1/* 2 * Copyright 2020 Google LLC 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "include/core/SkStream.h" 9#include "include/private/SkSLProgramElement.h" 10#include "include/private/SkSLStatement.h" 11#include "include/private/SkTArray.h" 12#include "include/private/SkTPin.h" 13#include "src/sksl/SkSLCompiler.h" 14#include "src/sksl/SkSLOperators.h" 15#include "src/sksl/codegen/SkSLCodeGenerator.h" 16#include "src/sksl/codegen/SkSLVMCodeGenerator.h" 17#include "src/sksl/ir/SkSLBinaryExpression.h" 18#include "src/sksl/ir/SkSLBlock.h" 19#include "src/sksl/ir/SkSLBreakStatement.h" 20#include "src/sksl/ir/SkSLChildCall.h" 21#include "src/sksl/ir/SkSLConstructor.h" 22#include "src/sksl/ir/SkSLConstructorArray.h" 23#include "src/sksl/ir/SkSLConstructorArrayCast.h" 24#include "src/sksl/ir/SkSLConstructorDiagonalMatrix.h" 25#include "src/sksl/ir/SkSLConstructorMatrixResize.h" 26#include "src/sksl/ir/SkSLConstructorSplat.h" 27#include "src/sksl/ir/SkSLConstructorStruct.h" 28#include "src/sksl/ir/SkSLContinueStatement.h" 29#include "src/sksl/ir/SkSLDoStatement.h" 30#include "src/sksl/ir/SkSLExpressionStatement.h" 31#include "src/sksl/ir/SkSLExternalFunctionCall.h" 32#include "src/sksl/ir/SkSLExternalFunctionReference.h" 33#include "src/sksl/ir/SkSLFieldAccess.h" 34#include "src/sksl/ir/SkSLForStatement.h" 35#include "src/sksl/ir/SkSLFunctionCall.h" 36#include "src/sksl/ir/SkSLFunctionDeclaration.h" 37#include "src/sksl/ir/SkSLFunctionDefinition.h" 38#include "src/sksl/ir/SkSLIfStatement.h" 39#include "src/sksl/ir/SkSLIndexExpression.h" 40#include "src/sksl/ir/SkSLLiteral.h" 41#include "src/sksl/ir/SkSLPostfixExpression.h" 42#include "src/sksl/ir/SkSLPrefixExpression.h" 43#include "src/sksl/ir/SkSLReturnStatement.h" 44#include "src/sksl/ir/SkSLSwitchStatement.h" 45#include "src/sksl/ir/SkSLSwizzle.h" 46#include "src/sksl/ir/SkSLTernaryExpression.h" 47#include "src/sksl/ir/SkSLVarDeclarations.h" 48#include "src/sksl/ir/SkSLVariableReference.h" 49 50#include <algorithm> 51#include <unordered_map> 52 53namespace { 54 // sksl allows the optimizations of fast_mul(), so we want to use that most of the time. 55 // This little sneaky snippet of code lets us use ** as a fast multiply infix operator. 56 struct FastF32 { skvm::F32 val; }; 57 static FastF32 operator*(skvm::F32 y) { return {y}; } 58 static skvm::F32 operator*(skvm::F32 x, FastF32 y) { return fast_mul(x, y.val); } 59 static skvm::F32 operator*(float x, FastF32 y) { return fast_mul(x, y.val); } 60} 61 62namespace SkSL { 63 64namespace { 65 66// Holds scalars, vectors, or matrices 67struct Value { 68 Value() = default; 69 explicit Value(size_t slots) { 70 fVals.resize(slots); 71 } 72 Value(skvm::F32 x) : fVals({ x.id }) {} 73 Value(skvm::I32 x) : fVals({ x.id }) {} 74 75 explicit operator bool() const { return !fVals.empty(); } 76 77 size_t slots() const { return fVals.size(); } 78 79 struct ValRef { 80 ValRef(skvm::Val& val) : fVal(val) {} 81 // Required until C++17 copy elision 82 ValRef(const ValRef&) = default; 83 84 ValRef& operator=(ValRef v) { fVal = v.fVal; return *this; } 85 ValRef& operator=(skvm::Val v) { fVal = v; return *this; } 86 ValRef& operator=(skvm::F32 v) { fVal = v.id; return *this; } 87 ValRef& operator=(skvm::I32 v) { fVal = v.id; return *this; } 88 89 operator skvm::Val() { return fVal; } 90 91 skvm::Val& fVal; 92 }; 93 94 ValRef operator[](size_t i) { 95 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for 96 // 32-bit x86 Debug builds. 97 SkASSERT(i < fVals.size()); 98 return fVals[i]; 99 } 100 skvm::Val operator[](size_t i) const { 101 // These redundant asserts work around what we think is a codegen bug in GCC 8.x for 102 // 32-bit x86 Debug builds. 103 SkASSERT(i < fVals.size()); 104 return fVals[i]; 105 } 106 107 SkSpan<skvm::Val> asSpan() { return SkMakeSpan(fVals); } 108 109private: 110 SkSTArray<4, skvm::Val, true> fVals; 111}; 112 113} // namespace 114 115class SkVMGenerator { 116public: 117 SkVMGenerator(const Program& program, 118 skvm::Builder* builder, 119 SkVMDebugInfo* debugInfo, 120 SampleShaderFn sampleShader, 121 SampleColorFilterFn sampleColorFilter, 122 SampleBlenderFn sampleBlender); 123 124 void writeProgram(SkSpan<skvm::Val> uniforms, 125 skvm::Coord device, 126 const FunctionDefinition& function, 127 SkSpan<skvm::Val> arguments, 128 SkSpan<skvm::Val> outReturn); 129 130private: 131 /** 132 * In SkSL, a Variable represents a named, typed value (along with qualifiers, etc). 133 * Every Variable is mapped to one (or several, contiguous) indices into our vector of 134 * skvm::Val. Those skvm::Val entries hold the current actual value of that variable. 135 * 136 * NOTE: Conceptually, each Variable is just mapped to a Value. We could implement it that way, 137 * (and eliminate the indirection), but it would add overhead for each Variable, 138 * and add additional (different) bookkeeping for things like lvalue-swizzles. 139 * 140 * Any time a variable appears in an expression, that's a VariableReference, which is a kind of 141 * Expression. Evaluating that VariableReference (or any other Expression) produces a Value, 142 * which is a set of skvm::Val. (This allows an Expression to produce a vector or matrix, in 143 * addition to a scalar). 144 * 145 * For a VariableReference, producing a Value is straightforward - we get the slot of the 146 * Variable (from fVariableMap), use that to look up the current skvm::Vals holding the 147 * variable's contents, and construct a Value with those ids. 148 */ 149 150 /** Appends this variable to the SkVMSlotInfo array inside of SkVMDebugInfo. */ 151 void addDebugSlotInfo(String varName, const Type& type, int line); 152 153 /** 154 * Returns the slot holding v's Val(s). Allocates storage if this is first time 'v' is 155 * referenced. Compound variables (e.g. vectors) will consume more than one slot, with 156 * getSlot returning the start of the contiguous chunk of slots. 157 */ 158 size_t getSlot(const Variable& v); 159 160 /** 161 * Writes a value to a slot previously created by getSlot. 162 */ 163 void writeToSlot(int slot, skvm::Val value); 164 165 /** 166 * Emits an trace_line opcode. writeStatement already does this, but statements that alter 167 * control flow may need to explicitly add additional traces. 168 */ 169 void emitTraceLine(int line); 170 171 /** Initializes uniforms and global variables at the start of main(). */ 172 void setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device); 173 174 /** Emits an SkSL function. */ 175 void writeFunction(const FunctionDefinition& function, 176 SkSpan<skvm::Val> arguments, 177 SkSpan<skvm::Val> outReturn); 178 179 skvm::F32 f32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; } 180 skvm::I32 i32(skvm::Val id) { SkASSERT(id != skvm::NA); return {fBuilder, id}; } 181 182 // Shorthand for scalars 183 skvm::F32 f32(const Value& v) { SkASSERT(v.slots() == 1); return f32(v[0]); } 184 skvm::I32 i32(const Value& v) { SkASSERT(v.slots() == 1); return i32(v[0]); } 185 186 template <typename Fn> 187 Value unary(const Value& v, Fn&& fn) { 188 Value result(v.slots()); 189 for (size_t i = 0; i < v.slots(); ++i) { 190 result[i] = fn({fBuilder, v[i]}); 191 } 192 return result; 193 } 194 195 skvm::I32 mask() { 196 // Mask off execution if we have encountered `break` or `continue` on this path. 197 skvm::I32 result = fConditionMask & fLoopMask; 198 if (!fFunctionStack.empty()) { 199 // As we encounter (possibly conditional) return statements, fReturned is updated to 200 // store the lanes that have already returned. For the remainder of the current 201 // function, those lanes should be disabled. 202 result = result & ~currentFunction().fReturned; 203 } 204 return result; 205 } 206 207 size_t fieldSlotOffset(const FieldAccess& expr); 208 size_t indexSlotOffset(const IndexExpression& expr); 209 210 Value writeExpression(const Expression& expr); 211 Value writeBinaryExpression(const BinaryExpression& b); 212 Value writeAggregationConstructor(const AnyConstructor& c); 213 Value writeChildCall(const ChildCall& c); 214 Value writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& c); 215 Value writeConstructorMatrixResize(const ConstructorMatrixResize& c); 216 Value writeConstructorCast(const AnyConstructor& c); 217 Value writeConstructorSplat(const ConstructorSplat& c); 218 Value writeFunctionCall(const FunctionCall& c); 219 Value writeExternalFunctionCall(const ExternalFunctionCall& c); 220 Value writeFieldAccess(const FieldAccess& expr); 221 Value writeLiteral(const Literal& l); 222 Value writeIndexExpression(const IndexExpression& expr); 223 Value writeIntrinsicCall(const FunctionCall& c); 224 Value writePostfixExpression(const PostfixExpression& p); 225 Value writePrefixExpression(const PrefixExpression& p); 226 Value writeSwizzle(const Swizzle& swizzle); 227 Value writeTernaryExpression(const TernaryExpression& t); 228 Value writeVariableExpression(const VariableReference& expr); 229 230 Value writeTypeConversion(const Value& src, Type::NumberKind srcKind, Type::NumberKind dstKind); 231 232 void writeStatement(const Statement& s); 