sopenharmony_ci  for (row = 0; row < num_rows; row++) {
215cb93a386Sopenharmony_ci    ptr = input_buf[row];
216cb93a386Sopenharmony_ci    for (col = width; col > 0; col--) {
217cb93a386Sopenharmony_ci      /* get pixel value and index into the histogram */
218cb93a386Sopenharmony_ci      histp = &histogram[ptr[0] >> C0_SHIFT]
219cb93a386Sopenharmony_ci                        [ptr[1] >> C1_SHIFT]
220cb93a386Sopenharmony_ci                        [ptr[2] >> C2_SHIFT];
221cb93a386Sopenharmony_ci      /* increment, check for overflow and undo increment if so. */
222cb93a386Sopenharmony_ci      if (++(*histp) <= 0)
223cb93a386Sopenharmony_ci        (*histp)--;
224cb93a386Sopenharmony_ci      ptr += 3;
225cb93a386Sopenharmony_ci    }
226cb93a386Sopenharmony_ci  }
227cb93a386Sopenharmony_ci}
228cb93a386Sopenharmony_ci
229cb93a386Sopenharmony_ci
230cb93a386Sopenharmony_ci/*
231cb93a386Sopenharmony_ci * Next we have the really interesting routines: selection of a colormap
232cb93a386Sopenharmony_ci * given the completed histogram.
233cb93a386Sopenharmony_ci * These routines work with a list of "boxes", each representing a rectangular
234cb93a386Sopenharmony_ci * subset of the input color space (to histogram precision).
235cb93a386Sopenharmony_ci */
236cb93a386Sopenharmony_ci
237cb93a386Sopenharmony_citypedef struct {
238cb93a386Sopenharmony_ci  /* The bounds of the box (inclusive); expressed as histogram indexes */
239cb93a386Sopenharmony_ci  int c0min, c0max;
240cb93a386Sopenharmony_ci  int c1min, c1max;
241cb93a386Sopenharmony_ci  int c2min, c2max;
242cb93a386Sopenharmony_ci  /* The volume (actually 2-norm) of the box */
243cb93a386Sopenharmony_ci  JLONG volume;
244cb93a386Sopenharmony_ci  /* The number of nonzero histogram cells within this box */
245cb93a386Sopenharmony_ci  long colorcount;
246cb93a386Sopenharmony_ci} box;
247cb93a386Sopenharmony_ci
248cb93a386Sopenharmony_citypedef box *boxptr;
249cb93a386Sopenharmony_ci
250cb93a386Sopenharmony_ci
251cb93a386Sopenharmony_ciLOCAL(boxptr)
252cb93a386Sopenharmony_cifind_biggest_color_pop(boxptr boxlist, int numboxes)
253cb93a386Sopenharmony_ci/* Find the splittable box with the largest color population */
254cb93a386Sopenharmony_ci/* Returns NULL if no splittable boxes remain */
255cb93a386Sopenharmony_ci{
256cb93a386Sopenharmony_ci  register boxptr boxp;
257cb93a386Sopenharmony_ci  register int i;
258cb93a386Sopenharmony_ci  register long maxc = 0;
259cb93a386Sopenharmony_ci  boxptr which = NULL;
260cb93a386Sopenharmony_ci
261cb93a386Sopenharmony_ci  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
262cb93a386Sopenharmony_ci    if (boxp->colorcount > maxc && boxp->volume > 0) {
263cb93a386Sopenharmony_ci      which = boxp;
264cb93a386Sopenharmony_ci      maxc = boxp->colorcount;
265cb93a386Sopenharmony_ci    }
266cb93a386Sopenharmony_ci  }
267cb93a386Sopenharmony_ci  return which;
268cb93a386Sopenharmony_ci}
269cb93a386Sopenharmony_ci
270cb93a386Sopenharmony_ci
271cb93a386Sopenharmony_ciLOCAL(boxptr)
272cb93a386Sopenharmony_cifind_biggest_volume(boxptr boxlist, int numboxes)
273cb93a386Sopenharmony_ci/* Find the splittable box with the largest (scaled) volume */
274cb93a386Sopenharmony_ci/* Returns NULL if no splittable boxes remain */
275cb93a386Sopenharmony_ci{
276cb93a386Sopenharmony_ci  register boxptr boxp;
277cb93a386Sopenharmony_ci  register int i;
278cb93a386Sopenharmony_ci  register JLONG maxv = 0;
279cb93a386Sopenharmony_ci  boxptr which = NULL;
280cb93a386Sopenharmony_ci
281cb93a386Sopenharmony_ci  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
282cb93a386Sopenharmony_ci    if (boxp->volume > maxv) {
283cb93a386Sopenharmony_ci      which = boxp;
284cb93a386Sopenharmony_ci      maxv = boxp->volume;
285cb93a386Sopenharmony_ci    }
286cb93a386Sopenharmony_ci  }
287cb93a386Sopenharmony_ci  return which;
288cb93a386Sopenharmony_ci}
289cb93a386Sopenharmony_ci
290cb93a386Sopenharmony_ci
291cb93a386Sopenharmony_ciLOCAL(void)
292cb93a386Sopenharmony_ciupdate_box(j_decompress_ptr cinfo, boxptr boxp)
293cb93a386Sopenharmony_ci/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
294cb93a386Sopenharmony_ci/* and recompute its volume and population */
295cb93a386Sopenharmony_ci{
296cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
297cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
298cb93a386Sopenharmony_ci  histptr histp;
299cb93a386Sopenharmony_ci  int c0, c1, c2;
300cb93a386Sopenharmony_ci  int c0min, c0max, c1min, c1max, c2min, c2max;
301cb93a386Sopenharmony_ci  JLONG dist0, dist1, dist2;
302cb93a386Sopenharmony_ci  long ccount;
303cb93a386Sopenharmony_ci
304cb93a386Sopenharmony_ci  c0min = boxp->c0min;  c0max = boxp->c0max;
305cb93a386Sopenharmony_ci  c1min = boxp->c1min;  c1max = boxp->c1max;
306cb93a386Sopenharmony_ci  c2min = boxp->c2min;  c2max = boxp->c2max;
307cb93a386Sopenharmony_ci
308cb93a386Sopenharmony_ci  if (c0max > c0min)
309cb93a386Sopenharmony_ci    for (c0 = c0min; c0 <= c0max; c0++)
310cb93a386Sopenharmony_ci      for (c1 = c1min; c1 <= c1max; c1++) {
311cb93a386Sopenharmony_ci        histp = &histogram[c0][c1][c2min];
312cb93a386Sopenharmony_ci        for (c2 = c2min; c2 <= c2max; c2++)
313cb93a386Sopenharmony_ci          if (*histp++ != 0) {
314cb93a386Sopenharmony_ci            boxp->c0min = c0min = c0;
315cb93a386Sopenharmony_ci            goto have_c0min;
316cb93a386Sopenharmony_ci          }
317cb93a386Sopenharmony_ci      }
318cb93a386Sopenharmony_cihave_c0min:
319cb93a386Sopenharmony_ci  if (c0max > c0min)
320cb93a386Sopenharmony_ci    for (c0 = c0max; c0 >= c0min; c0--)
321cb93a386Sopenharmony_ci      for (c1 = c1min; c1 <= c1max; c1++) {
322cb93a386Sopenharmony_ci        histp = &histogram[c0][c1][c2min];
323cb93a386Sopenharmony_ci        for (c2 = c2min; c2 <= c2max; c2++)
324cb93a386Sopenharmony_ci          if (*histp++ != 0) {
325cb93a386Sopenharmony_ci            boxp->c0max = c0max = c0;
326cb93a386Sopenharmony_ci            goto have_c0max;
327cb93a386Sopenharmony_ci          }
328cb93a386Sopenharmony_ci      }
329cb93a386Sopenharmony_cihave_c0max:
330cb93a386Sopenharmony_ci  if (c1max > c1min)
331cb93a386Sopenharmony_ci    for (c1 = c1min; c1 <= c1max; c1++)
332cb93a386Sopenharmony_ci      for (c0 = c0min; c0 <= c0max; c0++) {
333cb93a386Sopenharmony_ci        histp = &histogram[c0][c1][c2min];
334cb93a386Sopenharmony_ci        for (c2 = c2min; c2 <= c2max; c2++)
335cb93a386Sopenharmony_ci          if (*histp++ != 0) {
336cb93a386Sopenharmony_ci            boxp->c1min = c1min = c1;
337cb93a386Sopenharmony_ci            goto have_c1min;
338cb93a386Sopenharmony_ci          }
339cb93a386Sopenharmony_ci      }
340cb93a386Sopenharmony_cihave_c1min:
341cb93a386Sopenharmony_ci  if (c1max > c1min)
342cb93a386Sopenharmony_ci    for (c1 = c1max; c1 >= c1min; c1--)
343cb93a386Sopenharmony_ci      for (c0 = c0min; c0 <= c0max; c0++) {
344cb93a386Sopenharmony_ci        histp = &histogram[c0][c1][c2min];
345cb93a386Sopenharmony_ci        for (c2 = c2min; c2 <= c2max; c2++)
346cb93a386Sopenharmony_ci          if (*histp++ != 0) {
347cb93a386Sopenharmony_ci            boxp->c1max = c1max = c1;
348cb93a386Sopenharmony_ci            goto have_c1max;
349cb93a386Sopenharmony_ci          }
350cb93a386Sopenharmony_ci      }
351cb93a386Sopenharmony_cihave_c1max:
352cb93a386Sopenharmony_ci  if (c2max > c2min)
353cb93a386Sopenharmony_ci    for (c2 = c2min; c2 <= c2max; c2++)
354cb93a386Sopenharmony_ci      for (c0 = c0min; c0 <= c0max; c0++) {
355cb93a386Sopenharmony_ci        histp = &histogram[c0][c1min][c2];
356cb93a386Sopenharmony_ci        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
357cb93a386Sopenharmony_ci          if (*histp != 0) {
358cb93a386Sopenharmony_ci            boxp->c2min = c2min = c2;
359cb93a386Sopenharmony_ci            goto have_c2min;
360cb93a386Sopenharmony_ci          }
361cb93a386Sopenharmony_ci      }
362cb93a386Sopenharmony_cihave_c2min:
363cb93a386Sopenharmony_ci  if (c2max > c2min)
364cb93a386Sopenharmony_ci    for (c2 = c2max; c2 >= c2min; c2--)
365cb93a386Sopenharmony_ci      for (c0 = c0min; c0 <= c0max; c0++) {
366cb93a386Sopenharmony_ci        histp = &histogram[c0][c1min][c2];
367cb93a386Sopenharmony_ci        for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
368cb93a386Sopenharmony_ci          if (*histp != 0) {
369cb93a386Sopenharmony_ci            boxp->c2max = c2max = c2;
370cb93a386Sopenharmony_ci            goto have_c2max;
371cb93a386Sopenharmony_ci          }
372cb93a386Sopenharmony_ci      }
373cb93a386Sopenharmony_cihave_c2max:
374cb93a386Sopenharmony_ci
375cb93a386Sopenharmony_ci  /* Update box volume.
