1/* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "include/core/SkCanvas.h" 9#include "include/core/SkSurface.h" 10#include "include/gpu/GrDirectContext.h" 11#include "src/gpu/GrCaps.h" 12#include "src/gpu/GrDirectContextPriv.h" 13#include "src/gpu/GrImageInfo.h" 14#include "src/gpu/SkGr.h" 15#include "src/gpu/SurfaceContext.h" 16#include "tests/Test.h" 17#include "tests/TestUtils.h" 18 19// using anonymous namespace because these functions are used as template params. 20namespace { 21/** convert 0..1 srgb value to 0..1 linear */ 22float srgb_to_linear(float srgb) { 23 if (srgb <= 0.04045f) { 24 return srgb / 12.92f; 25 } else { 26 return powf((srgb + 0.055f) / 1.055f, 2.4f); 27 } 28} 29 30/** convert 0..1 linear value to 0..1 srgb */ 31float linear_to_srgb(float linear) { 32 if (linear <= 0.0031308) { 33 return linear * 12.92f; 34 } else { 35 return 1.055f * powf(linear, 1.f / 2.4f) - 0.055f; 36 } 37} 38} // namespace 39 40/** tests a conversion with an error tolerance */ 41template <float (*CONVERT)(float)> static bool check_conversion(uint32_t input, uint32_t output, 42 float error) { 43 // alpha should always be exactly preserved. 44 if ((input & 0xff000000) != (output & 0xff000000)) { 45 return false; 46 } 47 48 for (int c = 0; c < 3; ++c) { 49 uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); 50 float lower = std::max(0.f, (float) inputComponent - error); 51 float upper = std::min(255.f, (float) inputComponent + error); 52 lower = CONVERT(lower / 255.f); 53 upper = CONVERT(upper / 255.f); 54 SkASSERT(lower >= 0.f && lower <= 255.f); 55 SkASSERT(upper >= 0.f && upper <= 255.f); 56 uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); 57 if (outputComponent < SkScalarFloorToInt(lower * 255.f) || 58 outputComponent > SkScalarCeilToInt(upper * 255.f)) { 59 return false; 60 } 61 } 62 return true; 63} 64 65/** tests a forward and backward conversion with an error tolerance */ 66template <float (*FORWARD)(float), float (*BACKWARD)(float)> 67static bool check_double_conversion(uint32_t input, uint32_t output, float error) { 68 // alpha should always be exactly preserved. 69 if ((input & 0xff000000) != (output & 0xff000000)) { 70 return false; 71 } 72 73 for (int c = 0; c < 3; ++c) { 74 uint8_t inputComponent = (uint8_t) ((input & (0xff << (c*8))) >> (c*8)); 75 float lower = std::max(0.f, (float) inputComponent - error); 76 float upper = std::min(255.f, (float) inputComponent + error); 77 lower = FORWARD(lower / 255.f); 78 upper = FORWARD(upper / 255.f); 79 SkASSERT(lower >= 0.f && lower <= 255.f); 80 SkASSERT(upper >= 0.f && upper <= 255.f); 81 uint8_t upperComponent = SkScalarCeilToInt(upper * 255.f); 82 uint8_t lowerComponent = SkScalarFloorToInt(lower * 255.f); 83 lower = std::max(0.f, (float) lowerComponent - error); 84 upper = std::min(255.f, (float) upperComponent + error); 85 lower = BACKWARD(lowerComponent / 255.f); 86 upper = BACKWARD(upperComponent / 255.f); 87 SkASSERT(lower >= 0.f && lower <= 255.f); 88 SkASSERT(upper >= 0.f && upper <= 255.f); 89 upperComponent = SkScalarCeilToInt(upper * 255.f); 90 lowerComponent = SkScalarFloorToInt(lower * 255.f); 91 92 uint8_t outputComponent = (output & (0xff << (c*8))) >> (c*8); 93 if (outputComponent < lowerComponent || outputComponent > upperComponent) { 94 return false; 95 } 96 } 97 return true; 98} 99 100static bool check_srgb_to_linear_conversion(uint32_t srgb, uint32_t linear, float error) { 101 return check_conversion<srgb_to_linear>(srgb, linear, error); 102} 103 104static bool check_linear_to_srgb_conversion(uint32_t linear, uint32_t srgb, float error) { 105 return check_conversion<linear_to_srgb>(linear, srgb, error); 106} 107 108static bool check_linear_to_srgb_to_linear_conversion(uint32_t input, uint32_t output, float error) { 109 return check_double_conversion<linear_to_srgb, srgb_to_linear>(input, output, error); 110} 111 112static bool check_srgb_to_linear_to_srgb_conversion(uint32_t input, uint32_t output, float error) { 113 return check_double_conversion<srgb_to_linear, linear_to_srgb>(input, output, error); 114} 115 116static bool check_no_conversion(uint32_t input, uint32_t output, float error) { 117 // This is a bit of a hack to check identity transformations that may lose precision. 