233 void writeBlock(const Block& b); 234 void writeBreakStatement(); 235 void writeContinueStatement(); 236 void writeForStatement(const ForStatement& f); 237 void writeIfStatement(const IfStatement& stmt); 238 void writeReturnStatement(const ReturnStatement& r); 239 void writeSwitchStatement(const SwitchStatement& s); 240 void writeVarDeclaration(const VarDeclaration& decl); 241 242 Value writeStore(const Expression& lhs, const Value& rhs); 243 skvm::Val writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask); 244 245 Value writeMatrixInverse2x2(const Value& m); 246 Value writeMatrixInverse3x3(const Value& m); 247 Value writeMatrixInverse4x4(const Value& m); 248 249 // 250 // Global state for the lifetime of the generator: 251 // 252 const Program& fProgram; 253 skvm::Builder* fBuilder; 254 SkVMDebugInfo* fDebugInfo; 255 256 const SampleShaderFn fSampleShader; 257 const SampleColorFilterFn fSampleColorFilter; 258 const SampleBlenderFn fSampleBlender; 259 260 struct Slot { 261 skvm::Val val; 262 }; 263 std::vector<Slot> fSlots; 264 265 std::unordered_map<const Variable*, size_t> fVariableMap; // [Variable, first slot in fSlots] 266 267 // Conditional execution mask (managed by ScopedCondition, and tied to control-flow scopes) 268 skvm::I32 fConditionMask; 269 270 // Similar: loop execution masks. Each loop starts with all lanes active (fLoopMask). 271 // 'break' disables a lane in fLoopMask until the loop finishes 272 // 'continue' disables a lane in fLoopMask, and sets fContinueMask to be re-enabled on the next 273 // iteration 274 skvm::I32 fLoopMask; 275 skvm::I32 fContinueMask; 276 277 // 278 // State that's local to the generation of a single function: 279 // 280 struct Function { 281 const SkSpan<skvm::Val> fReturnValue; 282 skvm::I32 fReturned; 283 }; 284 std::vector<Function> fFunctionStack; 285 Function& currentFunction() { return fFunctionStack.back(); } 286 287 class ScopedCondition { 288 public: 289 ScopedCondition(SkVMGenerator* generator, skvm::I32 mask) 290 : fGenerator(generator), fOldConditionMask(fGenerator->fConditionMask) { 291 fGenerator->fConditionMask &= mask; 292 } 293 294 ~ScopedCondition() { fGenerator->fConditionMask = fOldConditionMask; } 295 296 private: 297 SkVMGenerator* fGenerator; 298 skvm::I32 fOldConditionMask; 299 }; 300}; 301 302void SkVMDebugInfo::dump(SkWStream* o) const { 303 for (size_t index = 0; index < fSlotInfo.size(); ++index) { 304 const SkVMSlotInfo& info = fSlotInfo[index]; 305 306 o->writeText("$"); 307 o->writeDecAsText(index); 308 o->writeText(" = "); 309 o->writeText(info.name.c_str()); 310 o->writeText(" ("); 311 switch (info.numberKind) { 312 case Type::NumberKind::kFloat: o->writeText("float"); break; 313 case Type::NumberKind::kSigned: o->writeText("int"); break; 314 case Type::NumberKind::kUnsigned: o->writeText("uint"); break; 315 case Type::NumberKind::kBoolean: o->writeText("bool"); break; 316 case Type::NumberKind::kNonnumeric: o->writeText("???"); break; 317 } 318 if (info.rows * info.columns > 1) { 319 o->writeDecAsText(info.columns); 320 if (info.rows != 1) { 321 o->writeText("x"); 322 o->writeDecAsText(info.rows); 323 } 324 o->writeText(" : "); 325 o->writeText("slot "); 326 o->writeDecAsText(info.componentIndex + 1); 327 o->writeText("/"); 328 o->writeDecAsText(info.rows * info.columns); 329 } 330 o->writeText(", L"); 331 o->writeDecAsText(info.line); 332 o->writeText(")"); 333 o->newline(); 334 } 335 o->newline(); 336} 337 338static Type::NumberKind base_number_kind(const Type& type) { 339 if (type.typeKind() == Type::TypeKind::kMatrix || type.typeKind() == Type::TypeKind::kVector) { 340 return base_number_kind(type.componentType()); 341 } 342 return type.numberKind(); 343} 344 345static inline bool is_uniform(const SkSL::Variable& var) { 346 return var.modifiers().fFlags & Modifiers::kUniform_Flag; 347} 348 349SkVMGenerator::SkVMGenerator(const Program& program, 350 skvm::Builder* builder, 351 SkVMDebugInfo* debugInfo, 352 SampleShaderFn sampleShader, 353 SampleColorFilterFn sampleColorFilter, 354 SampleBlenderFn sampleBlender) 355 : fProgram(program) 356 , fBuilder(builder) 357 , fDebugInfo(debugInfo) 358 , fSampleShader(std::move(sampleShader)) 359 , fSampleColorFilter(std::move(sampleColorFilter)) 360 , fSampleBlender(std::move(sampleBlender)) {} 361 362void SkVMGenerator::writeProgram(SkSpan<skvm::Val> uniforms, 363 skvm::Coord device, 364 const FunctionDefinition& function, 365 SkSpan<skvm::Val> arguments, 366 SkSpan<skvm::Val> outReturn) { 367 fConditionMask = fLoopMask = fBuilder->splat(0xffff'ffff); 368 369 this->setupGlobals(uniforms, device); 370 this->writeFunction(function, arguments, outReturn); 371} 372 373void SkVMGenerator::setupGlobals(SkSpan<skvm::Val> uniforms, skvm::Coord device) { 374 // Add storage for each global variable (including uniforms) to fSlots, and entries in 375 // fVariableMap to remember where every variable is stored. 376 const skvm::Val* uniformIter = uniforms.begin(); 377 size_t fpCount = 0; 378 for (const ProgramElement* e : fProgram.elements()) { 379 if (e->is<GlobalVarDeclaration>()) { 380 const GlobalVarDeclaration& gvd = e->as<GlobalVarDeclaration>(); 381 const VarDeclaration& decl = gvd.declaration()->as<VarDeclaration>(); 382 const Variable& var = decl.var(); 383 SkASSERT(fVariableMap.find(&var) == fVariableMap.end()); 384 385 // For most variables, fVariableMap stores an index into fSlots, but for children, 386 // fVariableMap stores the index to pass to fSample(Shader|ColorFilter|Blender) 387 if (var.type().isEffectChild()) { 388 fVariableMap[&var] = fpCount++; 389 continue; 390 } 391 392 // Opaque types include fragment processors, GL objects (samplers, textures, etc), and 393 // special types like 'void'. Of those, only fragment processors are legal variables. 394 SkASSERT(!var.type().isOpaque()); 395 396 // getSlot() allocates space for the variable's value in fSlots, initializes it to zero, 397 // and populates fVariableMap. 398 size_t slot = this->getSlot(var), 399 nslots = var.type().slotCount(); 400 401 // builtin variables are system-defined, with special semantics. The only builtin 402 // variable exposed to runtime effects is sk_FragCoord. 403 if (int builtin = var.modifiers().fLayout.fBuiltin; builtin >= 0) { 404 switch (builtin) { 405 case SK_FRAGCOORD_BUILTIN: 406 SkASSERT(nslots == 4); 407 this->writeToSlot(slot + 0, device.x.id); 408 this->writeToSlot(slot + 1, device.y.id); 409 this->writeToSlot(slot + 2, fBuilder->splat(0.0f).id); 410 this->writeToSlot(slot + 3, fBuilder->splat(1.0f).id); 411 break; 412 default: 413 SkDEBUGFAILF("Unsupported builtin %d", builtin); 414 } 415 continue; 416 } 417 418 // For uniforms, copy the supplied IDs over 419 if (is_uniform(var)) { 420 SkASSERT(uniformIter + nslots <= uniforms.end()); 421 for (size_t i = 0; i < nslots; ++i) { 422 this->writeToSlot(slot + i, uniformIter[i]); 423 } 424 uniformIter += nslots; 425 continue; 426 } 427 428 // For other globals, populate with the initializer expression (if there is one) 429 if (decl.value()) { 430 Value val = this->writeExpression(*decl.value()); 431 for (size_t i = 0; i < nslots; ++i) { 432 this->writeToSlot(slot + i, val[i]); 433 } 434 } 435 } 436 } 437 SkASSERT(uniformIter == uniforms.end()); 438} 439 440void SkVMGenerator::writeFunction(const FunctionDefinition& function, 441 SkSpan<skvm::Val> arguments, 442 SkSpan<skvm::Val> outReturn) { 443 const FunctionDeclaration& decl = function.declaration(); 444 SkASSERT(decl.returnType().slotCount() == outReturn.size()); 445 446 if (fDebugInfo) { 447 fBuilder->trace_call_enter(this->mask(), function.fLine); 448 } 449 450 fFunctionStack.push_back({outReturn, /*returned=*/fBuilder->splat(0)}); 451 452 // For all parameters, copy incoming argument IDs to our vector of (all) variable IDs 453 size_t argIdx = 0; 454 for (const Variable* p : decl.parameters()) { 455 size_t paramSlot = this->getSlot(*p), 456 nslots = p->type().slotCount(); 457 458 for (size_t i = 0; i < nslots; ++i) { 459 this->writeToSlot(paramSlot + i, arguments[argIdx + i]); 460 } 461 argIdx += nslots; 462 } 463 SkASSERT(argIdx == arguments.size()); 464 465 this->writeStatement(*function.body()); 466 467 // Copy 'out' and 'inout' parameters back to their caller-supplied argument storage 468 argIdx = 0; 469 for (const Variable* p : decl.parameters()) { 470 size_t nslots = p->type().slotCount(); 471 472 if (p->modifiers().fFlags & Modifiers::kOut_Flag) { 473 size_t paramSlot = this->getSlot(*p); 474 for (size_t i = 0; i < nslots; ++i) { 475 arguments[argIdx + i] = fSlots[paramSlot + i].val; 476 } 477 } 478 argIdx += nslots; 479 } 480 SkASSERT(argIdx == arguments.size()); 481 482 fFunctionStack.pop_back(); 483 484 if (fDebugInfo) { 485 fBuilder->trace_call_exit(this->mask(), function.fLine); 486 } 487} 488 489void SkVMGenerator::writeToSlot(int slot, skvm::Val value) { 490 if (fDebugInfo && fSlots[slot].val != value) { 491 if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kFloat) { 492 fBuilder->trace_var(this->mask(), slot, f32(value)); 493 } else if (fDebugInfo->fSlotInfo[slot].numberKind == Type::NumberKind::kBoolean) { 494 fBuilder->trace_var(this->mask(), slot, bool(value)); 495 } else { 496 fBuilder->trace_var(this->mask(), slot, i32(value)); 497 } 498 } 499 500 fSlots[slot].val = value; 501} 502 503void SkVMGenerator::addDebugSlotInfo(String varName, const Type& type, int line) { 504 SkASSERT(fDebugInfo); 505 switch (type.typeKind()) { 506 case Type::TypeKind::kArray: { 507 int nslots = type.columns(); 508 const Type& elemType = type.componentType(); 509 for (int slot = 0; slot < nslots; ++slot) { 510 this->addDebugSlotInfo(varName + "[" + to_string(slot) + "]", 511 elemType, 512 line); 513 } 514 break; 515 } 516 case Type::TypeKind::kStruct: { 517 for (const Type::Field& field : type.fields()) { 518 this->addDebugSlotInfo(varName + "." + field.fName, 519 *field.fType, 520 line); 521 } 522 break; 523 } 524 default: 525 SkASSERTF(0, "unsupported slot type %d", (int)type.typeKind()); 526 [[fallthrough]]; 527 528 case Type::TypeKind::kScalar: 529 case Type::TypeKind::kVector: 530 case Type::TypeKind::kMatrix: { 531 Type::NumberKind numberKind = type.componentType().numberKind(); 532 int nslots = type.slotCount(); 533 534 for (int slot = 0; slot < nslots; ++slot) { 535 SkVMSlotInfo slotInfo; 536 slotInfo.name = varName; 537 slotInfo.columns = type.columns(); 538 slotInfo.rows = type.rows(); 539 slotInfo.componentIndex = slot; 540 slotInfo.numberKind = numberKind; 541 slotInfo.line = line; 542 fDebugInfo->fSlotInfo.push_back(std::move(slotInfo)); 543 } 544 break; 545 } 546 } 547} 548 549size_t SkVMGenerator::getSlot(const Variable& v) { 550 auto entry = fVariableMap.find(&v); 551 if (entry != fVariableMap.end()) { 552 return entry->second; 553 } 554 555 size_t slot = fSlots.size(), 556 nslots = v.type().slotCount(); 557 558 if (fDebugInfo) { 559 // Our debug slot-info table should always have the same length as the actual slot table. 560 SkASSERT(fDebugInfo->fSlotInfo.size() == slot); 561 562 // Append slots for this variable to our debug slot-info table. 563 fDebugInfo->fSlotInfo.reserve(slot + nslots); 564 this->addDebugSlotInfo(String(v.name()), v.type(), v.fLine); 565 566 // Confirm that we added the expected number of slots. 567 SkASSERT(fDebugInfo->fSlotInfo.size() == (slot + nslots)); 568 } 569 570 // Create zeroed-out slots for this new variable. 571 skvm::Val initialValue = fBuilder->splat(0.0f).id; 572 fSlots.insert(fSlots.end(), nslots, Slot{initialValue}); 573 fVariableMap[&v] = slot; 574 return slot; 575} 576 577Value SkVMGenerator::writeBinaryExpression(const BinaryExpression& b) { 578 const Expression& left = *b.left(); 579 const Expression& right = *b.right(); 580 Operator op = b.getOperator(); 581 if (op.kind() == Token::Kind::TK_EQ) { 582 return this->writeStore(left, this->writeExpression(right)); 583 } 584 585 const Type& lType = left.type(); 586 const Type& rType = right.type(); 587 bool lVecOrMtx = (lType.isVector() || lType.isMatrix()); 588 bool rVecOrMtx = (rType.isVector() || rType.isMatrix()); 589 bool isAssignment = op.isAssignment(); 590 if (isAssignment) { 591 op = op.removeAssignment(); 592 } 593 Type::NumberKind nk = base_number_kind(lType); 594 595 // A few ops require special treatment: 596 switch (op.kind()) { 597 case Token::Kind::TK_LOGICALAND: { 598 SkASSERT(!isAssignment); 599 SkASSERT(nk == Type::NumberKind::kBoolean); 600 skvm::I32 lVal = i32(this->writeExpression(left)); 601 ScopedCondition shortCircuit(this, lVal); 602 skvm::I32 rVal = i32(this->writeExpression(right)); 603 return lVal & rVal; 604 } 605 case Token::Kind::TK_LOGICALOR: { 606 SkASSERT(!isAssignment); 607 SkASSERT(nk == Type::NumberKind::kBoolean); 608 skvm::I32 lVal = i32(this->writeExpression(left)); 609 ScopedCondition shortCircuit(this, ~lVal); 610 skvm::I32 rVal = i32(this->writeExpression(right)); 611 return lVal | rVal; 612 } 613 case Token::Kind::TK_COMMA: 614 // We write the left side of the expression to preserve its side effects, even though we 615 // immediately discard the result. 616 this->writeExpression(left); 617 return this->writeExpression(right); 618 default: 619 break; 620 } 621 622 // All of the other ops always evaluate both sides of the expression 623 Value lVal = this->writeExpression(left), 624 rVal = this->writeExpression(right); 625 626 // Special case for M*V, V*M, M*M (but not V*V!) 627 if (op.kind() == Token::Kind::TK_STAR 628 && lVecOrMtx && rVecOrMtx && !(lType.isVector() && rType.isVector())) { 629 int rCols = rType.columns(), 630 rRows = rType.rows(), 631 lCols = lType.columns(), 632 lRows = lType.rows(); 633 // M*V treats the vector as a column 634 if (rType.isVector()) { 635 std::swap(rCols, rRows); 636 } 637 SkASSERT(lCols == rRows); 638 SkASSERT(b.type().slotCount() == static_cast<size_t>(lRows * rCols)); 639 Value result(lRows * rCols); 640 size_t resultIdx = 0; 641 const skvm::F32 zero = fBuilder->splat(0.0f); 642 for (int c = 0; c < rCols; ++c) 643 for (int r = 0; r < lRows; ++r) { 644 skvm::F32 sum = zero; 645 for (int j = 0; j < lCols; ++j) { 646 sum += f32(lVal[j*lRows + r]) * f32(rVal[c*rRows + j]); 647 } 648 result[resultIdx++] = sum; 649 } 650 SkASSERT(resultIdx == result.slots()); 651 return isAssignment ? this->writeStore(left, result) : result; 652 } 653 654 size_t nslots = std::max(lVal.slots(), rVal.slots()); 655 656 auto binary = [&](auto&& f_fn, auto&& i_fn) { 657 Value result(nslots); 658 for (size_t i = 0; i < nslots; ++i) { 659 // If one side is scalar, replicate it to all channels 660 skvm::Val L = lVal.slots() == 1 ? lVal[0] : lVal[i], 661 R = rVal.slots() == 1 ? rVal[0] : rVal[i]; 662 if (nk == Type::NumberKind::kFloat) { 663 result[i] = f_fn(f32(L), f32(R)); 664 } else { 665 result[i] = i_fn(i32(L), i32(R)); 666 } 667 } 668 return isAssignment ? this->writeStore(left, result) : result; 669 }; 670 671 auto unsupported_f = [&](skvm::F32, skvm::F32) { 672 SkDEBUGFAIL("Unsupported operator"); 673 return skvm::F32{}; 674 }; 675 676 switch (op.kind()) { 677 case Token::Kind::TK_EQEQ: { 678 SkASSERT(!isAssignment); 679 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x == y; }, 680 [](skvm::I32 x, skvm::I32 y) { return x == y; }); 681 skvm::I32 folded = i32(cmp[0]); 682 for (size_t i = 1; i < nslots; ++i) { 683 folded &= i32(cmp[i]); 684 } 685 return folded; 686 } 687 case Token::Kind::TK_NEQ: { 688 SkASSERT(!isAssignment); 689 Value cmp = binary([](skvm::F32 x, skvm::F32 y) { return x != y; }, 690 [](skvm::I32 x, skvm::I32 y) { return x != y; }); 691 skvm::I32 folded = i32(cmp[0]); 692 for (size_t i = 1; i < nslots; ++i) { 693 folded |= i32(cmp[i]); 694 } 695 return folded; 696 } 697 case Token::Kind::TK_GT: 698 return binary([](skvm::F32 x, skvm::F32 y) { return x > y; }, 699 [](skvm::I32 x, skvm::I32 y) { return x > y; }); 700 case Token::Kind::TK_GTEQ: 701 return binary([](skvm::F32 x, skvm::F32 y) { return x >= y; }, 702 [](skvm::I32 x, skvm::I32 y) { return x >= y; }); 703 case Token::Kind::TK_LT: 704 return binary([](skvm::F32 x, skvm::F32 y) { return x < y; }, 705 [](skvm::I32 x, skvm::I32 y) { return x < y; }); 706 case Token::Kind::TK_LTEQ: 707 return binary([](skvm::F32 x, skvm::F32 y) { return x <= y; }, 708 [](skvm::I32 x, skvm::I32 y) { return x <= y; }); 709 710 case Token::Kind::TK_PLUS: 711 return binary([](skvm::F32 x, skvm::F32 y) { return x + y; }, 712 [](skvm::I32 x, skvm::I32 y) { return x + y; }); 713 case Token::Kind::TK_MINUS: 714 return binary([](skvm::F32 x, skvm::F32 y) { return x - y; }, 715 [](skvm::I32 x, skvm::I32 y) { return x - y; }); 716 case Token::Kind::TK_STAR: 717 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; }, 718 [](skvm::I32 x, skvm::I32 y) { return x * y; }); 719 case Token::Kind::TK_SLASH: 720 // Minimum spec (GLSL ES 1.0) has very loose requirements for integer operations. 721 // (Low-end GPUs may not have integer ALUs). Given that, we are allowed to do floating 722 // point division plus rounding. Section 10.28 of the spec even clarifies that the 723 // rounding mode is undefined (but round-towards-zero is the obvious/common choice). 724 return binary([](skvm::F32 x, skvm::F32 y) { return x / y; }, 725 [](skvm::I32 x, skvm::I32 y) { 726 return skvm::trunc(skvm::to_F32(x) / skvm::to_F32(y)); 727 }); 728 729 case Token::Kind::TK_BITWISEXOR: 730 case Token::Kind::TK_LOGICALXOR: 731 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x ^ y; }); 732 case Token::Kind::TK_BITWISEAND: 733 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x & y; }); 734 case Token::Kind::TK_BITWISEOR: 735 return binary(unsupported_f, [](skvm::I32 x, skvm::I32 y) { return x | y; }); 736 737 // These three operators are all 'reserved' (illegal) in our minimum spec, but will require 738 // implementation in the future. 