376cb93a386Sopenharmony_ci   * We use 2-norm rather than real volume here; this biases the method
377cb93a386Sopenharmony_ci   * against making long narrow boxes, and it has the side benefit that
378cb93a386Sopenharmony_ci   * a box is splittable iff norm > 0.
379cb93a386Sopenharmony_ci   * Since the differences are expressed in histogram-cell units,
380cb93a386Sopenharmony_ci   * we have to shift back to JSAMPLE units to get consistent distances;
381cb93a386Sopenharmony_ci   * after which, we scale according to the selected distance scale factors.
382cb93a386Sopenharmony_ci   */
383cb93a386Sopenharmony_ci  dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
384cb93a386Sopenharmony_ci  dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
385cb93a386Sopenharmony_ci  dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
386cb93a386Sopenharmony_ci  boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2;
387cb93a386Sopenharmony_ci
388cb93a386Sopenharmony_ci  /* Now scan remaining volume of box and compute population */
389cb93a386Sopenharmony_ci  ccount = 0;
390cb93a386Sopenharmony_ci  for (c0 = c0min; c0 <= c0max; c0++)
391cb93a386Sopenharmony_ci    for (c1 = c1min; c1 <= c1max; c1++) {
392cb93a386Sopenharmony_ci      histp = &histogram[c0][c1][c2min];
393cb93a386Sopenharmony_ci      for (c2 = c2min; c2 <= c2max; c2++, histp++)
394cb93a386Sopenharmony_ci        if (*histp != 0) {
395cb93a386Sopenharmony_ci          ccount++;
396cb93a386Sopenharmony_ci        }
397cb93a386Sopenharmony_ci    }
398cb93a386Sopenharmony_ci  boxp->colorcount = ccount;
399cb93a386Sopenharmony_ci}
400cb93a386Sopenharmony_ci
401cb93a386Sopenharmony_ci
402cb93a386Sopenharmony_ciLOCAL(int)
403cb93a386Sopenharmony_cimedian_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
404cb93a386Sopenharmony_ci           int desired_colors)
405cb93a386Sopenharmony_ci/* Repeatedly select and split the largest box until we have enough boxes */
406cb93a386Sopenharmony_ci{
407cb93a386Sopenharmony_ci  int n, lb;
408cb93a386Sopenharmony_ci  int c0, c1, c2, cmax;
409cb93a386Sopenharmony_ci  register boxptr b1, b2;
410cb93a386Sopenharmony_ci
411cb93a386Sopenharmony_ci  while (numboxes < desired_colors) {
412cb93a386Sopenharmony_ci    /* Select box to split.
413cb93a386Sopenharmony_ci     * Current algorithm: by population for first half, then by volume.
414cb93a386Sopenharmony_ci     */
415cb93a386Sopenharmony_ci    if (numboxes * 2 <= desired_colors) {
416cb93a386Sopenharmony_ci      b1 = find_biggest_color_pop(boxlist, numboxes);
417cb93a386Sopenharmony_ci    } else {
418cb93a386Sopenharmony_ci      b1 = find_biggest_volume(boxlist, numboxes);
419cb93a386Sopenharmony_ci    }
420cb93a386Sopenharmony_ci    if (b1 == NULL)             /* no splittable boxes left! */
421cb93a386Sopenharmony_ci      break;
422cb93a386Sopenharmony_ci    b2 = &boxlist[numboxes];    /* where new box will go */
423cb93a386Sopenharmony_ci    /* Copy the color bounds to the new box. */
424cb93a386Sopenharmony_ci    b2->c0max = b1->c0max;  b2->c1max = b1->c1max;  b2->c2max = b1->c2max;
425cb93a386Sopenharmony_ci    b2->c0min = b1->c0min;  b2->c1min = b1->c1min;  b2->c2min = b1->c2min;
426cb93a386Sopenharmony_ci    /* Choose which axis to split the box on.
427cb93a386Sopenharmony_ci     * Current algorithm: longest scaled axis.
428cb93a386Sopenharmony_ci     * See notes in update_box about scaling distances.
429cb93a386Sopenharmony_ci     */
430cb93a386Sopenharmony_ci    c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
431cb93a386Sopenharmony_ci    c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
432cb93a386Sopenharmony_ci    c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
433cb93a386Sopenharmony_ci    /* We want to break any ties in favor of green, then red, blue last.
434cb93a386Sopenharmony_ci     * This code does the right thing for R,G,B or B,G,R color orders only.
435cb93a386Sopenharmony_ci     */
436cb93a386Sopenharmony_ci    if (rgb_red[cinfo->out_color_space] == 0) {
437cb93a386Sopenharmony_ci      cmax = c1;  n = 1;
438cb93a386Sopenharmony_ci      if (c0 > cmax) { cmax = c0;  n = 0; }
439cb93a386Sopenharmony_ci      if (c2 > cmax) { n = 2; }
440cb93a386Sopenharmony_ci    } else {
441cb93a386Sopenharmony_ci      cmax = c1;  n = 1;
442cb93a386Sopenharmony_ci      if (c2 > cmax) { cmax = c2;  n = 2; }
443cb93a386Sopenharmony_ci      if (c0 > cmax) { n = 0; }
444cb93a386Sopenharmony_ci    }
445cb93a386Sopenharmony_ci    /* Choose split point along selected axis, and update box bounds.
446cb93a386Sopenharmony_ci     * Current algorithm: split at halfway point.
447cb93a386Sopenharmony_ci     * (Since the box has been shrunk to minimum volume,
448cb93a386Sopenharmony_ci     * any split will produce two nonempty subboxes.)
449cb93a386Sopenharmony_ci     * Note that lb value is max for lower box, so must be < old max.
450cb93a386Sopenharmony_ci     */
451cb93a386Sopenharmony_ci    switch (n) {
452cb93a386Sopenharmony_ci    case 0:
453cb93a386Sopenharmony_ci      lb = (b1->c0max + b1->c0min) / 2;
454cb93a386Sopenharmony_ci      b1->c0max = lb;
455cb93a386Sopenharmony_ci      b2->c0min = lb + 1;
456cb93a386Sopenharmony_ci      break;
457cb93a386Sopenharmony_ci    case 1:
458cb93a386Sopenharmony_ci      lb = (b1->c1max + b1->c1min) / 2;
459cb93a386Sopenharmony_ci      b1->c1max = lb;
460cb93a386Sopenharmony_ci      b2->c1min = lb + 1;
461cb93a386Sopenharmony_ci      break;
462cb93a386Sopenharmony_ci    case 2:
463cb93a386Sopenharmony_ci      lb = (b1->c2max + b1->c2min) / 2;
464cb93a386Sopenharmony_ci      b1->c2max = lb;
465cb93a386Sopenharmony_ci      b2->c2min = lb + 1;
466cb93a386Sopenharmony_ci      break;
467cb93a386Sopenharmony_ci    }
468cb93a386Sopenharmony_ci    /* Update stats for boxes */
469cb93a386Sopenharmony_ci    update_box(cinfo, b1);
470cb93a386Sopenharmony_ci    update_box(cinfo, b2);
471cb93a386Sopenharmony_ci    numboxes++;
472cb93a386Sopenharmony_ci  }
473cb93a386Sopenharmony_ci  return numboxes;
474cb93a386Sopenharmony_ci}
475cb93a386Sopenharmony_ci
476cb93a386Sopenharmony_ci
477cb93a386Sopenharmony_ciLOCAL(void)
478cb93a386Sopenharmony_cicompute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor)
479cb93a386Sopenharmony_ci/* Compute representative color for a box, put it in colormap[icolor] */
480cb93a386Sopenharmony_ci{
481cb93a386Sopenharmony_ci  /* Current algorithm: mean weighted by pixels (not colors) */
482cb93a386Sopenharmony_ci  /* Note it is important to get the rounding correct! */
483cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
484cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
485cb93a386Sopenharmony_ci  histptr histp;
486cb93a386Sopenharmony_ci  int c0, c1, c2;
487cb93a386Sopenharmony_ci  int c0min, c0max, c1min, c1max, c2min, c2max;
488cb93a386Sopenharmony_ci  long count;
489cb93a386Sopenharmony_ci  long total = 0;
490cb93a386Sopenharmony_ci  long c0total = 0;
491cb93a386Sopenharmony_ci  long c1total = 0;
492cb93a386Sopenharmony_ci  long c2total = 0;
493cb93a386Sopenharmony_ci
494cb93a386Sopenharmony_ci  c0min = boxp->c0min;  c0max = boxp->c0max;
495cb93a386Sopenharmony_ci  c1min = boxp->c1min;  c1max = boxp->c1max;
496cb93a386Sopenharmony_ci  c2min = boxp->c2min;  c2max = boxp->c2max;
497cb93a386Sopenharmony_ci
498cb93a386Sopenharmony_ci  for (c0 = c0min; c0 <= c0max; c0++)
499cb93a386Sopenharmony_ci    for (c1 = c1min; c1 <= c1max; c1++) {
500cb93a386Sopenharmony_ci      histp = &histogram[c0][c1][c2min];
501cb93a386Sopenharmony_ci      for (c2 = c2min; c2 <= c2max; c2++) {
502cb93a386Sopenharmony_ci        if ((count = *histp++) != 0) {
503cb93a386Sopenharmony_ci          total += count;
504cb93a386Sopenharmony_ci          c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count;
505cb93a386Sopenharmony_ci          c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count;
506cb93a386Sopenharmony_ci          c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count;
507cb93a386Sopenharmony_ci        }
508cb93a386Sopenharmony_ci      }
509cb93a386Sopenharmony_ci    }
510cb93a386Sopenharmony_ci
511cb93a386Sopenharmony_ci  cinfo->colormap[0][icolor] = (JSAMPLE)((c0total + (total >> 1)) / total);
512cb93a386Sopenharmony_ci  cinfo->colormap[1][icolor] = (JSAMPLE)((c1total + (total >> 1)) / total);