118 return check_srgb_to_linear_to_srgb_conversion(input, output, error); 119} 120 121typedef bool (*CheckFn) (uint32_t orig, uint32_t actual, float error); 122 123void read_and_check_pixels(skiatest::Reporter* reporter, 124 GrDirectContext* dContext, 125 skgpu::SurfaceContext* sc, 126 uint32_t* origData, 127 const SkImageInfo& dstInfo, CheckFn checker, float error, 128 const char* subtestName) { 129 auto [w, h] = dstInfo.dimensions(); 130 GrPixmap readPM = GrPixmap::Allocate(dstInfo); 131 memset(readPM.addr(), 0, sizeof(uint32_t)*w*h); 132 133 if (!sc->readPixels(dContext, readPM, {0, 0})) { 134 ERRORF(reporter, "Could not read pixels for %s.", subtestName); 135 return; 136 } 137 138 for (int j = 0; j < h; ++j) { 139 for (int i = 0; i < w; ++i) { 140 uint32_t orig = origData[j * w + i]; 141 uint32_t read = static_cast<uint32_t*>(readPM.addr())[j * w + i]; 142 143 if (!checker(orig, read, error)) { 144 ERRORF(reporter, "Original 0x%08x, read back as 0x%08x in %s at %d, %d).", orig, 145 read, subtestName, i, j); 146 return; 147 } 148 } 149 } 150} 151 152namespace { 153enum class Encoding { 154 kUntagged, 155 kLinear, 156 kSRGB, 157}; 158} // namespace 159 160static sk_sp<SkColorSpace> encoding_as_color_space(Encoding encoding) { 161 switch (encoding) { 162 case Encoding::kUntagged: return nullptr; 163 case Encoding::kLinear: return SkColorSpace::MakeSRGBLinear(); 164 case Encoding::kSRGB: return SkColorSpace::MakeSRGB(); 165 } 166 return nullptr; 167} 168 169static const char* encoding_as_str(Encoding encoding) { 170 switch (encoding) { 171 case Encoding::kUntagged: return "untagged"; 172 case Encoding::kLinear: return "linear"; 173 case Encoding::kSRGB: return "sRGB"; 174 } 175 return nullptr; 176} 177 178static constexpr int kW = 255; 179static constexpr int kH = 255; 180 181static std::unique_ptr<uint32_t[]> make_data() { 182 std::unique_ptr<uint32_t[]> data(new uint32_t[kW * kH]); 183 for (int j = 0; j < kH; ++j) { 184 for (int i = 0; i < kW; ++i) { 185 data[j * kW + i] = (0xFF << 24) | (i << 16) | (i << 8) | i; 186 } 187 } 188 return data; 189} 190 191static std::unique_ptr<skgpu::SurfaceContext> make_surface_context(Encoding contextEncoding, 192 GrRecordingContext* rContext, 193 skiatest::Reporter* reporter) { 194 GrImageInfo info(GrColorType::kRGBA_8888, 195 kPremul_SkAlphaType, 196 encoding_as_color_space(contextEncoding), 197 kW, kH); 198 199 auto sc = CreateSurfaceContext(rContext, 200 info, 201 SkBackingFit::kExact, 202 kBottomLeft_GrSurfaceOrigin, 203 GrRenderable::kYes); 204 if (!sc) { 205 ERRORF(reporter, "Could not create %s surface context.", encoding_as_str(contextEncoding)); 206 } 207 return sc; 208} 209 210static void test_write_read(Encoding contextEncoding, Encoding writeEncoding, Encoding readEncoding, 211 float error, CheckFn check, GrDirectContext* dContext, 212 skiatest::Reporter* reporter) { 213 auto surfaceContext = make_surface_context(contextEncoding, dContext, reporter); 214 if (!surfaceContext) { 215 return; 216 } 217 auto writeII = SkImageInfo::Make(kW, kH, kRGBA_8888_SkColorType, kPremul_SkAlphaType, 218 encoding_as_color_space(writeEncoding)); 219 auto data = make_data(); 220 GrCPixmap dataPM(writeII, data.get(), kW*sizeof(uint32_t)); 221 if (!surfaceContext->writePixels(dContext, dataPM, {0, 0})) { 222 ERRORF(reporter, "Could not write %s to %s surface context.", 223 encoding_as_str(writeEncoding), encoding_as_str(contextEncoding)); 224 return; 225 } 226 227 auto readII = SkImageInfo::Make(kW, kH, kRGBA_8888_SkColorType, kPremul_SkAlphaType, 228 encoding_as_color_space(readEncoding)); 229 SkString testName; 230 testName.printf("write %s data to a %s context and read as %s.", encoding_as_str(writeEncoding), 231 encoding_as_str(contextEncoding), encoding_as_str(readEncoding)); 232 read_and_check_pixels(reporter, dContext, surfaceContext.get(), data.get(), readII, check, 233 error, testName.c_str()); 234} 235 236// Test all combinations of writePixels/readPixels where the surface context/write source/read dst 237// are sRGB, linear, or untagged RGBA_8888. 238DEF_GPUTEST_FOR_RENDERING_CONTEXTS(SRGBReadWritePixels, reporter, ctxInfo) { 239 auto context = ctxInfo.directContext(); 240 if (!context->priv().caps()->getDefaultBackendFormat(GrColorType::kRGBA_8888_SRGB, 241 GrRenderable::kNo).isValid()) { 242 return; 243 } 244 // We allow more error on GPUs with lower precision shader variables. 245 float error = context->priv().caps()->shaderCaps()->halfIs32Bits() ? 0.5f : 1.2f; 246 // For the all-sRGB case, we allow a small error only for devices that have 247 // precision variation because the sRGB data gets converted to linear and back in 248 // the shader. 