739 case Token::Kind::TK_PERCENT: 740 case Token::Kind::TK_SHL: 741 case Token::Kind::TK_SHR: 742 default: 743 SkDEBUGFAIL("Unsupported operator"); 744 return {}; 745 } 746} 747 748Value SkVMGenerator::writeAggregationConstructor(const AnyConstructor& c) { 749 Value result(c.type().slotCount()); 750 size_t resultIdx = 0; 751 for (const auto &arg : c.argumentSpan()) { 752 Value tmp = this->writeExpression(*arg); 753 for (size_t tmpSlot = 0; tmpSlot < tmp.slots(); ++tmpSlot) { 754 result[resultIdx++] = tmp[tmpSlot]; 755 } 756 } 757 return result; 758} 759 760Value SkVMGenerator::writeTypeConversion(const Value& src, 761 Type::NumberKind srcKind, 762 Type::NumberKind dstKind) { 763 // Conversion among "similar" types (floatN <-> halfN), (shortN <-> intN), etc. is a no-op. 764 if (srcKind == dstKind) { 765 return src; 766 } 767 768 // TODO: Handle signed vs. unsigned. GLSL ES 1.0 only has 'int', so no problem yet. 769 Value dst(src.slots()); 770 switch (dstKind) { 771 case Type::NumberKind::kFloat: 772 if (srcKind == Type::NumberKind::kSigned) { 773 // int -> float 774 for (size_t i = 0; i < src.slots(); ++i) { 775 dst[i] = skvm::to_F32(i32(src[i])); 776 } 777 return dst; 778 } 779 if (srcKind == Type::NumberKind::kBoolean) { 780 // bool -> float 781 for (size_t i = 0; i < src.slots(); ++i) { 782 dst[i] = skvm::select(i32(src[i]), 1.0f, 0.0f); 783 } 784 return dst; 785 } 786 break; 787 788 case Type::NumberKind::kSigned: 789 if (srcKind == Type::NumberKind::kFloat) { 790 // float -> int 791 for (size_t i = 0; i < src.slots(); ++i) { 792 dst[i] = skvm::trunc(f32(src[i])); 793 } 794 return dst; 795 } 796 if (srcKind == Type::NumberKind::kBoolean) { 797 // bool -> int 798 for (size_t i = 0; i < src.slots(); ++i) { 799 dst[i] = skvm::select(i32(src[i]), 1, 0); 800 } 801 return dst; 802 } 803 break; 804 805 case Type::NumberKind::kBoolean: 806 if (srcKind == Type::NumberKind::kSigned) { 807 // int -> bool 808 for (size_t i = 0; i < src.slots(); ++i) { 809 dst[i] = i32(src[i]) != 0; 810 } 811 return dst; 812 } 813 if (srcKind == Type::NumberKind::kFloat) { 814 // float -> bool 815 for (size_t i = 0; i < src.slots(); ++i) { 816 dst[i] = f32(src[i]) != 0.0; 817 } 818 return dst; 819 } 820 break; 821 822 default: 823 break; 824 } 825 SkDEBUGFAILF("Unsupported type conversion: %d -> %d", (int)srcKind, (int)dstKind); 826 return {}; 827} 828 829Value SkVMGenerator::writeConstructorCast(const AnyConstructor& c) { 830 auto arguments = c.argumentSpan(); 831 SkASSERT(arguments.size() == 1); 832 const Expression& argument = *arguments.front(); 833 834 const Type& srcType = argument.type(); 835 const Type& dstType = c.type(); 836 Type::NumberKind srcKind = base_number_kind(srcType); 837 Type::NumberKind dstKind = base_number_kind(dstType); 838 Value src = this->writeExpression(argument); 839 return this->writeTypeConversion(src, srcKind, dstKind); 840} 841 842Value SkVMGenerator::writeConstructorSplat(const ConstructorSplat& c) { 843 SkASSERT(c.type().isVector()); 844 SkASSERT(c.argument()->type().isScalar()); 845 int columns = c.type().columns(); 846 847 // Splat the argument across all components of a vector. 848 Value src = this->writeExpression(*c.argument()); 849 Value dst(columns); 850 for (int i = 0; i < columns; ++i) { 851 dst[i] = src[0]; 852 } 853 return dst; 854} 855 856Value SkVMGenerator::writeConstructorDiagonalMatrix(const ConstructorDiagonalMatrix& ctor) { 857 const Type& dstType = ctor.type(); 858 SkASSERT(dstType.isMatrix()); 859 SkASSERT(ctor.argument()->type() == dstType.componentType()); 860 861 Value src = this->writeExpression(*ctor.argument()); 862 Value dst(dstType.rows() * dstType.columns()); 863 size_t dstIndex = 0; 864 865 // Matrix-from-scalar builds a diagonal scale matrix 866 const skvm::F32 zero = fBuilder->splat(0.0f); 867 for (int c = 0; c < dstType.columns(); ++c) { 868 for (int r = 0; r < dstType.rows(); ++r) { 869 dst[dstIndex++] = (c == r ? f32(src) : zero); 870 } 871 } 872 873 SkASSERT(dstIndex == dst.slots()); 874 return dst; 875} 876 877Value SkVMGenerator::writeConstructorMatrixResize(const ConstructorMatrixResize& ctor) { 878 const Type& srcType = ctor.argument()->type(); 879 const Type& dstType = ctor.type(); 880 Value src = this->writeExpression(*ctor.argument()); 881 Value dst(dstType.rows() * dstType.columns()); 882 883 // Matrix-from-matrix uses src where it overlaps, and fills in missing fields with identity. 884 size_t dstIndex = 0; 885 for (int c = 0; c < dstType.columns(); ++c) { 886 for (int r = 0; r < dstType.rows(); ++r) { 887 if (c < srcType.columns() && r < srcType.rows()) { 888 dst[dstIndex++] = src[c * srcType.rows() + r]; 889 } else { 890 dst[dstIndex++] = fBuilder->splat(c == r ? 1.0f : 0.0f); 891 } 892 } 893 } 894 895 SkASSERT(dstIndex == dst.slots()); 896 return dst; 897} 898 899size_t SkVMGenerator::fieldSlotOffset(const FieldAccess& expr) { 900 size_t offset = 0; 901 for (int i = 0; i < expr.fieldIndex(); ++i) { 902 offset += (*expr.base()->type().fields()[i].fType).slotCount(); 903 } 904 return offset; 905} 906 907Value SkVMGenerator::writeFieldAccess(const FieldAccess& expr) { 908 Value base = this->writeExpression(*expr.base()); 909 Value field(expr.type().slotCount()); 910 size_t offset = this->fieldSlotOffset(expr); 911 for (size_t i = 0; i < field.slots(); ++i) { 912 field[i] = base[offset + i]; 913 } 914 return field; 915} 916 917size_t SkVMGenerator::indexSlotOffset(const IndexExpression& expr) { 918 Value index = this->writeExpression(*expr.index()); 919 int indexValue = -1; 920 SkAssertResult(fBuilder->allImm(index[0], &indexValue)); 921 922 // When indexing by a literal, the front-end guarantees that we don't go out of bounds. 923 // But when indexing by a loop variable, it's possible to generate out-of-bounds access. 924 // The GLSL spec leaves that behavior undefined - we'll just clamp everything here. 925 indexValue = SkTPin(indexValue, 0, expr.base()->type().columns() - 1); 926 927 size_t stride = expr.type().slotCount(); 928 return indexValue * stride; 929} 930 931Value SkVMGenerator::writeIndexExpression(const IndexExpression& expr) { 932 Value base = this->writeExpression(*expr.base()); 933 Value element(expr.type().slotCount()); 934 size_t offset = this->indexSlotOffset(expr); 935 for (size_t i = 0; i < element.slots(); ++i) { 936 element[i] = base[offset + i]; 937 } 938 return element; 939} 940 941Value SkVMGenerator::writeVariableExpression(const VariableReference& expr) { 942 size_t slot = this->getSlot(*expr.variable()); 943 Value val(expr.type().slotCount()); 944 for (size_t i = 0; i < val.slots(); ++i) { 945 val[i] = fSlots[slot + i].val; 946 } 947 return val; 948} 949 950Value SkVMGenerator::writeMatrixInverse2x2(const Value& m) { 951 SkASSERT(m.slots() == 4); 952 skvm::F32 a = f32(m[0]), 953 b = f32(m[1]), 954 c = f32(m[2]), 955 d = f32(m[3]); 956 skvm::F32 idet = 1.0f / (a*d - b*c); 957 958 Value result(m.slots()); 959 result[0] = ( d ** idet); 960 result[1] = (-b ** idet); 961 result[2] = (-c ** idet); 962 result[3] = ( a ** idet); 963 return result; 964} 965 966Value SkVMGenerator::writeMatrixInverse3x3(const Value& m) { 967 SkASSERT(m.slots() == 9); 968 skvm::F32 a11 = f32(m[0]), a12 = f32(m[3]), a13 = f32(m[6]), 969 a21 = f32(m[1]), a22 = f32(m[4]), a23 = f32(m[7]), 970 a31 = f32(m[2]), a32 = f32(m[5]), a33 = f32(m[8]); 971 skvm::F32 idet = 1.0f / (a11*a22*a33 + a12*a23*a31 + a13*a21*a32 - 972 a11*a23*a32 - a12*a21*a33 - a13*a22*a31); 973 974 Value result(m.slots()); 975 result[0] = ((a22**a33 - a23**a32) ** idet); 976 result[1] = ((a23**a31 - a21**a33) ** idet); 977 result[2] = ((a21**a32 - a22**a31) ** idet); 978 result[3] = ((a13**a32 - a12**a33) ** idet); 979 result[4] = ((a11**a33 - a13**a31) ** idet); 980 result[5] = ((a12**a31 - a11**a32) ** idet); 981 result[6] = ((a12**a23 - a13**a22) ** idet); 982 result[7] = ((a13**a21 - a11**a23) ** idet); 983 result[8] = ((a11**a22 - a12**a21) ** idet); 984 return result; 985} 986 987Value SkVMGenerator::writeMatrixInverse4x4(const Value& m) { 988 SkASSERT(m.slots() == 16); 989 skvm::F32 a00 = f32(m[0]), a10 = f32(m[4]), a20 = f32(m[ 8]), a30 = f32(m[12]), 990 a01 = f32(m[1]), a11 = f32(m[5]), a21 = f32(m[ 9]), a31 = f32(m[13]), 991 a02 = f32(m[2]), a12 = f32(m[6]), a22 = f32(m[10]), a32 = f32(m[14]), 992 a03 = f32(m[3]), a13 = f32(m[7]), a23 = f32(m[11]), a33 = f32(m[15]); 993 994 skvm::F32 b00 = a00**a11 - a01**a10, 995 b01 = a00**a12 - a02**a10, 996 b02 = a00**a13 - a03**a10, 997 b03 = a01**a12 - a02**a11, 998 b04 = a01**a13 - a03**a11, 999 b05 = a02**a13 - a03**a12, 1000 b06 = a20**a31 - a21**a30, 1001 b07 = a20**a32 - a22**a30, 1002 b08 = a20**a33 - a23**a30, 1003 b09 = a21**a32 - a22**a31, 1004 b10 = a21**a33 - a23**a31, 1005 b11 = a22**a33 - a23**a32; 1006 1007 skvm::F32 idet = 1.0f / (b00**b11 - b01**b10 + b02**b09 + b03**b08 - b04**b07 + b05**b06); 1008 1009 b00 *= idet; 1010 b01 *= idet; 1011 b02 *= idet; 1012 b03 *= idet; 1013 b04 *= idet; 1014 b05 *= idet; 1015 b06 *= idet; 1016 b07 *= idet; 1017 b08 *= idet; 1018 b09 *= idet; 1019 b10 *= idet; 1020 b11 *= idet; 1021 1022 Value result(m.slots()); 1023 result[ 0] = (a11*b11 - a12*b10 + a13*b09); 1024 result[ 1] = (a02*b10 - a01*b11 - a03*b09); 1025 result[ 2] = (a31*b05 - a32*b04 + a33*b03); 1026 result[ 3] = (a22*b04 - a21*b05 - a23*b03); 1027 result[ 4] = (a12*b08 - a10*b11 - a13*b07); 1028 result[ 5] = (a00*b11 - a02*b08 + a03*b07); 1029 result[ 6] = (a32*b02 - a30*b05 - a33*b01); 1030 