513cb93a386Sopenharmony_ci  cinfo->colormap[2][icolor] = (JSAMPLE)((c2total + (total >> 1)) / total);
514cb93a386Sopenharmony_ci}
515cb93a386Sopenharmony_ci
516cb93a386Sopenharmony_ci
517cb93a386Sopenharmony_ciLOCAL(void)
518cb93a386Sopenharmony_ciselect_colors(j_decompress_ptr cinfo, int desired_colors)
519cb93a386Sopenharmony_ci/* Master routine for color selection */
520cb93a386Sopenharmony_ci{
521cb93a386Sopenharmony_ci  boxptr boxlist;
522cb93a386Sopenharmony_ci  int numboxes;
523cb93a386Sopenharmony_ci  int i;
524cb93a386Sopenharmony_ci
525cb93a386Sopenharmony_ci  /* Allocate workspace for box list */
526cb93a386Sopenharmony_ci  boxlist = (boxptr)(*cinfo->mem->alloc_small)
527cb93a386Sopenharmony_ci    ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box));
528cb93a386Sopenharmony_ci  /* Initialize one box containing whole space */
529cb93a386Sopenharmony_ci  numboxes = 1;
530cb93a386Sopenharmony_ci  boxlist[0].c0min = 0;
531cb93a386Sopenharmony_ci  boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
532cb93a386Sopenharmony_ci  boxlist[0].c1min = 0;
533cb93a386Sopenharmony_ci  boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
534cb93a386Sopenharmony_ci  boxlist[0].c2min = 0;
535cb93a386Sopenharmony_ci  boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
536cb93a386Sopenharmony_ci  /* Shrink it to actually-used volume and set its statistics */
537cb93a386Sopenharmony_ci  update_box(cinfo, &boxlist[0]);
538cb93a386Sopenharmony_ci  /* Perform median-cut to produce final box list */
539cb93a386Sopenharmony_ci  numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
540cb93a386Sopenharmony_ci  /* Compute the representative color for each box, fill colormap */
541cb93a386Sopenharmony_ci  for (i = 0; i < numboxes; i++)
542cb93a386Sopenharmony_ci    compute_color(cinfo, &boxlist[i], i);
543cb93a386Sopenharmony_ci  cinfo->actual_number_of_colors = numboxes;
544cb93a386Sopenharmony_ci  TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes);
545cb93a386Sopenharmony_ci}
546cb93a386Sopenharmony_ci
547cb93a386Sopenharmony_ci
548cb93a386Sopenharmony_ci/*
549cb93a386Sopenharmony_ci * These routines are concerned with the time-critical task of mapping input
550cb93a386Sopenharmony_ci * colors to the nearest color in the selected colormap.
551cb93a386Sopenharmony_ci *
552cb93a386Sopenharmony_ci * We re-use the histogram space as an "inverse color map", essentially a
553cb93a386Sopenharmony_ci * cache for the results of nearest-color searches.  All colors within a
554cb93a386Sopenharmony_ci * histogram cell will be mapped to the same colormap entry, namely the one
555cb93a386Sopenharmony_ci * closest to the cell's center.  This may not be quite the closest entry to
556cb93a386Sopenharmony_ci * the actual input color, but it's almost as good.  A zero in the cache
557cb93a386Sopenharmony_ci * indicates we haven't found the nearest color for that cell yet; the array
558cb93a386Sopenharmony_ci * is cleared to zeroes before starting the mapping pass.  When we find the
559cb93a386Sopenharmony_ci * nearest color for a cell, its colormap index plus one is recorded in the
560cb93a386Sopenharmony_ci * cache for future use.  The pass2 scanning routines call fill_inverse_cmap
561cb93a386Sopenharmony_ci * when they need to use an unfilled entry in the cache.
562cb93a386Sopenharmony_ci *
563cb93a386Sopenharmony_ci * Our method of efficiently finding nearest colors is based on the "locally
564cb93a386Sopenharmony_ci * sorted search" idea described by Heckbert and on the incremental distance
565cb93a386Sopenharmony_ci * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
566cb93a386Sopenharmony_ci * Gems II (James Arvo, ed.  Academic Press, 1991).  Thomas points out that
567cb93a386Sopenharmony_ci * the distances from a given colormap entry to each cell of the histogram can
568cb93a386Sopenharmony_ci * be computed quickly using an incremental method: the differences between
569cb93a386Sopenharmony_ci * distances to adjacent cells themselves differ by a constant.  This allows a
570cb93a386Sopenharmony_ci * fairly fast implementation of the "brute force" approach of computing the
571cb93a386Sopenharmony_ci * distance from every colormap entry to every histogram cell.  Unfortunately,
572cb93a386Sopenharmony_ci * it needs a work array to hold the best-distance-so-far for each histogram
573cb93a386Sopenharmony_ci * cell (because the inner loop has to be over cells, not colormap entries).
574cb93a386Sopenharmony_ci * The work array elements have to be JLONGs, so the work array would need
575cb93a386Sopenharmony_ci * 256Kb at our recommended precision.  This is not feasible in DOS machines.
576cb93a386Sopenharmony_ci *
577cb93a386Sopenharmony_ci * To get around these problems, we apply Thomas' method to compute the
578cb93a386Sopenharmony_ci * nearest colors for only the cells within a small subbox of the histogram.
579cb93a386Sopenharmony_ci * The work array need be only as big as the subbox, so the memory usage
580cb93a386Sopenharmony_ci * problem is solved.  Furthermore, we need not fill subboxes that are never
581cb93a386Sopenharmony_ci * referenced in pass2; many images use only part of the color gamut, so a
582cb93a386Sopenharmony_ci * fair amount of work is saved.  An additional advantage of this
583cb93a386Sopenharmony_ci * approach is that we can apply Heckbert's locality criterion to quickly
584cb93a386Sopenharmony_ci * eliminate colormap entries that are far away from the subbox; typically
585cb93a386Sopenharmony_ci * three-fourths of the colormap entries are rejected by Heckbert's criterion,
586cb93a386Sopenharmony_ci * and we need not compute their distances to individual cells in the subbox.
587cb93a386Sopenharmony_ci * The speed of this approach is heavily influenced by the subbox size: too
588cb93a386Sopenharmony_ci * small means too much overhead, too big loses because Heckbert's criterion
589cb93a386Sopenharmony_ci * can't eliminate as many colormap entries.  Empirically the best subbox
590cb93a386Sopenharmony_ci * size seems to be about 1/512th of the histogram (1/8th in each direction).
591cb93a386Sopenharmony_ci *
592cb93a386Sopenharmony_ci * Thomas' article also describes a refined method which is asymptotically
593cb93a386Sopenharmony_ci * faster than the brute-force method, but it is also far more complex and
594cb93a386Sopenharmony_ci * cannot efficiently be applied to small subboxes.  It is therefore not
595cb93a386Sopenharmony_ci * useful for programs intended to be portable to DOS machines.  On machines
596cb93a386Sopenharmony_ci * with plenty of memory, filling the whole histogram in one shot with Thomas'
597cb93a386Sopenharmony_ci * refined method might be faster than the present code --- but then again,
598cb93a386Sopenharmony_ci * it might not be any faster, and it's certainly more complicated.
599cb93a386Sopenharmony_ci */
600cb93a386Sopenharmony_ci
601cb93a386Sopenharmony_ci
602cb93a386Sopenharmony_ci/* log2(histogram cells in update box) for each axis; this can be adjusted */
603cb93a386Sopenharmony_ci#define BOX_C0_LOG  (HIST_C0_BITS - 3)
604cb93a386Sopenharmony_ci#define BOX_C1_LOG  (HIST_C1_BITS - 3)
605cb93a386Sopenharmony_ci#define BOX_C2_LOG  (HIST_C2_BITS - 3)
606cb93a386Sopenharmony_ci
607cb93a386Sopenharmony_ci#define BOX_C0_ELEMS  (1 << BOX_C0_LOG) /* # of hist cells in update box */
608cb93a386Sopenharmony_ci#define BOX_C1_ELEMS  (1 << BOX_C1_LOG)
609cb93a386Sopenharmony_ci#define BOX_C2_ELEMS  (1 << BOX_C2_LOG)
610cb93a386Sopenharmony_ci
611cb93a386Sopenharmony_ci#define BOX_C0_SHIFT  (C0_SHIFT + BOX_C0_LOG)
612cb93a386Sopenharmony_ci#define BOX_C1_SHIFT  (C1_SHIFT + BOX_C1_LOG)
613cb93a386Sopenharmony_ci#define BOX_C2_SHIFT  (C2_SHIFT + BOX_C2_LOG)
614cb93a386Sopenharmony_ci
615cb93a386Sopenharmony_ci
616cb93a386Sopenharmony_ci/*
617cb93a386Sopenharmony_ci * The next three routines implement inverse colormap filling.  They could
618cb93a386Sopenharmony_ci * all be folded into one big routine, but splitting them up this way saves
619cb93a386Sopenharmony_ci * some stack space (the mindist[] and bestdist[] arrays need not coexist)
620cb93a386Sopenharmony_ci * and may allow some compilers to produce better code by registerizing more
621cb93a386Sopenharmony_ci * inner-loop variables.