249 float smallError = context->priv().caps()->shaderCaps()->halfIs32Bits() ? 0.0f : 1.f; 250 251 /////////////////////////////////////////////////////////////////////////////////////////////// 252 // Write sRGB data to a sRGB context - no conversion on the write. 253 254 // back to sRGB - no conversion. 255 test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kSRGB, smallError, 256 check_no_conversion, context, reporter); 257 // Reading back to untagged should be a pass through with no conversion. 258 test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kUntagged, error, 259 check_no_conversion, context, reporter); 260 261 // Converts back to linear 262 test_write_read(Encoding::kSRGB, Encoding::kSRGB, Encoding::kLinear, error, 263 check_srgb_to_linear_conversion, context, reporter); 264 265 // Untagged source data should be interpreted as sRGB. 266 test_write_read(Encoding::kSRGB, Encoding::kUntagged, Encoding::kSRGB, smallError, 267 check_no_conversion, context, reporter); 268 269 /////////////////////////////////////////////////////////////////////////////////////////////// 270 // Write linear data to a sRGB context. It gets converted to sRGB on write. The reads 271 // are all the same as the above cases where the original data was untagged. 272 test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kSRGB, error, 273 check_linear_to_srgb_conversion, context, reporter); 274 // When the dst buffer is untagged there should be no conversion on the read. 275 test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kUntagged, error, 276 check_linear_to_srgb_conversion, context, reporter); 277 test_write_read(Encoding::kSRGB, Encoding::kLinear, Encoding::kLinear, error, 278 check_linear_to_srgb_to_linear_conversion, context, reporter); 279 280 /////////////////////////////////////////////////////////////////////////////////////////////// 281 // Write data to an untagged context. The write does no conversion no matter what encoding the 282 // src data has. 283 for (auto writeEncoding : {Encoding::kSRGB, Encoding::kUntagged, Encoding::kLinear}) { 284 // The read from untagged to sRGB also does no conversion. 285 test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kSRGB, error, 286 check_no_conversion, context, reporter); 287 // Reading untagged back as untagged should do no conversion. 288 test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kUntagged, error, 289 check_no_conversion, context, reporter); 290 // Reading untagged back as linear does convert (context is source, so treated as sRGB), 291 // dst is tagged. 292 test_write_read(Encoding::kUntagged, writeEncoding, Encoding::kLinear, error, 293 check_srgb_to_linear_conversion, context, reporter); 294 } 295 296 /////////////////////////////////////////////////////////////////////////////////////////////// 297 // Write sRGB data to a linear context - converts to sRGB on the write. 298 299 // converts back to sRGB on read. 300 test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kSRGB, error, 301 check_srgb_to_linear_to_srgb_conversion, context, reporter); 302 // Reading untagged data from linear currently does no conversion. 303 test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kUntagged, error, 304 check_srgb_to_linear_conversion, context, reporter); 305 // Stays linear when read. 306 test_write_read(Encoding::kLinear, Encoding::kSRGB, Encoding::kLinear, error, 307 check_srgb_to_linear_conversion, context, reporter); 308 309 // Untagged source data should be interpreted as sRGB. 310 test_write_read(Encoding::kLinear, Encoding::kUntagged, Encoding::kSRGB, error, 311 check_srgb_to_linear_to_srgb_conversion, context, reporter); 312 313 /////////////////////////////////////////////////////////////////////////////////////////////// 314 // Write linear data to a linear context. Does no conversion. 315 316 // Reading to sRGB does a conversion. 317 test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kSRGB, error, 318 check_linear_to_srgb_conversion, context, reporter); 319 // Reading to untagged does no conversion. 320 test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kUntagged, error, 321 check_no_conversion, context, reporter); 322 // Stays linear when read. 323 test_write_read(Encoding::kLinear, Encoding::kLinear, Encoding::kLinear, error, 324 check_no_conversion, context, reporter); 325} 326