result[ 7] = (a20*b05 - a22*b02 + a23*b01); 1031 result[ 8] = (a10*b10 - a11*b08 + a13*b06); 1032 result[ 9] = (a01*b08 - a00*b10 - a03*b06); 1033 result[10] = (a30*b04 - a31*b02 + a33*b00); 1034 result[11] = (a21*b02 - a20*b04 - a23*b00); 1035 result[12] = (a11*b07 - a10*b09 - a12*b06); 1036 result[13] = (a00*b09 - a01*b07 + a02*b06); 1037 result[14] = (a31*b01 - a30*b03 - a32*b00); 1038 result[15] = (a20*b03 - a21*b01 + a22*b00); 1039 return result; 1040} 1041 1042Value SkVMGenerator::writeChildCall(const ChildCall& c) { 1043 auto child_it = fVariableMap.find(&c.child()); 1044 SkASSERT(child_it != fVariableMap.end()); 1045 1046 const Expression* arg = c.arguments()[0].get(); 1047 Value argVal = this->writeExpression(*arg); 1048 skvm::Color color; 1049 1050 switch (c.child().type().typeKind()) { 1051 case Type::TypeKind::kShader: { 1052 SkASSERT(c.arguments().size() == 1); 1053 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fFloat2); 1054 skvm::Coord coord = {f32(argVal[0]), f32(argVal[1])}; 1055 color = fSampleShader(child_it->second, coord); 1056 break; 1057 } 1058 case Type::TypeKind::kColorFilter: { 1059 SkASSERT(c.arguments().size() == 1); 1060 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 || 1061 arg->type() == *fProgram.fContext->fTypes.fFloat4); 1062 skvm::Color inColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])}; 1063 color = fSampleColorFilter(child_it->second, inColor); 1064 break; 1065 } 1066 case Type::TypeKind::kBlender: { 1067 SkASSERT(c.arguments().size() == 2); 1068 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 || 1069 arg->type() == *fProgram.fContext->fTypes.fFloat4); 1070 skvm::Color srcColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])}; 1071 1072 arg = c.arguments()[1].get(); 1073 argVal = this->writeExpression(*arg); 1074 SkASSERT(arg->type() == *fProgram.fContext->fTypes.fHalf4 || 1075 arg->type() == *fProgram.fContext->fTypes.fFloat4); 1076 skvm::Color dstColor = {f32(argVal[0]), f32(argVal[1]), f32(argVal[2]), f32(argVal[3])}; 1077 1078 color = fSampleBlender(child_it->second, srcColor, dstColor); 1079 break; 1080 } 1081 default: { 1082 SkDEBUGFAILF("cannot sample from type '%s'", c.child().type().description().c_str()); 1083 } 1084 } 1085 1086 Value result(4); 1087 result[0] = color.r; 1088 result[1] = color.g; 1089 result[2] = color.b; 1090 result[3] = color.a; 1091 return result; 1092} 1093 1094Value SkVMGenerator::writeIntrinsicCall(const FunctionCall& c) { 1095 IntrinsicKind intrinsicKind = c.function().intrinsicKind(); 1096 SkASSERT(intrinsicKind != kNotIntrinsic); 1097 1098 const size_t nargs = c.arguments().size(); 1099 const size_t kMaxArgs = 3; // eg: clamp, mix, smoothstep 1100 Value args[kMaxArgs]; 1101 SkASSERT(nargs >= 1 && nargs <= SK_ARRAY_COUNT(args)); 1102 1103 // All other intrinsics have at most three args, and those can all be evaluated up front: 1104 for (size_t i = 0; i < nargs; ++i) { 1105 args[i] = this->writeExpression(*c.arguments()[i]); 1106 } 1107 Type::NumberKind nk = base_number_kind(c.arguments()[0]->type()); 1108 1109 auto binary = [&](auto&& fn) { 1110 // Binary intrinsics are (vecN, vecN), (vecN, float), or (float, vecN) 1111 size_t nslots = std::max(args[0].slots(), args[1].slots()); 1112 Value result(nslots); 1113 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1); 1114 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1); 1115 1116 for (size_t i = 0; i < nslots; ++i) { 1117 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]}, 1118 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]}); 1119 } 1120 return result; 1121 }; 1122 1123 auto ternary = [&](auto&& fn) { 1124 // Ternary intrinsics are some combination of vecN and float 1125 size_t nslots = std::max({args[0].slots(), args[1].slots(), args[2].slots()}); 1126 Value result(nslots); 1127 SkASSERT(args[0].slots() == nslots || args[0].slots() == 1); 1128 SkASSERT(args[1].slots() == nslots || args[1].slots() == 1); 1129 SkASSERT(args[2].slots() == nslots || args[2].slots() == 1); 1130 1131 for (size_t i = 0; i < nslots; ++i) { 1132 result[i] = fn({fBuilder, args[0][args[0].slots() == 1 ? 0 : i]}, 1133 {fBuilder, args[1][args[1].slots() == 1 ? 0 : i]}, 1134 {fBuilder, args[2][args[2].slots() == 1 ? 0 : i]}); 1135 } 1136 return result; 1137 }; 1138 1139 auto dot = [&](const Value& x, const Value& y) { 1140 SkASSERT(x.slots() == y.slots()); 1141 skvm::F32 result = f32(x[0]) * f32(y[0]); 1142 for (size_t i = 1; i < x.slots(); ++i) { 1143 result += f32(x[i]) * f32(y[i]); 1144 } 1145 return result; 1146 }; 1147 1148 switch (intrinsicKind) { 1149 case k_radians_IntrinsicKind: 1150 return unary(args[0], [](skvm::F32 deg) { return deg * (SK_FloatPI / 180); }); 1151 case k_degrees_IntrinsicKind: 1152 return unary(args[0], [](skvm::F32 rad) { return rad * (180 / SK_FloatPI); }); 1153 1154 case k_sin_IntrinsicKind: return unary(args[0], skvm::approx_sin); 1155 case k_cos_IntrinsicKind: return unary(args[0], skvm::approx_cos); 1156 case k_tan_IntrinsicKind: return unary(args[0], skvm::approx_tan); 1157 1158 case k_asin_IntrinsicKind: return unary(args[0], skvm::approx_asin); 1159 case k_acos_IntrinsicKind: return unary(args[0], skvm::approx_acos); 1160 1161 case k_atan_IntrinsicKind: return nargs == 1 ? unary(args[0], skvm::approx_atan) 1162 : binary(skvm::approx_atan2); 1163 1164 case k_pow_IntrinsicKind: 1165 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::approx_powf(x, y); }); 1166 case k_exp_IntrinsicKind: return unary(args[0], skvm::approx_exp); 1167 case k_log_IntrinsicKind: return unary(args[0], skvm::approx_log); 1168 case k_exp2_IntrinsicKind: return unary(args[0], skvm::approx_pow2); 1169 case k_log2_IntrinsicKind: return unary(args[0], skvm::approx_log2); 1170 1171 case k_sqrt_IntrinsicKind: return unary(args[0], skvm::sqrt); 1172 case k_inversesqrt_IntrinsicKind: 1173 return unary(args[0], [](skvm::F32 x) { return 1.0f / skvm::sqrt(x); }); 1174 1175 case k_abs_IntrinsicKind: return unary(args[0], skvm::abs); 1176 case k_sign_IntrinsicKind: 1177 return unary(args[0], [](skvm::F32 x) { return select(x < 0, -1.0f, 1178 select(x > 0, +1.0f, 0.0f)); }); 1179 case k_floor_IntrinsicKind: return unary(args[0], skvm::floor); 1180 case k_ceil_IntrinsicKind: return unary(args[0], skvm::ceil); 1181 case k_fract_IntrinsicKind: return unary(args[0], skvm::fract); 1182 case k_mod_IntrinsicKind: 1183 return binary([](skvm::F32 x, skvm::F32 y) { return x - y*skvm::floor(x / y); }); 1184 1185 case k_min_IntrinsicKind: 1186 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::min(x, y); }); 1187 case k_max_IntrinsicKind: 1188 return binary([](skvm::F32 x, skvm::F32 y) { return skvm::max(x, y); }); 1189 case k_clamp_IntrinsicKind: 1190 return ternary( 1191 [](skvm::F32 x, skvm::F32 lo, skvm::F32 hi) { return skvm::clamp(x, lo, hi); }); 1192 case k_saturate_IntrinsicKind: 1193 return unary(args[0], [](skvm::F32 x) { return skvm::clamp01(x); }); 1194 case k_mix_IntrinsicKind: 1195 return ternary( 1196 [](skvm::F32 x, skvm::F32 y, skvm::F32 t) { return skvm::lerp(x, y, t); }); 1197 case k_step_IntrinsicKind: 1198 return binary([](skvm::F32 edge, skvm::F32 x) { return select(x < edge, 0.0f, 1.0f); }); 1199 case k_smoothstep_IntrinsicKind: 1200 return ternary([](skvm::F32 edge0, skvm::F32 edge1, skvm::F32 x) { 1201 skvm::F32 t = skvm::clamp01((x - edge0) / (edge1 - edge0)); 1202 return t ** t ** (3 - 2 ** t); 1203 }); 1204 1205 case k_length_IntrinsicKind: return skvm::sqrt(dot(args[0], args[0])); 1206 case k_distance_IntrinsicKind: { 1207 Value vec = binary([](skvm::F32 x, skvm::F32 y) { return x - y; }); 1208 return skvm::sqrt(dot(vec, vec)); 1209 } 1210 case k_dot_IntrinsicKind: return dot(args[0], args[1]); 1211 case k_cross_IntrinsicKind: { 1212 skvm::F32 ax = f32(args[0][0]), ay = f32(args[0][1]), az = f32(args[0][2]), 1213 bx = f32(args[1][0]), by = f32(args[1][1]), bz = f32(args[1][2]); 1214 Value result(3); 1215 result[0] = ay**bz - az**by; 1216 result[1] = az**bx - ax**bz; 1217 result[2] = ax**by - ay**bx; 1218 return result; 1219 } 1220 case k_normalize_IntrinsicKind: { 1221 skvm::F32 invLen = 1.0f / skvm::sqrt(dot(args[0], args[0])); 1222 return unary(args[0], [&](skvm::F32 x) { return x ** invLen; }); 1223 } 1224 case k_faceforward_IntrinsicKind: { 1225 const Value &N = args[0], 1226 &I = args[1], 1227 &Nref = args[2]; 1228 1229 skvm::F32 dotNrefI = dot(Nref, I); 1230 return unary(N, [&](skvm::F32 n) { return select(dotNrefI<0, n, -n); }); 1231 } 1232 case k_reflect_IntrinsicKind: { 1233 const Value &I = args[0], 1234 &N = args[1]; 1235 1236 skvm::F32 dotNI = dot(N, I); 1237 return binary([&](skvm::F32 i, skvm::F32 n) { 1238 return i - 2**dotNI**n; 1239 }); 1240 } 1241 case k_refract_IntrinsicKind: { 1242 const Value &I = args[0], 1243 &N = args[1]; 1244 skvm::F32 eta = f32(args[2]); 1245 1246 skvm::F32 dotNI = dot(N, I), 1247 k = 1 - eta**eta**(1 - dotNI**dotNI); 1248 return binary([&](skvm::F32 i, skvm::F32 n) { 1249 return select(k<0, 0.0f, eta**i - (eta**dotNI + sqrt(k))**n); 1250 }); 1251 } 1252 1253 case k_matrixCompMult_IntrinsicKind: 