622cb93a386Sopenharmony_ci */
623cb93a386Sopenharmony_ci
624cb93a386Sopenharmony_ciLOCAL(int)
625cb93a386Sopenharmony_cifind_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
626cb93a386Sopenharmony_ci                   JSAMPLE colorlist[])
627cb93a386Sopenharmony_ci/* Locate the colormap entries close enough to an update box to be candidates
628cb93a386Sopenharmony_ci * for the nearest entry to some cell(s) in the update box.  The update box
629cb93a386Sopenharmony_ci * is specified by the center coordinates of its first cell.  The number of
630cb93a386Sopenharmony_ci * candidate colormap entries is returned, and their colormap indexes are
631cb93a386Sopenharmony_ci * placed in colorlist[].
632cb93a386Sopenharmony_ci * This routine uses Heckbert's "locally sorted search" criterion to select
633cb93a386Sopenharmony_ci * the colors that need further consideration.
634cb93a386Sopenharmony_ci */
635cb93a386Sopenharmony_ci{
636cb93a386Sopenharmony_ci  int numcolors = cinfo->actual_number_of_colors;
637cb93a386Sopenharmony_ci  int maxc0, maxc1, maxc2;
638cb93a386Sopenharmony_ci  int centerc0, centerc1, centerc2;
639cb93a386Sopenharmony_ci  int i, x, ncolors;
640cb93a386Sopenharmony_ci  JLONG minmaxdist, min_dist, max_dist, tdist;
641cb93a386Sopenharmony_ci  JLONG mindist[MAXNUMCOLORS];  /* min distance to colormap entry i */
642cb93a386Sopenharmony_ci
643cb93a386Sopenharmony_ci  /* Compute true coordinates of update box's upper corner and center.
644cb93a386Sopenharmony_ci   * Actually we compute the coordinates of the center of the upper-corner
645cb93a386Sopenharmony_ci   * histogram cell, which are the upper bounds of the volume we care about.
646cb93a386Sopenharmony_ci   * Note that since ">>" rounds down, the "center" values may be closer to
647cb93a386Sopenharmony_ci   * min than to max; hence comparisons to them must be "<=", not "<".
648cb93a386Sopenharmony_ci   */
649cb93a386Sopenharmony_ci  maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
650cb93a386Sopenharmony_ci  centerc0 = (minc0 + maxc0) >> 1;
651cb93a386Sopenharmony_ci  maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
652cb93a386Sopenharmony_ci  centerc1 = (minc1 + maxc1) >> 1;
653cb93a386Sopenharmony_ci  maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
654cb93a386Sopenharmony_ci  centerc2 = (minc2 + maxc2) >> 1;
655cb93a386Sopenharmony_ci
656cb93a386Sopenharmony_ci  /* For each color in colormap, find:
657cb93a386Sopenharmony_ci   *  1. its minimum squared-distance to any point in the update box
658cb93a386Sopenharmony_ci   *     (zero if color is within update box);
659cb93a386Sopenharmony_ci   *  2. its maximum squared-distance to any point in the update box.
660cb93a386Sopenharmony_ci   * Both of these can be found by considering only the corners of the box.
661cb93a386Sopenharmony_ci   * We save the minimum distance for each color in mindist[];
662cb93a386Sopenharmony_ci   * only the smallest maximum distance is of interest.
663cb93a386Sopenharmony_ci   */
664cb93a386Sopenharmony_ci  minmaxdist = 0x7FFFFFFFL;
665cb93a386Sopenharmony_ci
666cb93a386Sopenharmony_ci  for (i = 0; i < numcolors; i++) {
667cb93a386Sopenharmony_ci    /* We compute the squared-c0-distance term, then add in the other two. */
668cb93a386Sopenharmony_ci    x = cinfo->colormap[0][i];
669cb93a386Sopenharmony_ci    if (x < minc0) {
670cb93a386Sopenharmony_ci      tdist = (x - minc0) * C0_SCALE;
671cb93a386Sopenharmony_ci      min_dist = tdist * tdist;
672cb93a386Sopenharmony_ci      tdist = (x - maxc0) * C0_SCALE;
673cb93a386Sopenharmony_ci      max_dist = tdist * tdist;
674cb93a386Sopenharmony_ci    } else if (x > maxc0) {
675cb93a386Sopenharmony_ci      tdist = (x - maxc0) * C0_SCALE;
676cb93a386Sopenharmony_ci      min_dist = tdist * tdist;
677cb93a386Sopenharmony_ci      tdist = (x - minc0) * C0_SCALE;
678cb93a386Sopenharmony_ci      max_dist = tdist * tdist;
679cb93a386Sopenharmony_ci    } else {
680cb93a386Sopenharmony_ci      /* within cell range so no contribution to min_dist */
681cb93a386Sopenharmony_ci      min_dist = 0;
682cb93a386Sopenharmony_ci      if (x <= centerc0) {
683cb93a386Sopenharmony_ci        tdist = (x - maxc0) * C0_SCALE;
684cb93a386Sopenharmony_ci        max_dist = tdist * tdist;
685cb93a386Sopenharmony_ci      } else {
686cb93a386Sopenharmony_ci        tdist = (x - minc0) * C0_SCALE;
687cb93a386Sopenharmony_ci        max_dist = tdist * tdist;
688cb93a386Sopenharmony_ci      }
689cb93a386Sopenharmony_ci    }
690cb93a386Sopenharmony_ci
691cb93a386Sopenharmony_ci    x = cinfo->colormap[1][i];
692cb93a386Sopenharmony_ci    if (x < minc1) {
693cb93a386Sopenharmony_ci      tdist = (x - minc1) * C1_SCALE;
694cb93a386Sopenharmony_ci      min_dist += tdist * tdist;
695cb93a386Sopenharmony_ci      tdist = (x - maxc1) * C1_SCALE;
696cb93a386Sopenharmony_ci      max_dist += tdist * tdist;
697cb93a386Sopenharmony_ci    } else if (x > maxc1) {
698cb93a386Sopenharmony_ci      tdist = (x - maxc1) * C1_SCALE;
699cb93a386Sopenharmony_ci      min_dist += tdist * tdist;
700cb93a386Sopenharmony_ci      tdist = (x - minc1) * C1_SCALE;
701cb93a386Sopenharmony_ci      max_dist += tdist * tdist;
702cb93a386Sopenharmony_ci    } else {
703cb93a386Sopenharmony_ci      /* within cell range so no contribution to min_dist */
704cb93a386Sopenharmony_ci      if (x <= centerc1) {
705cb93a386Sopenharmony_ci        tdist = (x - maxc1) * C1_SCALE;
706cb93a386Sopenharmony_ci        max_dist += tdist * tdist;
707cb93a386Sopenharmony_ci      } else {
708cb93a386Sopenharmony_ci        tdist = (x - minc1) * C1_SCALE;
709cb93a386Sopenharmony_ci        max_dist += tdist * tdist;
710cb93a386Sopenharmony_ci      }
711cb93a386Sopenharmony_ci    }
712cb93a386Sopenharmony_ci
713cb93a386Sopenharmony_ci    x = cinfo->colormap[2][i];
714cb93a386Sopenharmony_ci    if (x < minc2) {
715cb93a386Sopenharmony_ci      tdist = (x - minc2) * C2_SCALE;
716cb93a386Sopenharmony_ci      min_dist += tdist * tdist;
717cb93a386Sopenharmony_ci      tdist = (x - maxc2) * C2_SCALE;
718cb93a386Sopenharmony_ci      max_dist += tdist * tdist;
719cb93a386Sopenharmony_ci    } else if (x > maxc2) {
720cb93a386Sopenharmony_ci      tdist = (x - maxc2) * C2_SCALE;
721cb93a386Sopenharmony_ci      min_dist += tdist * tdist;
722cb93a386Sopenharmony_ci      tdist = (x - minc2) * C2_SCALE;
723cb93a386Sopenharmony_ci      max_dist += tdist * tdist;
724cb93a386Sopenharmony_ci    } else {
725cb93a386Sopenharmony_ci      /* within cell range so no contribution to min_dist */
726cb93a386Sopenharmony_ci      if (x <= centerc2) {
727cb93a386Sopenharmony_ci        tdist = (x - maxc2) * C2_SCALE;
728cb93a386Sopenharmony_ci        max_dist += tdist * tdist;
729cb93a386Sopenharmony_ci      } else {
730cb93a386Sopenharmony_ci        tdist = (x - minc2) * C2_SCALE;
731cb93a386Sopenharmony_ci        max_dist += tdist * tdist;
732cb93a386Sopenharmony_ci      }
733cb93a386Sopenharmony_ci    }
734cb93a386Sopenharmony_ci
735cb93a386Sopenharmony_ci    mindist[i] = min_dist;      /* save away the results */
736cb93a386Sopenharmony_ci    if (max_dist < minmaxdist)
737cb93a386Sopenharmony_ci      minmaxdist = max_dist;
738cb93a386Sopenharmony_ci  }
739cb93a386Sopenharmony_ci
740cb93a386Sopenharmony_ci  /* Now we know that no cell in the update box is more than minmaxdist
741cb93a386Sopenharmony_ci   * away from some colormap entry.  Therefore, only colors that are
742cb93a386Sopenharmony_ci   * within minmaxdist of some part of the box need be considered.
743cb93a386Sopenharmony_ci   */
744cb93a386Sopenharmony_ci  ncolors = 0;
745cb93a386Sopenharmony_ci  for (i = 0; i < numcolors; i++) {
746cb93a386Sopenharmony_ci    if (mindist[i] <= minmaxdist)
747cb93a386Sopenharmony_ci      colorlist[ncolors++] = (JSAMPLE)i;
748cb93a386Sopenharmony_ci  }
749cb93a386Sopenharmony_ci  return ncolors;
750cb93a386Sopenharmony_ci}
751cb93a386Sopenharmony_ci
752cb93a386Sopenharmony_ci
753cb93a386Sopenharmony_ciLOCAL(void)
754cb93a386Sopenharmony_cifind_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
755cb93a386Sopenharmony_ci                 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
756cb93a386Sopenharmony_ci/* Find the closest colormap entry for each cell in the update box,
757cb93a386Sopenharmony_ci * given the list of candidate colors prepared by find_nearby_colors.
758cb93a386Sopenharmony_ci * Return the indexes of the closest entries in the bestcolor[] array.
759cb93a386Sopenharmony_ci * This routine uses Thomas' incremental distance calculation method to
760cb93a386Sopenharmony_ci * find the distance from a colormap entry to successive cells in the box.
761cb93a386Sopenharmony_ci */
762cb93a386Sopenharmony_ci{
763cb93a386Sopenharmony_ci  int ic0, ic1, ic2;
764cb93a386Sopenharmony_ci  int i, icolor;
765cb93a386Sopenharmony_ci  register JLONG *bptr;         /* pointer into bestdist[] array */
766cb93a386Sopenharmony_ci  JSAMPLE *cptr;                /* pointer into bestcolor[] array */
767cb93a386Sopenharmony_ci  JLONG dist0, dist1;           /* initial distance values */
768cb93a386Sopenharmony_ci  register JLONG dist2;         /* current distance in inner loop */
769cb93a386Sopenharmony_ci  JLONG xx0, xx1;               /* distance increments */
770cb93a386Sopenharmony_ci  register JLONG xx2;
771cb93a386Sopenharmony_ci  JLONG inc0, inc1, inc2;       /* initial values for increments */
772cb93a386Sopenharmony_ci  /* This array holds the distance to the nearest-so-far color for each cell */
773cb93a386Sopenharmony_ci  JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
774cb93a386Sopenharmony_ci
775cb93a386Sopenharmony_ci  /* Initialize best-distance for each cell of the update box */
776cb93a386Sopenharmony_ci  bptr = bestdist;
777cb93a386Sopenharmony_ci  for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--)
778cb93a386Sopenharmony_ci    *bptr++ = 0x7FFFFFFFL;
779cb93a386Sopenharmony_ci
780cb93a386Sopenharmony_ci  /* For each color selected by find_nearby_colors,
781cb93a386Sopenharmony_ci   * compute its distance to the center of each cell in the box.
782cb93a386Sopenharmony_ci   * If that's less than best-so-far, update best distance and color number.
783cb93a386Sopenharmony_ci   */
784cb93a386Sopenharmony_ci
785cb93a386Sopenharmony_ci  /* Nominal steps between cell centers ("x" in Thomas article) */
786cb93a386Sopenharmony_ci#define STEP_C0  ((1 << C0_SHIFT) * C0_SCALE)
787cb93a386Sopenharmony_ci#define STEP_C1  ((1 << C1_SHIFT) * C1_SCALE)
788cb93a386Sopenharmony_ci#define STEP_C2  ((1 << C2_SHIFT) * C2_SCALE)
789cb93a386Sopenharmony_ci
790cb93a386Sopenharmony_ci  for (i = 0; i < numcolors; i++) {
791cb93a386Sopenharmony_ci    icolor = colorlist[i];
792cb93a386Sopenharmony_ci    /* Compute (square of) distance from minc0/c1/c2 to this color */
793cb93a386Sopenharmony_ci    inc0 = (minc0 - cinfo->colormap[0][icolor]) * C0_SCALE;
794cb93a386Sopenharmony_ci    dist0 = inc0 * inc0;
795cb93a386Sopenharmony_ci    inc1 = (minc1 - cinfo->colormap[1][icolor]) * C1_SCALE;
796cb93a386Sopenharmony_ci    dist0 += inc1 * inc1;
797cb93a386Sopenharmony_ci    inc2 = (minc2 - cinfo->colormap[2][icolor]) * C2_SCALE;
798cb93a386Sopenharmony_ci    dist0 += inc2 * inc2;
799cb93a386Sopenharmony_ci    /* Form the initial difference increments */
800cb93a386Sopenharmony_ci    inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
801cb93a386Sopenharmony_ci    inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
802cb93a386Sopenharmony_ci    inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
803cb93a386Sopenharmony_ci    /* Now loop over all cells in box, updating distance per Thomas method */
804cb93a386Sopenharmony_ci    bptr = bestdist;
805cb93a386Sopenharmony_ci    cptr = bestcolor;
806cb93a386Sopenharmony_ci    xx0 = inc0;
807cb93a386Sopenharmony_ci    for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) {
808cb93a386Sopenharmony_ci      dist1 = dist0;
809cb93a386Sopenharmony_ci      xx1 = inc1;
810cb93a386Sopenharmony_ci      for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) {
811cb93a386Sopenharmony_ci        dist2 = dist1;
812cb93a386Sopenharmony_ci        xx2 = inc2;
813cb93a386Sopenharmony_ci        for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) {
814cb93a386Sopenharmony_ci          if (dist2 < *bptr) {
815cb93a386Sopenharmony_ci            *bptr = dist2;
816cb93a386Sopenharmony_ci            *cptr = (JSAMPLE)icolor;
817cb93a386Sopenharmony_ci          }
818cb93a386Sopenharmony_ci          dist2 += xx2;
819cb93a386Sopenharmony_ci          xx2 += 2 * STEP_C2 * STEP_C2;
820cb93a386Sopenharmony_ci          bptr++;
821cb93a386Sopenharmony_ci          cptr++;
822cb93a386Sopenharmony_ci        }
823cb93a386Sopenharmony_ci        dist1 += xx1;
824cb93a386Sopenharmony_ci        xx1 += 2 * STEP_C1 * STEP_C1;
825cb93a386Sopenharmony_ci      }
826cb93a386Sopenharmony_ci      dist0 += xx0;
827cb93a386Sopenharmony_ci      xx0 += 2 * STEP_C0 * STEP_C0;
828cb93a386Sopenharmony_ci    }
829cb93a386Sopenharmony_ci  }
830cb93a386Sopenharmony_ci}
831cb93a386Sopenharmony_ci
832cb93a386Sopenharmony_ci
833cb93a386Sopenharmony_ciLOCAL(void)
834cb93a386Sopenharmony_cifill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2)
835cb93a386Sopenharmony_ci/* Fill the inverse-colormap entries in the update box that contains */
836cb93a386Sopenharmony_ci/* histogram cell c0/c1/c2.  (Only that one cell MUST be filled, but */
837cb93a386Sopenharmony_ci/* we can fill as many others as we wish.) */
838cb93a386Sopenharmony_ci{
839cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
840cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
841cb93a386Sopenharmony_ci  int minc0, minc1, minc2;      /* lower left corner of update box */
842cb93a386Sopenharmony_ci  int ic0, ic1, ic2;
843cb93a386Sopenharmony_ci  register JSAMPLE *cptr;       /* pointer into bestcolor[] array */
844cb93a386Sopenharmony_ci  register histptr cachep;      /* pointer into main cache array */
845cb93a386Sopenharmony_ci  /* This array lists the candidate colormap indexes. */
846cb93a386Sopenharmony_ci  JSAMPLE colorlist[MAXNUMCOLORS];
847cb93a386Sopenharmony_ci  int numcolors;                /* number of candidate colors */
848cb93a386Sopenharmony_ci  /* This array holds the actually closest colormap index for each cell. */
849cb93a386Sopenharmony_ci  JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
850cb93a386Sopenharmony_ci
851cb93a386Sopenharmony_ci  /* Convert cell coordinates to update box ID */
852cb93a386Sopenharmony_ci  c0 >>= BOX_C0_LOG;
853cb93a386Sopenharmony_ci  c1 >>= BOX_C1_LOG;
854cb93a386Sopenharmony_ci  c2 >>= BOX_C2_LOG;
855cb93a386Sopenharmony_ci
856cb93a386Sopenharmony_ci  /* Compute true coordinates of update box's origin corner.
857cb93a386Sopenharmony_ci   * Actually we compute the coordinates of the center of the corner
858cb93a386Sopenharmony_ci   * histogram cell, which are the lower bounds of the volume we care about.
859cb93a386Sopenharmony_ci   */
860cb93a386Sopenharmony_ci  minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
861cb93a386Sopenharmony_ci  minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
862cb93a386Sopenharmony_ci  minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
863cb93a386Sopenharmony_ci
864cb93a386Sopenharmony_ci  /* Determine which colormap entries are close enough to be candidates
865cb93a386Sopenharmony_ci   * for the nearest entry to some cell in the update box.