1254 return binary([](skvm::F32 x, skvm::F32 y) { return x ** y; }); 1255 case k_inverse_IntrinsicKind: { 1256 switch (args[0].slots()) { 1257 case 4: return this->writeMatrixInverse2x2(args[0]); 1258 case 9: return this->writeMatrixInverse3x3(args[0]); 1259 case 16: return this->writeMatrixInverse4x4(args[0]); 1260 default: 1261 SkDEBUGFAIL("Invalid call to inverse"); 1262 return {}; 1263 } 1264 } 1265 1266 case k_lessThan_IntrinsicKind: 1267 return nk == Type::NumberKind::kFloat 1268 ? binary([](skvm::F32 x, skvm::F32 y) { return x < y; }) 1269 : binary([](skvm::I32 x, skvm::I32 y) { return x < y; }); 1270 case k_lessThanEqual_IntrinsicKind: 1271 return nk == Type::NumberKind::kFloat 1272 ? binary([](skvm::F32 x, skvm::F32 y) { return x <= y; }) 1273 : binary([](skvm::I32 x, skvm::I32 y) { return x <= y; }); 1274 case k_greaterThan_IntrinsicKind: 1275 return nk == Type::NumberKind::kFloat 1276 ? binary([](skvm::F32 x, skvm::F32 y) { return x > y; }) 1277 : binary([](skvm::I32 x, skvm::I32 y) { return x > y; }); 1278 case k_greaterThanEqual_IntrinsicKind: 1279 return nk == Type::NumberKind::kFloat 1280 ? binary([](skvm::F32 x, skvm::F32 y) { return x >= y; }) 1281 : binary([](skvm::I32 x, skvm::I32 y) { return x >= y; }); 1282 1283 case k_equal_IntrinsicKind: 1284 return nk == Type::NumberKind::kFloat 1285 ? binary([](skvm::F32 x, skvm::F32 y) { return x == y; }) 1286 : binary([](skvm::I32 x, skvm::I32 y) { return x == y; }); 1287 case k_notEqual_IntrinsicKind: 1288 return nk == Type::NumberKind::kFloat 1289 ? binary([](skvm::F32 x, skvm::F32 y) { return x != y; }) 1290 : binary([](skvm::I32 x, skvm::I32 y) { return x != y; }); 1291 1292 case k_any_IntrinsicKind: { 1293 skvm::I32 result = i32(args[0][0]); 1294 for (size_t i = 1; i < args[0].slots(); ++i) { 1295 result |= i32(args[0][i]); 1296 } 1297 return result; 1298 } 1299 case k_all_IntrinsicKind: { 1300 skvm::I32 result = i32(args[0][0]); 1301 for (size_t i = 1; i < args[0].slots(); ++i) { 1302 result &= i32(args[0][i]); 1303 } 1304 return result; 1305 } 1306 case k_not_IntrinsicKind: return unary(args[0], [](skvm::I32 x) { return ~x; }); 1307 1308 default: 1309 SkDEBUGFAILF("unsupported intrinsic %s", c.function().description().c_str()); 1310 return {}; 1311 } 1312 SkUNREACHABLE; 1313} 1314 1315Value SkVMGenerator::writeFunctionCall(const FunctionCall& f) { 1316 if (f.function().isIntrinsic() && !f.function().definition()) { 1317 return this->writeIntrinsicCall(f); 1318 } 1319 1320 const FunctionDeclaration& decl = f.function(); 1321 1322 // Evaluate all arguments, gather the results into a contiguous list of IDs 1323 std::vector<skvm::Val> argVals; 1324 for (const auto& arg : f.arguments()) { 1325 Value v = this->writeExpression(*arg); 1326 for (size_t i = 0; i < v.slots(); ++i) { 1327 argVals.push_back(v[i]); 1328 } 1329 } 1330 1331 // Create storage for the return value 1332 const skvm::F32 zero = fBuilder->splat(0.0f); 1333 size_t nslots = f.type().slotCount(); 1334 Value result(nslots); 1335 for (size_t i = 0; i < nslots; ++i) { 1336 result[i] = zero; 1337 } 1338 1339 { 1340 // This merges currentFunction().fReturned into fConditionMask. Lanes that conditionally 1341 // returned in the current function would otherwise resume execution within the child. 1342 ScopedCondition m(this, ~currentFunction().fReturned); 1343 SkASSERTF(f.function().definition(), "no definition for function '%s'", 1344 f.function().description().c_str()); 1345 this->writeFunction(*f.function().definition(), SkMakeSpan(argVals), result.asSpan()); 1346 } 1347 1348 // Propagate new values of any 'out' params back to the original arguments 1349 const std::unique_ptr<Expression>* argIter = f.arguments().begin(); 1350 size_t valIdx = 0; 1351 for (const Variable* p : decl.parameters()) { 1352 nslots = p->type().slotCount(); 1353 if (p->modifiers().fFlags & Modifiers::kOut_Flag) { 1354 Value v(nslots); 1355 for (size_t i = 0; i < nslots; ++i) { 1356 v[i] = argVals[valIdx + i]; 1357 } 1358 const std::unique_ptr<Expression>& arg = *argIter; 1359 this->writeStore(*arg, v); 1360 } 1361 valIdx += nslots; 1362 argIter++; 1363 } 1364 1365 return result; 1366} 1367 1368Value SkVMGenerator::writeExternalFunctionCall(const ExternalFunctionCall& c) { 1369 // Evaluate all arguments, gather the results into a contiguous list of F32 1370 std::vector<skvm::F32> args; 1371 for (const auto& arg : c.arguments()) { 1372 Value v = this->writeExpression(*arg); 1373 for (size_t i = 0; i < v.slots(); ++i) { 1374 args.push_back(f32(v[i])); 1375 } 1376 } 1377 1378 // Create storage for the return value 1379 size_t nslots = c.type().slotCount(); 1380 std::vector<skvm::F32> result(nslots, fBuilder->splat(0.0f)); 1381 1382 c.function().call(fBuilder, args.data(), result.data(), this->mask()); 1383 1384 // Convert from 'vector of F32' to Value 1385 Value resultVal(nslots); 1386 for (size_t i = 0; i < nslots; ++i) { 1387 resultVal[i] = result[i]; 1388 } 1389 1390 return resultVal; 1391} 1392 1393Value SkVMGenerator::writeLiteral(const Literal& l) { 1394 if (l.type().isFloat()) { 1395 return fBuilder->splat(l.as<Literal>().floatValue()); 1396 } 1397 if (l.type().isInteger()) { 1398 return fBuilder->splat(static_cast<int>(l.as<Literal>().intValue())); 1399 } 1400 SkASSERT(l.type().isBoolean()); 1401 return fBuilder->splat(l.as<Literal>().boolValue() ? ~0 : 0); 1402} 1403 1404Value SkVMGenerator::writePrefixExpression(const PrefixExpression& p) { 1405 Value val = this->writeExpression(*p.operand()); 1406 1407 switch (p.getOperator().kind()) { 1408 case Token::Kind::TK_PLUSPLUS: 1409 case Token::Kind::TK_MINUSMINUS: { 1410 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS; 1411 1412 switch (base_number_kind(p.type())) { 1413 case Type::NumberKind::kFloat: 1414 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f); 1415 break; 1416 case Type::NumberKind::kSigned: 1417 val = i32(val) + fBuilder->splat(incr ? 1 : -1); 1418 break; 1419 default: 1420 SkASSERT(false); 1421 return {}; 1422 } 1423 return this->writeStore(*p.operand(), val); 1424 } 1425 case Token::Kind::TK_MINUS: { 1426 switch (base_number_kind(p.type())) { 1427 case Type::NumberKind::kFloat: 1428 return this->unary(val, [](skvm::F32 x) { return -x; }); 1429 case Type::NumberKind::kSigned: 1430 return this->unary(val, [](skvm::I32 x) { return -x; }); 1431 default: 1432 SkASSERT(false); 1433 return {}; 1434 } 1435 } 1436 case Token::Kind::TK_LOGICALNOT: 1437 case Token::Kind::TK_BITWISENOT: 1438 return this->unary(val, [](skvm::I32 x) { return ~x; }); 1439 default: 1440 SkASSERT(false); 1441 return {}; 1442 } 1443} 1444 1445Value SkVMGenerator::writePostfixExpression(const PostfixExpression& p) { 1446 switch (p.getOperator().kind()) { 1447 case Token::Kind::TK_PLUSPLUS: 1448 case Token::Kind::TK_MINUSMINUS: { 1449 Value old = this->writeExpression(*p.operand()), 1450 val = old; 1451 SkASSERT(val.slots() == 1); 1452 bool incr = p.getOperator().kind() == Token::Kind::TK_PLUSPLUS; 1453 1454 switch (base_number_kind(p.type())) { 1455 case Type::NumberKind::kFloat: 1456 val = f32(val) + fBuilder->splat(incr ? 1.0f : -1.0f); 1457 break; 1458 case Type::NumberKind::kSigned: 1459 val = i32(val) + fBuilder->splat(incr ? 1 : -1); 1460 break; 1461 default: 1462 SkASSERT(false); 1463 return {}; 1464 } 1465 this->writeStore(*p.operand(), val); 1466 return old; 1467 } 1468 default: 1469 SkASSERT(false); 1470 return {}; 1471 } 1472} 1473 1474Value SkVMGenerator::writeSwizzle(const Swizzle& s) { 1475 Value base = this->writeExpression(*s.base()); 1476 Value swizzled(s.components().size()); 1477 for (size_t i = 0; i < s.components().size(); ++i) { 1478 swizzled[i] = base[s.components()[i]]; 1479 } 1480 return swizzled; 1481} 1482 1483Value SkVMGenerator::writeTernaryExpression(const TernaryExpression& t) { 1484 skvm::I32 test = i32(this->writeExpression(*t.test())); 1485 Value ifTrue, ifFalse; 1486 1487 { 1488 ScopedCondition m(this, test); 1489 ifTrue = this->writeExpression(*t.ifTrue()); 1490 } 1491 { 1492 ScopedCondition m(this, ~test); 1493 ifFalse = this->writeExpression(*t.ifFalse()); 1494 } 1495 1496 size_t nslots = ifTrue.slots(); 1497 SkASSERT(nslots == ifFalse.slots()); 1498 1499 Value result(nslots); 1500 for (size_t i = 0; i < nslots; ++i) { 1501 result[i] = skvm::select(test, i32(ifTrue[i]), i32(ifFalse[i])); 1502 } 1503 return result; 1504} 1505 1506Value SkVMGenerator::writeExpression(const Expression& e) { 1507 switch (e.kind()) { 1508 case Expression::Kind::kBinary: 1509 return this->writeBinaryExpression(e.as<BinaryExpression>()); 1510 case Expression::Kind::kChildCall: 1511 return this->writeChildCall(e.as<ChildCall>()); 1512 case Expression::Kind::kConstructorArray: 1513 case Expression::Kind::kConstructorCompound: 1514 case Expression::Kind::kConstructorStruct: 1515 return this->writeAggregationConstructor(e.asAnyConstructor()); 1516 case Expression::Kind::kConstructorArrayCast: 1517 return this->writeExpression(*e.as<ConstructorArrayCast>().argument()); 1518 case Expression::Kind::kConstructorDiagonalMatrix: 1519 return