866cb93a386Sopenharmony_ci   */
867cb93a386Sopenharmony_ci  numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
868cb93a386Sopenharmony_ci
869cb93a386Sopenharmony_ci  /* Determine the actually nearest colors. */
870cb93a386Sopenharmony_ci  find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
871cb93a386Sopenharmony_ci                   bestcolor);
872cb93a386Sopenharmony_ci
873cb93a386Sopenharmony_ci  /* Save the best color numbers (plus 1) in the main cache array */
874cb93a386Sopenharmony_ci  c0 <<= BOX_C0_LOG;            /* convert ID back to base cell indexes */
875cb93a386Sopenharmony_ci  c1 <<= BOX_C1_LOG;
876cb93a386Sopenharmony_ci  c2 <<= BOX_C2_LOG;
877cb93a386Sopenharmony_ci  cptr = bestcolor;
878cb93a386Sopenharmony_ci  for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
879cb93a386Sopenharmony_ci    for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
880cb93a386Sopenharmony_ci      cachep = &histogram[c0 + ic0][c1 + ic1][c2];
881cb93a386Sopenharmony_ci      for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
882cb93a386Sopenharmony_ci        *cachep++ = (histcell)((*cptr++) + 1);
883cb93a386Sopenharmony_ci      }
884cb93a386Sopenharmony_ci    }
885cb93a386Sopenharmony_ci  }
886cb93a386Sopenharmony_ci}
887cb93a386Sopenharmony_ci
888cb93a386Sopenharmony_ci
889cb93a386Sopenharmony_ci/*
890cb93a386Sopenharmony_ci * Map some rows of pixels to the output colormapped representation.
891cb93a386Sopenharmony_ci */
892cb93a386Sopenharmony_ci
893cb93a386Sopenharmony_ciMETHODDEF(void)
894cb93a386Sopenharmony_cipass2_no_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
895cb93a386Sopenharmony_ci                JSAMPARRAY output_buf, int num_rows)
896cb93a386Sopenharmony_ci/* This version performs no dithering */
897cb93a386Sopenharmony_ci{
898cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
899cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
900cb93a386Sopenharmony_ci  register JSAMPROW inptr, outptr;
901cb93a386Sopenharmony_ci  register histptr cachep;
902cb93a386Sopenharmony_ci  register int c0, c1, c2;
903cb93a386Sopenharmony_ci  int row;
904cb93a386Sopenharmony_ci  JDIMENSION col;
905cb93a386Sopenharmony_ci  JDIMENSION width = cinfo->output_width;
906cb93a386Sopenharmony_ci
907cb93a386Sopenharmony_ci  for (row = 0; row < num_rows; row++) {
908cb93a386Sopenharmony_ci    inptr = input_buf[row];
909cb93a386Sopenharmony_ci    outptr = output_buf[row];
910cb93a386Sopenharmony_ci    for (col = width; col > 0; col--) {
911cb93a386Sopenharmony_ci      /* get pixel value and index into the cache */
912cb93a386Sopenharmony_ci      c0 = (*inptr++) >> C0_SHIFT;
913cb93a386Sopenharmony_ci      c1 = (*inptr++) >> C1_SHIFT;
914cb93a386Sopenharmony_ci      c2 = (*inptr++) >> C2_SHIFT;
915cb93a386Sopenharmony_ci      cachep = &histogram[c0][c1][c2];
916cb93a386Sopenharmony_ci      /* If we have not seen this color before, find nearest colormap entry */
917cb93a386Sopenharmony_ci      /* and update the cache */
918cb93a386Sopenharmony_ci      if (*cachep == 0)
919cb93a386Sopenharmony_ci        fill_inverse_cmap(cinfo, c0, c1, c2);
920cb93a386Sopenharmony_ci      /* Now emit the colormap index for this cell */
921cb93a386Sopenharmony_ci      *outptr++ = (JSAMPLE)(*cachep - 1);
922cb93a386Sopenharmony_ci    }
923cb93a386Sopenharmony_ci  }
924cb93a386Sopenharmony_ci}
925cb93a386Sopenharmony_ci
926cb93a386Sopenharmony_ci
927cb93a386Sopenharmony_ciMETHODDEF(void)
928cb93a386Sopenharmony_cipass2_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf,
929cb93a386Sopenharmony_ci                JSAMPARRAY output_buf, int num_rows)
930cb93a386Sopenharmony_ci/* This version performs Floyd-Steinberg dithering */
931cb93a386Sopenharmony_ci{
932cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
933cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
934cb93a386Sopenharmony_ci  register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
935cb93a386Sopenharmony_ci  LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
936cb93a386Sopenharmony_ci  LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
937cb93a386Sopenharmony_ci  register FSERRPTR errorptr;   /* => fserrors[] at column before current */
938cb93a386Sopenharmony_ci  JSAMPROW inptr;               /* => current input pixel */
939cb93a386Sopenharmony_ci  JSAMPROW outptr;              /* => current output pixel */
940cb93a386Sopenharmony_ci  histptr cachep;
941cb93a386Sopenharmony_ci  int dir;                      /* +1 or -1 depending on direction */
942cb93a386Sopenharmony_ci  int dir3;                     /* 3*dir, for advancing inptr & errorptr */
943cb93a386Sopenharmony_ci  int row;
944cb93a386Sopenharmony_ci  JDIMENSION col;
945cb93a386Sopenharmony_ci  JDIMENSION width = cinfo->output_width;
946cb93a386Sopenharmony_ci  JSAMPLE *range_limit = cinfo->sample_range_limit;
947cb93a386Sopenharmony_ci  int *error_limit = cquantize->error_limiter;
948cb93a386Sopenharmony_ci  JSAMPROW colormap0 = cinfo->colormap[0];
949cb93a386Sopenharmony_ci  JSAMPROW colormap1 = cinfo->colormap[1];
950cb93a386Sopenharmony_ci  JSAMPROW colormap2 = cinfo->colormap[2];
951cb93a386Sopenharmony_ci  SHIFT_TEMPS
952cb93a386Sopenharmony_ci
953cb93a386Sopenharmony_ci  for (row = 0; row < num_rows; row++) {
954cb93a386Sopenharmony_ci    inptr = input_buf[row];
955cb93a386Sopenharmony_ci    outptr = output_buf[row];
956cb93a386Sopenharmony_ci    if (cquantize->on_odd_row) {
957cb93a386Sopenharmony_ci      /* work right to left in this row */
958cb93a386Sopenharmony_ci      inptr += (width - 1) * 3; /* so point to rightmost pixel */
959cb93a386Sopenharmony_ci      outptr += width - 1;
960cb93a386Sopenharmony_ci      dir = -1;
961cb93a386Sopenharmony_ci      dir3 = -3;
962cb93a386Sopenharmony_ci      errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */
963cb93a386Sopenharmony_ci      cquantize->on_odd_row = FALSE; /* flip for next time */
964cb93a386Sopenharmony_ci    } else {
965cb93a386Sopenharmony_ci      /* work left to right in this row */
966cb93a386Sopenharmony_ci      dir = 1;
967cb93a386Sopenharmony_ci      dir3 = 3;
968cb93a386Sopenharmony_ci      errorptr = cquantize->fserrors; /* => entry before first real column */
969cb93a386Sopenharmony_ci      cquantize->on_odd_row = TRUE; /* flip for next time */
970cb93a386Sopenharmony_ci    }
971cb93a386Sopenharmony_ci    /* Preset error values: no error propagated to first pixel from left */
972cb93a386Sopenharmony_ci    cur0 = cur1 = cur2 = 0;
973cb93a386Sopenharmony_ci    /* and no error propagated to row below yet */
974cb93a386Sopenharmony_ci    belowerr0 = belowerr1 = belowerr2 = 0;
975cb93a386Sopenharmony_ci    bpreverr0 = bpreverr1 = bpreverr2 = 0;
976cb93a386Sopenharmony_ci
977cb93a386Sopenharmony_ci    for (col = width; col > 0; col--) {
978cb93a386Sopenharmony_ci      /* curN holds the error propagated from the previous pixel on the
979cb93a386Sopenharmony_ci       * current line.  Add the error propagated from the previous line
980cb93a386Sopenharmony_ci       * to form the complete error correction term for this pixel, and
981cb93a386Sopenharmony_ci       * round the error term (which is expressed * 16) to an integer.
982cb93a386Sopenharmony_ci       * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
983cb93a386Sopenharmony_ci       * for either sign of the error value.
984cb93a386Sopenharmony_ci       * Note: errorptr points to *previous* column's array entry.
985cb93a386Sopenharmony_ci       */
986cb93a386Sopenharmony_ci      cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4);
987cb93a386Sopenharmony_ci      cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4);
988cb93a386Sopenharmony_ci      cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4);
989cb93a386Sopenharmony_ci      /* Limit the error using transfer function set by init_error_limit.
990cb93a386Sopenharmony_ci       * See comments with init_error_limit for rationale.
991cb93a386Sopenharmony_ci       */
992cb93a386Sopenharmony_ci      cur0 = error_limit[cur0];
993cb93a386Sopenharmony_ci      cur1 = error_limit[cur1];
994cb93a386Sopenharmony_ci      cur2 = error_limit[cur2];
995cb93a386Sopenharmony_ci      /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
996cb93a386Sopenharmony_ci       * The maximum error is +- MAXJSAMPLE (or less with error limiting);
997cb93a386Sopenharmony_ci       * this sets the required size of the range_limit array.
998cb93a386Sopenharmony_ci       */
999cb93a386Sopenharmony_ci      cur0 += inptr[0];
1000cb93a386Sopenharmony_ci      cur1 += inptr[1];
1001cb93a386Sopenharmony_ci      cur2 += inptr[2];
1002cb93a386Sopenharmony_ci      cur0 = range_limit[cur0];
1003cb93a386Sopenharmony_ci      cur1 = range_limit[cur1];
1004cb93a386Sopenharmony_ci      cur2 = range_limit[cur2];
1005cb93a386Sopenharmony_ci      /* Index into the cache with adjusted pixel value */
1006cb93a386Sopenharmony_ci      cachep =
1007cb93a386Sopenharmony_ci        &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT];
1008cb93a386Sopenharmony_ci      /* If we have not seen this color before, find nearest colormap */
1009cb93a386Sopenharmony_ci      /* entry and update the cache */
1010cb93a386Sopenharmony_ci      if (*cachep == 0)
1011cb93a386Sopenharmony_ci        fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT,
1012cb93a386Sopenharmony_ci                          cur2 >> C2_SHIFT);
1013cb93a386Sopenharmony_ci      /* Now emit the colormap index for this cell */
1014cb93a386Sopenharmony_ci      {
1015cb93a386Sopenharmony_ci        register int pixcode = *cachep - 1;
1016cb93a386Sopenharmony_ci        *outptr = (JSAMPLE)pixcode;
1017cb93a386Sopenharmony_ci        /* Compute representation error for this pixel */
1018cb93a386Sopenharmony_ci        cur0 -= colormap0[pixcode];
1019cb93a386Sopenharmony_ci        cur1 -= colormap1[pixcode];
1020cb93a386Sopenharmony_ci        cur2 -= colormap2[pixcode];
1021cb93a386Sopenharmony_ci      }
1022cb93a386Sopenharmony_ci      /* Compute error fractions to be propagated to adjacent pixels.
1023cb93a386Sopenharmony_ci       * Add these into the running sums, and simultaneously shift the
1024cb93a386Sopenharmony_ci       * next-line error sums left by 1 column.
1025cb93a386Sopenharmony_ci       */
1026cb93a386Sopenharmony_ci      {
1027cb93a386Sopenharmony_ci        register LOCFSERROR bnexterr;
1028cb93a386Sopenharmony_ci
1029cb93a386Sopenharmony_ci        bnexterr = cur0;        /* Process component 0 */
1030cb93a386Sopenharmony_ci        errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3);
1031cb93a386Sopenharmony_ci        bpreverr0 = belowerr0 + cur0 * 5;
1032cb93a386Sopenharmony_ci        belowerr0 = bnexterr;
1033cb93a386Sopenharmony_ci        cur0 *= 7;
1034cb93a386Sopenharmony_ci        bnexterr = cur1;        /* Process component 1 */
1035cb93a386Sopenharmony_ci        errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3);
1036cb93a386Sopenharmony_ci        bpreverr1 = belowerr1 + cur1 * 5;
1037cb93a386Sopenharmony_ci        belowerr1 = bnexterr;
1038cb93a386Sopenharmony_ci        cur1 *= 7;
1039cb93a386Sopenharmony_ci        bnexterr = cur2;        /* Process component 2 */
1040cb93a386Sopenharmony_ci        errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3);
1041cb93a386Sopenharmony_ci        bpreverr2 = belowerr2 + cur2 * 5;
1042cb93a386Sopenharmony_ci        belowerr2 = bnexterr;
1043cb93a386Sopenharmony_ci        cur2 *= 7;
1044cb93a386Sopenharmony_ci      }
1045cb93a386Sopenharmony_ci      /* At this point curN contains the 7/16 error value to be propagated
1046cb93a386Sopenharmony_ci       * to the next pixel on the current line, and all the errors for the
1047cb93a386Sopenharmony_ci       * next line have been shifted over.  We are therefore ready to move on.
1048cb93a386Sopenharmony_ci       */
1049cb93a386Sopenharmony_ci      inptr += dir3;            /* Advance pixel pointers to next column */
1050cb93a386Sopenharmony_ci      outptr += dir;
1051cb93a386Sopenharmony_ci      errorptr += dir3;         /* advance errorptr to current column */
1052cb93a386Sopenharmony_ci    }
1053cb93a386Sopenharmony_ci    /* Post-loop cleanup: we must unload the final error values into the
1054cb93a386Sopenharmony_ci     * final fserrors[] entry.  Note we need not unload belowerrN because
1055cb93a386Sopenharmony_ci     * it is for the dummy column before or after the actual array.
1056cb93a386Sopenharmony_ci     */
1057cb93a386Sopenharmony_ci    errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */
1058cb93a386Sopenharmony_ci    errorptr[1] = (FSERROR)bpreverr1;
1059cb93a386Sopenharmony_ci    errorptr[2] = (FSERROR)bpreverr2;
1060cb93a386Sopenharmony_ci  }
1061cb93a386Sopenharmony_ci}
1062cb93a386Sopenharmony_ci
1063cb93a386Sopenharmony_ci
1064cb93a386Sopenharmony_ci/*
1065cb93a386Sopenharmony_ci * Initialize the error-limiting transfer function (lookup table).
1066cb93a386Sopenharmony_ci * The raw F-S error computation can potentially compute error values of up to
1067cb93a386Sopenharmony_ci * +- MAXJSAMPLE.  But we want the maximum correction applied to a pixel to be
1068cb93a386Sopenharmony_ci * much less, otherwise obviously wrong pixels will be created.  (Typical
1069cb93a386Sopenharmony_ci * effects include weird fringes at color-area boundaries, isolated bright
1070cb93a386Sopenharmony_ci * pixels in a dark area, etc.)  The standard advice for avoiding this problem
1071cb93a386Sopenharmony_ci * is to ensure that the "corners" of the color cube are allocated as output
1072cb93a386Sopenharmony_ci * colors; then repeated errors in the same direction cannot cause cascading
1073cb93a386Sopenharmony_ci * error buildup.  However, that only prevents the error from getting
1074cb93a386Sopenharmony_ci * completely out of hand; Aaron Giles reports that error limiting improves
1075cb93a386Sopenharmony_ci * the results even with corner colors allocated.
1076cb93a386Sopenharmony_ci * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1077cb93a386Sopenharmony_ci * well, but the smoother transfer function used below is even better.  Thanks
1078cb93a386Sopenharmony_ci * to Aaron Giles for this idea.
1079cb93a386Sopenharmony_ci */
1080cb93a386Sopenharmony_ci
1081cb93a386Sopenharmony_ciLOCAL(void)
1082cb93a386Sopenharmony_ciinit_error_limit(j_decompress_ptr cinfo)
1083cb93a386Sopenharmony_ci/* Allocate and fill in the error_limiter table */
1084cb93a386Sopenharmony_ci{
1085cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1086cb93a386Sopenharmony_ci  int *table;
1087cb93a386Sopenharmony_ci  int in, out;
1088cb93a386Sopenharmony_ci
1089cb93a386Sopenharmony_ci  table = (int *)(*cinfo->mem->alloc_small)
1090cb93a386Sopenharmony_ci    ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * sizeof(int));
1091cb93a386Sopenharmony_ci  table += MAXJSAMPLE;          /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1092cb93a386Sopenharmony_ci  cquantize->error_limiter = table;
1093cb93a386Sopenharmony_ci
1094cb93a386Sopenharmony_ci#define STEPSIZE  ((MAXJSAMPLE + 1) / 16)
1095cb93a386Sopenharmony_ci  /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1096cb93a386Sopenharmony_ci  out = 0;
1097cb93a386Sopenharmony_ci  for (in = 0; in < STEPSIZE; in++, out++) {
1098cb93a386Sopenharmony_ci    table[in] = out;  table[-in] = -out;
1099cb93a386Sopenharmony_ci  }
1100cb93a386Sopenharmony_ci  /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1101cb93a386Sopenharmony_ci  for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) {
1102cb93a386Sopenharmony_ci    table[in] = out;  table[-in] = -out;
1103cb93a386Sopenharmony_ci  }
1104cb93a386Sopenharmony_ci  /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1105cb93a386Sopenharmony_ci  for (; in <= MAXJSAMPLE; in++) {
1106cb93a386Sopenharmony_ci    table[in] = out;  table[-in] = -out;
1107cb93a386Sopenharmony_ci  }
1108cb93a386Sopenharmony_ci#undef STEPSIZE
1109cb93a386Sopenharmony_ci}
1110cb93a386Sopenharmony_ci
1111cb93a386Sopenharmony_ci
1112cb93a386Sopenharmony_ci/*
1113cb93a386Sopenharmony_ci * Finish up at the end of each pass.
1114cb93a386Sopenharmony_ci */
1115cb93a386Sopenharmony_ci
1116cb93a386Sopenharmony_ciMETHODDEF(void)
1117cb93a386Sopenharmony_cifinish_pass1(j_decompress_ptr cinfo)
1118cb93a386Sopenharmony_ci{
1119cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1120cb93a386Sopenharmony_ci
1121cb93a386Sopenharmony_ci  /* Select the representative colors and fill in cinfo->colormap */
1122cb93a386Sopenharmony_ci  cinfo->colormap = cquantize->sv_colormap;
1123cb93a386Sopenharmony_ci  select_colors(cinfo, cquantize->desired);
1124cb93a386Sopenharmony_ci  /* Force next pass to zero the color index table */
1125cb93a386Sopenharmony_ci  cquantize->needs_zeroed = TRUE;
1126cb93a386Sopenharmony_ci}
1127cb93a386Sopenharmony_ci
1128cb93a386Sopenharmony_ci
1129cb93a386Sopenharmony_ciMETHODDEF(void)
1130cb93a386Sopenharmony_cifinish_pass2(j_decompress_ptr cinfo)
1131cb93a386Sopenharmony_ci{
1132cb93a386Sopenharmony_ci  /* no work */
1133cb93a386Sopenharmony_ci}
1134cb93a386Sopenharmony_ci
1135cb93a386Sopenharmony_ci
1136cb93a386Sopenharmony_ci/*
1137cb93a386Sopenharmony_ci * Initialize for each processing pass.