this->writeConstructorDiagonalMatrix(e.as<ConstructorDiagonalMatrix>()); 1520 case Expression::Kind::kConstructorMatrixResize: 1521 return this->writeConstructorMatrixResize(e.as<ConstructorMatrixResize>()); 1522 case Expression::Kind::kConstructorScalarCast: 1523 case Expression::Kind::kConstructorCompoundCast: 1524 return this->writeConstructorCast(e.asAnyConstructor()); 1525 case Expression::Kind::kConstructorSplat: 1526 return this->writeConstructorSplat(e.as<ConstructorSplat>()); 1527 case Expression::Kind::kFieldAccess: 1528 return this->writeFieldAccess(e.as<FieldAccess>()); 1529 case Expression::Kind::kIndex: 1530 return this->writeIndexExpression(e.as<IndexExpression>()); 1531 case Expression::Kind::kVariableReference: 1532 return this->writeVariableExpression(e.as<VariableReference>()); 1533 case Expression::Kind::kLiteral: 1534 return this->writeLiteral(e.as<Literal>()); 1535 case Expression::Kind::kFunctionCall: 1536 return this->writeFunctionCall(e.as<FunctionCall>()); 1537 case Expression::Kind::kExternalFunctionCall: 1538 return this->writeExternalFunctionCall(e.as<ExternalFunctionCall>()); 1539 case Expression::Kind::kPrefix: 1540 return this->writePrefixExpression(e.as<PrefixExpression>()); 1541 case Expression::Kind::kPostfix: 1542 return this->writePostfixExpression(e.as<PostfixExpression>()); 1543 case Expression::Kind::kSwizzle: 1544 return this->writeSwizzle(e.as<Swizzle>()); 1545 case Expression::Kind::kTernary: 1546 return this->writeTernaryExpression(e.as<TernaryExpression>()); 1547 case Expression::Kind::kExternalFunctionReference: 1548 default: 1549 SkDEBUGFAIL("Unsupported expression"); 1550 return {}; 1551 } 1552} 1553 1554Value SkVMGenerator::writeStore(const Expression& lhs, const Value& rhs) { 1555 SkASSERTF(rhs.slots() == lhs.type().slotCount(), 1556 "lhs=%s (%s)\nrhs=%zu slot", 1557 lhs.type().description().c_str(), lhs.description().c_str(), rhs.slots()); 1558 1559 // We need to figure out the collection of slots that we're storing into. The l-value (lhs) 1560 // is always a VariableReference, possibly wrapped by one or more Swizzle, FieldAccess, or 1561 // IndexExpressions. The underlying VariableReference has a range of slots for its storage, 1562 // and each expression wrapped around that selects a sub-set of those slots (Field/Index), 1563 // or rearranges them (Swizzle). 1564 SkSTArray<4, size_t, true> slots; 1565 slots.resize(rhs.slots()); 1566 1567 // Start with the identity slot map - this basically says that the values from rhs belong in 1568 // slots [0, 1, 2 ... N] of the lhs. 1569 for (size_t i = 0; i < slots.size(); ++i) { 1570 slots[i] = i; 1571 } 1572 1573 // Now, as we peel off each outer expression, adjust 'slots' to be the locations relative to 1574 // the next (inner) expression: 1575 const Expression* expr = &lhs; 1576 while (!expr->is<VariableReference>()) { 1577 switch (expr->kind()) { 1578 case Expression::Kind::kFieldAccess: { 1579 const FieldAccess& fld = expr->as<FieldAccess>(); 1580 size_t offset = this->fieldSlotOffset(fld); 1581 for (size_t& s : slots) { 1582 s += offset; 1583 } 1584 expr = fld.base().get(); 1585 } break; 1586 case Expression::Kind::kIndex: { 1587 const IndexExpression& idx = expr->as<IndexExpression>(); 1588 size_t offset = this->indexSlotOffset(idx); 1589 for (size_t& s : slots) { 1590 s += offset; 1591 } 1592 expr = idx.base().get(); 1593 } break; 1594 case Expression::Kind::kSwizzle: { 1595 const Swizzle& swz = expr->as<Swizzle>(); 1596 for (size_t& s : slots) { 1597 s = swz.components()[s]; 1598 } 1599 expr = swz.base().get(); 1600 } break; 1601 default: 1602 // No other kinds of expressions are valid in lvalues. (see Analysis::IsAssignable) 1603 SkDEBUGFAIL("Invalid expression type"); 1604 return {}; 1605 } 1606 } 1607 1608 // When we get here, 'slots' are all relative to the first slot holding 'var's storage 1609 const Variable& var = *expr->as<VariableReference>().variable(); 1610 size_t varSlot = this->getSlot(var); 1611 for (size_t& slot : slots) { 1612 SkASSERT(slot < var.type().slotCount()); 1613 slot += varSlot; 1614 } 1615 1616 // `slots` are now absolute indices into `fSlots`. 1617 skvm::I32 mask = this->mask(); 1618 for (size_t i = 0; i < rhs.slots(); ++i) { 1619 int slotNum = slots[i]; 1620 skvm::Val conditionalStore = this->writeConditionalStore(fSlots[slotNum].val, rhs[i], mask); 1621 this->writeToSlot(slotNum, conditionalStore); 1622 } 1623 1624 return rhs; 1625} 1626 1627skvm::Val SkVMGenerator::writeConditionalStore(skvm::Val lhs, skvm::Val rhs, skvm::I32 mask) { 1628 return select(mask, f32(rhs), f32(lhs)).id; 1629} 1630 1631void SkVMGenerator::writeBlock(const Block& b) { 1632 for (const std::unique_ptr<Statement>& stmt : b.children()) { 1633 this->writeStatement(*stmt); 1634 } 1635} 1636 1637void SkVMGenerator::writeBreakStatement() { 1638 // Any active lanes stop executing for the duration of the current loop 1639 fLoopMask &= ~this->mask(); 1640} 1641 1642void SkVMGenerator::writeContinueStatement() { 1643 // Any active lanes stop executing for the current iteration. 1644 // Remember them in fContinueMask, to be re-enabled later. 1645 skvm::I32 mask = this->mask(); 1646 fLoopMask &= ~mask; 1647 fContinueMask |= mask; 1648} 1649 1650void SkVMGenerator::writeForStatement(const ForStatement& f) { 1651 // We require that all loops be ES2-compliant (unrollable), and actually unroll them here 1652 SkASSERT(f.unrollInfo()); 1653 const LoopUnrollInfo& loop = *f.unrollInfo(); 1654 SkASSERT(loop.fIndex->type().slotCount() == 1); 1655 1656 size_t indexSlot = this->getSlot(*loop.fIndex); 1657 double val = loop.fStart; 1658 1659 const skvm::I32 zero = fBuilder->splat(0); 1660 skvm::I32 oldLoopMask = fLoopMask, 1661 oldContinueMask = fContinueMask; 1662 1663 const Type::NumberKind indexKind = base_number_kind(loop.fIndex->type()); 1664 1665 for (int i = 0; i < loop.fCount; ++i) { 1666 this->writeToSlot(indexSlot, (indexKind == Type::NumberKind::kFloat) 1667 ? fBuilder->splat(static_cast<float>(val)).id 1668 : fBuilder->splat(static_cast<int>(val)).id); 1669 1670 fContinueMask = zero; 1671 this->writeStatement(*f.statement()); 1672 fLoopMask |= fContinueMask; 1673 1674 this->emitTraceLine(f.test() ? f.test()->fLine : f.fLine); 1675 val += loop.fDelta; 1676 } 1677 1678 fLoopMask = oldLoopMask; 1679 fContinueMask = oldContinueMask; 1680} 1681 1682void SkVMGenerator::writeIfStatement(const IfStatement& i) { 1683 Value test = this->writeExpression(*i.test()); 1684 { 1685 ScopedCondition ifTrue(this, i32(test)); 1686 this->writeStatement(*i.ifTrue()); 1687 } 1688 if (i.ifFalse()) { 1689 ScopedCondition ifFalse(this, ~i32(test)); 1690 this->writeStatement(*i.ifFalse()); 1691 } 1692} 1693 1694void SkVMGenerator::writeReturnStatement(const ReturnStatement& r) { 1695 skvm::I32 returnsHere = this->mask(); 1696 1697 if (r.expression()) { 1698 Value val = this->writeExpression(*r.expression()); 1699 1700 int i = 0; 1701 for (skvm::Val& slot : currentFunction().fReturnValue) { 1702 slot = select(returnsHere, f32(val[i]), f32(slot)).id; 1703 i++; 1704 } 1705 } 1706 1707 currentFunction().fReturned |= returnsHere; 1708} 1709 1710void SkVMGenerator::writeSwitchStatement(const SwitchStatement& s) { 1711 skvm::I32 falseValue = fBuilder->splat( 0); 1712 skvm::I32 trueValue = fBuilder->splat(~0); 1713 1714 // Create a "switchFallthough" scratch variable, initialized to false. 1715 skvm::I32 switchFallthrough = falseValue; 1716 1717 // Loop masks behave just like for statements. When a break is encountered, it masks off all 1718 // lanes for the rest of the body of the switch. 1719 skvm::I32 oldLoopMask = fLoopMask; 1720 Value switchValue = this->writeExpression(*s.value()); 1721 1722 for (const std::unique_ptr<Statement>& stmt : s.cases()) { 1723 const SwitchCase& c = stmt->as<SwitchCase>(); 1724 if (c.value()) { 1725 Value caseValue = this->writeExpression(*c.value()); 1726 1727 // We want to execute this switch case if we're falling through from a previous case, or 1728 // if the case value matches. 1729 ScopedCondition conditionalCaseBlock( 1730 this, 1731 switchFallthrough | (i32(caseValue) == i32(switchValue))); 1732 this->writeStatement(*c.statement()); 1733 1734 // If we are inside the case block, we set the fallthrough flag to true (`break` still 1735 // works to stop the flow of execution regardless, since it zeroes out the loop-mask). 1736 switchFallthrough.id = this->writeConditionalStore(switchFallthrough.id, trueValue.id, 1737 this->mask()); 1738 } else { 1739 // This is the default case. Since it's always last, we can just dump in the code. 1740 this->writeStatement(*c.statement()); 1741 } 1742 } 1743 1744 // Restore state. 