1138cb93a386Sopenharmony_ci */
1139cb93a386Sopenharmony_ci
1140cb93a386Sopenharmony_ciMETHODDEF(void)
1141cb93a386Sopenharmony_cistart_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
1142cb93a386Sopenharmony_ci{
1143cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1144cb93a386Sopenharmony_ci  hist3d histogram = cquantize->histogram;
1145cb93a386Sopenharmony_ci  int i;
1146cb93a386Sopenharmony_ci
1147cb93a386Sopenharmony_ci  /* Only F-S dithering or no dithering is supported. */
1148cb93a386Sopenharmony_ci  /* If user asks for ordered dither, give them F-S. */
1149cb93a386Sopenharmony_ci  if (cinfo->dither_mode != JDITHER_NONE)
1150cb93a386Sopenharmony_ci    cinfo->dither_mode = JDITHER_FS;
1151cb93a386Sopenharmony_ci
1152cb93a386Sopenharmony_ci  if (is_pre_scan) {
1153cb93a386Sopenharmony_ci    /* Set up method pointers */
1154cb93a386Sopenharmony_ci    cquantize->pub.color_quantize = prescan_quantize;
1155cb93a386Sopenharmony_ci    cquantize->pub.finish_pass = finish_pass1;
1156cb93a386Sopenharmony_ci    cquantize->needs_zeroed = TRUE; /* Always zero histogram */
1157cb93a386Sopenharmony_ci  } else {
1158cb93a386Sopenharmony_ci    /* Set up method pointers */
1159cb93a386Sopenharmony_ci    if (cinfo->dither_mode == JDITHER_FS)
1160cb93a386Sopenharmony_ci      cquantize->pub.color_quantize = pass2_fs_dither;
1161cb93a386Sopenharmony_ci    else
1162cb93a386Sopenharmony_ci      cquantize->pub.color_quantize = pass2_no_dither;
1163cb93a386Sopenharmony_ci    cquantize->pub.finish_pass = finish_pass2;
1164cb93a386Sopenharmony_ci
1165cb93a386Sopenharmony_ci    /* Make sure color count is acceptable */
1166cb93a386Sopenharmony_ci    i = cinfo->actual_number_of_colors;
1167cb93a386Sopenharmony_ci    if (i < 1)
1168cb93a386Sopenharmony_ci      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1);
1169cb93a386Sopenharmony_ci    if (i > MAXNUMCOLORS)
1170cb93a386Sopenharmony_ci      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1171cb93a386Sopenharmony_ci
1172cb93a386Sopenharmony_ci    if (cinfo->dither_mode == JDITHER_FS) {
1173cb93a386Sopenharmony_ci      size_t arraysize =
1174cb93a386Sopenharmony_ci        (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)));
1175cb93a386Sopenharmony_ci      /* Allocate Floyd-Steinberg workspace if we didn't already. */
1176cb93a386Sopenharmony_ci      if (cquantize->fserrors == NULL)
1177cb93a386Sopenharmony_ci        cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1178cb93a386Sopenharmony_ci          ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize);
1179cb93a386Sopenharmony_ci      /* Initialize the propagated errors to zero. */
1180cb93a386Sopenharmony_ci      jzero_far((void *)cquantize->fserrors, arraysize);
1181cb93a386Sopenharmony_ci      /* Make the error-limit table if we didn't already. */
1182cb93a386Sopenharmony_ci      if (cquantize->error_limiter == NULL)
1183cb93a386Sopenharmony_ci        init_error_limit(cinfo);
1184cb93a386Sopenharmony_ci      cquantize->on_odd_row = FALSE;
1185cb93a386Sopenharmony_ci    }
1186cb93a386Sopenharmony_ci
1187cb93a386Sopenharmony_ci  }
1188cb93a386Sopenharmony_ci  /* Zero the histogram or inverse color map, if necessary */
1189cb93a386Sopenharmony_ci  if (cquantize->needs_zeroed) {
1190cb93a386Sopenharmony_ci    for (i = 0; i < HIST_C0_ELEMS; i++) {
1191cb93a386Sopenharmony_ci      jzero_far((void *)histogram[i],
1192cb93a386Sopenharmony_ci                HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1193cb93a386Sopenharmony_ci    }
1194cb93a386Sopenharmony_ci    cquantize->needs_zeroed = FALSE;
1195cb93a386Sopenharmony_ci  }
1196cb93a386Sopenharmony_ci}
1197cb93a386Sopenharmony_ci
1198cb93a386Sopenharmony_ci
1199cb93a386Sopenharmony_ci/*
1200cb93a386Sopenharmony_ci * Switch to a new external colormap between output passes.
1201cb93a386Sopenharmony_ci */
1202cb93a386Sopenharmony_ci
1203cb93a386Sopenharmony_ciMETHODDEF(void)
1204cb93a386Sopenharmony_cinew_color_map_2_quant(j_decompress_ptr cinfo)
1205cb93a386Sopenharmony_ci{
1206cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize;
1207cb93a386Sopenharmony_ci
1208cb93a386Sopenharmony_ci  /* Reset the inverse color map */
1209cb93a386Sopenharmony_ci  cquantize->needs_zeroed = TRUE;
1210cb93a386Sopenharmony_ci}
1211cb93a386Sopenharmony_ci
1212cb93a386Sopenharmony_ci
1213cb93a386Sopenharmony_ci/*
1214cb93a386Sopenharmony_ci * Module initialization routine for 2-pass color quantization.
1215cb93a386Sopenharmony_ci */
1216cb93a386Sopenharmony_ci
1217cb93a386Sopenharmony_ciGLOBAL(void)
1218cb93a386Sopenharmony_cijinit_2pass_quantizer(j_decompress_ptr cinfo)
1219cb93a386Sopenharmony_ci{
1220cb93a386Sopenharmony_ci  my_cquantize_ptr cquantize;
1221cb93a386Sopenharmony_ci  int i;
1222cb93a386Sopenharmony_ci
1223cb93a386Sopenharmony_ci  cquantize = (my_cquantize_ptr)
1224cb93a386Sopenharmony_ci    (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
1225cb93a386Sopenharmony_ci                                sizeof(my_cquantizer));
1226cb93a386Sopenharmony_ci  cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize;
1227cb93a386Sopenharmony_ci  cquantize->pub.start_pass = start_pass_2_quant;
1228cb93a386Sopenharmony_ci  cquantize->pub.new_color_map = new_color_map_2_quant;
1229cb93a386Sopenharmony_ci  cquantize->fserrors = NULL;   /* flag optional arrays not allocated */
1230cb93a386Sopenharmony_ci  cquantize->error_limiter = NULL;
1231cb93a386Sopenharmony_ci
1232cb93a386Sopenharmony_ci  /* Make sure jdmaster didn't give me a case I can't handle */
1233cb93a386Sopenharmony_ci  if (cinfo->out_color_components != 3)
1234cb93a386Sopenharmony_ci    ERREXIT(cinfo, JERR_NOTIMPL);
1235cb93a386Sopenharmony_ci
1236cb93a386Sopenharmony_ci  /* Allocate the histogram/inverse colormap storage */
1237cb93a386Sopenharmony_ci  cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small)
1238cb93a386Sopenharmony_ci    ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d));
1239cb93a386Sopenharmony_ci  for (i = 0; i < HIST_C0_ELEMS; i++) {
1240cb93a386Sopenharmony_ci    cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large)
1241cb93a386Sopenharmony_ci      ((j_common_ptr)cinfo, JPOOL_IMAGE,
1242cb93a386Sopenharmony_ci       HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell));
1243cb93a386Sopenharmony_ci  }
1244cb93a386Sopenharmony_ci  cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
1245cb93a386Sopenharmony_ci
1246cb93a386Sopenharmony_ci  /* Allocate storage for the completed colormap, if required.
1247cb93a386Sopenharmony_ci   * We do this now since it may affect the memory manager's space
1248cb93a386Sopenharmony_ci   * calculations.
1249cb93a386Sopenharmony_ci   */
1250cb93a386Sopenharmony_ci  if (cinfo->enable_2pass_quant) {
1251cb93a386Sopenharmony_ci    /* Make sure color count is acceptable */
1252cb93a386Sopenharmony_ci    int desired = cinfo->desired_number_of_colors;
1253cb93a386Sopenharmony_ci    /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
1254cb93a386Sopenharmony_ci    if (desired < 8)
1255cb93a386Sopenharmony_ci      ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8);
1256cb93a386Sopenharmony_ci    /* Make sure colormap indexes can be represented by JSAMPLEs */
1257cb93a386Sopenharmony_ci    if (desired > MAXNUMCOLORS)
1258cb93a386Sopenharmony_ci      ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS);
1259cb93a386Sopenharmony_ci    cquantize->sv_colormap = (*cinfo->mem->alloc_sarray)
1260cb93a386Sopenharmony_ci      ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3);
1261cb93a386Sopenharmony_ci    cquantize->desired = desired;
1262cb93a386Sopenharmony_ci  } else
1263cb93a386Sopenharmony_ci    cquantize->sv_colormap = NULL;
1264cb93a386Sopenharmony_ci
1265cb93a386Sopenharmony_ci  /* Only F-S dithering or no dithering is supported. */
1266cb93a386Sopenharmony_ci  /* If user asks for ordered dither, give them F-S. */
1267cb93a386Sopenharmony_ci  if (cinfo->dither_mode != JDITHER_NONE)
1268cb93a386Sopenharmony_ci    cinfo->dither_mode = JDITHER_FS;
1269cb93a386Sopenharmony_ci
1270cb93a386Sopenharmony_ci  /* Allocate Floyd-Steinberg workspace if necessary.
1271cb93a386Sopenharmony_ci   * This isn't really needed until pass 2, but again it may affect the memory
1272cb93a386Sopenharmony_ci   * manager's space calculations.  Although we will cope with a later change
1273cb93a386Sopenharmony_ci   * in dither_mode, we do not promise to honor max_memory_to_use if
1274cb93a386Sopenharmony_ci   * dither_mode changes.
1275cb93a386Sopenharmony_ci   */
1276cb93a386Sopenharmony_ci  if (cinfo->dither_mode == JDITHER_FS) {
1277cb93a386Sopenharmony_ci    cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large)
1278cb93a386Sopenharmony_ci      ((j_common_ptr)cinfo, JPOOL_IMAGE,
1279cb93a386Sopenharmony_ci       (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1280cb93a386Sopenharmony_ci    /* Might as well create the error-limiting table too. */
1281cb93a386Sopenharmony_ci    init_error_limit(cinfo);
1282cb93a386Sopenharmony_ci  }
1283cb93a386Sopenharmony_ci}
1284cb93a386Sopenharmony_ci
1285cb93a386Sopenharmony_ci#endif /* QUANT_2PASS_SUPPORTED */
1286