1745 fLoopMask = oldLoopMask; 1746} 1747 1748void SkVMGenerator::writeVarDeclaration(const VarDeclaration& decl) { 1749 size_t slot = this->getSlot(decl.var()), 1750 nslots = decl.var().type().slotCount(); 1751 1752 Value val = decl.value() ? this->writeExpression(*decl.value()) : Value{}; 1753 for (size_t i = 0; i < nslots; ++i) { 1754 this->writeToSlot(slot + i, val ? val[i] : fBuilder->splat(0.0f).id); 1755 } 1756} 1757 1758void SkVMGenerator::emitTraceLine(int line) { 1759 if (fDebugInfo && line > 0) { 1760 fBuilder->trace_line(this->mask(), line); 1761 } 1762} 1763 1764void SkVMGenerator::writeStatement(const Statement& s) { 1765 this->emitTraceLine(s.fLine); 1766 1767 switch (s.kind()) { 1768 case Statement::Kind::kBlock: 1769 this->writeBlock(s.as<Block>()); 1770 break; 1771 case Statement::Kind::kBreak: 1772 this->writeBreakStatement(); 1773 break; 1774 case Statement::Kind::kContinue: 1775 this->writeContinueStatement(); 1776 break; 1777 case Statement::Kind::kExpression: 1778 this->writeExpression(*s.as<ExpressionStatement>().expression()); 1779 break; 1780 case Statement::Kind::kFor: 1781 this->writeForStatement(s.as<ForStatement>()); 1782 break; 1783 case Statement::Kind::kIf: 1784 this->writeIfStatement(s.as<IfStatement>()); 1785 break; 1786 case Statement::Kind::kReturn: 1787 this->writeReturnStatement(s.as<ReturnStatement>()); 1788 break; 1789 case Statement::Kind::kSwitch: 1790 this->writeSwitchStatement(s.as<SwitchStatement>()); 1791 break; 1792 case Statement::Kind::kVarDeclaration: 1793 this->writeVarDeclaration(s.as<VarDeclaration>()); 1794 break; 1795 case Statement::Kind::kDiscard: 1796 case Statement::Kind::kDo: 1797 SkDEBUGFAIL("Unsupported control flow"); 1798 break; 1799 case Statement::Kind::kInlineMarker: 1800 case Statement::Kind::kNop: 1801 break; 1802 default: 1803 SkDEBUGFAIL("Unrecognized statement"); 1804 break; 1805 } 1806} 1807 1808skvm::Color ProgramToSkVM(const Program& program, 1809 const FunctionDefinition& function, 1810 skvm::Builder* builder, 1811 SkVMDebugInfo* debugInfo, 1812 SkSpan<skvm::Val> uniforms, 1813 skvm::Coord device, 1814 skvm::Coord local, 1815 skvm::Color inputColor, 1816 skvm::Color destColor, 1817 SampleShaderFn sampleShader, 1818 SampleColorFilterFn sampleColorFilter, 1819 SampleBlenderFn sampleBlender) { 1820 skvm::Val zero = builder->splat(0.0f).id; 1821 skvm::Val result[4] = {zero,zero,zero,zero}; 1822 1823 skvm::Val args[8]; // At most 8 arguments (half4 srcColor, half4 dstColor) 1824 size_t argSlots = 0; 1825 for (const SkSL::Variable* param : function.declaration().parameters()) { 1826 switch (param->modifiers().fLayout.fBuiltin) { 1827 case SK_MAIN_COORDS_BUILTIN: 1828 SkASSERT(param->type().slotCount() == 2); 1829 SkASSERT((argSlots + 2) <= SK_ARRAY_COUNT(args)); 1830 args[argSlots++] = local.x.id; 1831 args[argSlots++] = local.y.id; 1832 break; 1833 case SK_INPUT_COLOR_BUILTIN: 1834 SkASSERT(param->type().slotCount() == 4); 1835 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args)); 1836 args[argSlots++] = inputColor.r.id; 1837 args[argSlots++] = inputColor.g.id; 1838 args[argSlots++] = inputColor.b.id; 1839 args[argSlots++] = inputColor.a.id; 1840 break; 1841 case SK_DEST_COLOR_BUILTIN: 1842 SkASSERT(param->type().slotCount() == 4); 1843 SkASSERT((argSlots + 4) <= SK_ARRAY_COUNT(args)); 1844 args[argSlots++] = destColor.r.id; 1845 args[argSlots++] = destColor.g.id; 1846 args[argSlots++] = destColor.b.id; 1847 args[argSlots++] = destColor.a.id; 1848 break; 1849 default: 1850 SkDEBUGFAIL("Invalid parameter to main()"); 1851 return {}; 1852 } 1853 } 1854 SkASSERT(argSlots <= SK_ARRAY_COUNT(args)); 1855 1856 SkVMGenerator generator(program, builder, debugInfo, std::move(sampleShader), 1857 std::move(sampleColorFilter), std::move(sampleBlender)); 1858 generator.writeProgram(uniforms, device, function, {args, argSlots}, SkMakeSpan(result)); 1859 1860 return skvm::Color{{builder, result[0]}, 1861 {builder, result[1]}, 1862 {builder, result[2]}, 1863 {builder, result[3]}}; 1864} 1865 1866bool ProgramToSkVM(const Program& program, 1867 const FunctionDefinition& function, 1868 skvm::Builder* b, 1869 SkVMDebugInfo* debugInfo, 1870 SkSpan<skvm::Val> uniforms, 1871 SkVMSignature* outSignature) { 1872 SkVMSignature ignored, 1873 *signature = outSignature ? outSignature : &ignored; 1874 1875 std::vector<skvm::Ptr> argPtrs; 1876 std::vector<skvm::Val> argVals; 1877 1878 for (const Variable* p : function.declaration().parameters()) { 1879 size_t slots = p->type().slotCount(); 1880 signature->fParameterSlots += slots; 1881 for (size_t i = 0; i < slots; ++i) { 1882 argPtrs.push_back(b->varying<float>()); 1883 argVals.push_back(b->loadF(argPtrs.back()).id); 1884 } 1885 } 1886 1887 std::vector<skvm::Ptr> returnPtrs; 1888 std::vector<skvm::Val> returnVals; 1889 1890 signature->fReturnSlots = function.declaration().returnType().slotCount(); 1891 for (size_t i = 0; i < signature->fReturnSlots; ++i) { 1892 returnPtrs.push_back(b->varying<float>()); 1893 returnVals.push_back(b->splat(0.0f).id); 1894 } 1895 1896 bool sampledChildEffects = false; 1897 auto sampleShader = [&](int, skvm::Coord) { 1898 sampledChildEffects = true; 1899 return skvm::Color{}; 1900 }; 1901 auto sampleColorFilter = [&](int, skvm::Color) { 1902 sampledChildEffects = true; 1903 return skvm::Color{}; 1904 }; 1905 auto sampleBlender = [&](int, skvm::Color, skvm::Color) { 1906 sampledChildEffects = true; 1907 return skvm::Color{}; 1908 }; 1909 1910 skvm::F32 zero = b->splat(0.0f); 1911 skvm::Coord zeroCoord = {zero, zero}; 1912 SkVMGenerator generator(program, b, debugInfo, sampleShader, sampleColorFilter, sampleBlender); 1913 generator.writeProgram(uniforms, /*device=*/zeroCoord, 1914 function, SkMakeSpan(argVals), SkMakeSpan(returnVals)); 1915 1916 // If the SkSL tried to use any shader, colorFilter, or blender objects - we don't have a 1917 // mechanism (yet) for binding to those. 1918 if (sampledChildEffects) { 1919 return false; 1920 } 1921 1922 // generateCode has updated the contents of 'argVals' for any 'out' or 'inout' parameters. 1923 // Propagate those changes back to our varying buffers: 1924 size_t argIdx = 0; 1925 for (const Variable* p : function.declaration().parameters()) { 1926 size_t nslots = p->type().slotCount(); 1927 if (p->modifiers().fFlags & Modifiers::kOut_Flag) { 1928 for (size_t i = 0; i < nslots; ++i) { 1929 b->storeF(argPtrs[argIdx + i], skvm::F32{b, argVals[argIdx + i]}); 1930 } 1931 } 1932 argIdx += nslots; 1933 } 1934 1935 // It's also updated the contents of 'returnVals' with the return value of the entry point. 1936 // Store that as well: 1937 for (size_t i = 0; i < signature->fReturnSlots; ++i) { 1938 b->storeF(returnPtrs[i], skvm::F32{b, returnVals[i]}); 1939 } 1940 1941 return true; 1942} 1943 1944const FunctionDefinition* Program_GetFunction(const Program& program, const char* function) { 1945 for (const ProgramElement* e : program.elements()) { 1946 if (e->is<FunctionDefinition>() && 1947 e->as<FunctionDefinition>().declaration().name() == function) { 1948 return &e->as<FunctionDefinition>(); 1949 } 1950 } 1951 return nullptr; 1952} 1953 1954static void gather_uniforms(UniformInfo* info, const Type& type, const String& name) { 1955 switch (type.typeKind()) { 1956 case Type::TypeKind::kStruct: 1957 for (const auto& f : type.fields()) { 1958 gather_uniforms(info, *f.fType, name + "." + f.fName); 1959 } 1960 break; 1961 case Type::TypeKind::kArray: 1962 for (int i = 0; i < type.columns(); ++i) { 1963 gather_uniforms(info, type.componentType(), 1964 String::printf("%s[%d]", name.c_str(), i)); 1965 } 1966 break; 1967 case Type::TypeKind::kScalar: 1968 case Type::TypeKind::kVector: 1969 case Type::TypeKind::kMatrix: 1970 info->fUniforms.push_back({name, base_number_kind(type), type.rows(), type.columns(), 1971 info->fUniformSlotCount}); 1972 info->fUniformSlotCount += type.columns() * type.rows(); 1973 break; 1974 default: 1975 break; 1976 } 1977} 1978 1979std::unique_ptr<UniformInfo> Program_GetUniformInfo(const Program& program) { 1980 auto info = std::make_unique<UniformInfo>(); 1981 for (const ProgramElement* e : program.elements()) { 1982 if (!e->is<GlobalVarDeclaration>()) { 1983 continue; 1984 } 1985 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>(); 1986 const Variable& var = decl.declaration()->as<VarDeclaration>().var(); 1987 if (var.modifiers().fFlags & Modifiers::kUniform_Flag) { 1988 gather_uniforms(info.get(), var.type(), String(var.name())); 1989 } 1990 } 1991 return info; 1992} 1993 1994/* 1995 * Testing utility function that emits program's "main" with a minimal harness. Used to create 1996 * representative skvm op sequences for SkSL tests. 1997 */ 1998bool testingOnly_ProgramToSkVMShader(const Program& program, 1999 skvm::Builder* builder, 2000 SkVMDebugInfo* debugInfo) { 2001 const SkSL::FunctionDefinition* main = Program_GetFunction(program, "main"); 2002 if (!main) { 2003 return false; 2004 } 2005 2006 size_t uniformSlots = 0; 2007 int childSlots = 0; 2008 for (const SkSL::ProgramElement* e : program.elements()) { 2009 if (e->is<GlobalVarDeclaration>()) { 2010 const GlobalVarDeclaration& decl = e->as<GlobalVarDeclaration>(); 2011 const Variable& var = decl.declaration()->as<VarDeclaration>().var(); 2012 if (var.type().isEffectChild()) { 2013 childSlots++; 2014 } else if (is_uniform(var)) { 2015 uniformSlots += var.type().slotCount(); 2016 } 2017 } 2018 } 2019 2020 skvm::Uniforms uniforms(builder->uniform(), 0); 2021 2022 auto new_uni = [&]() { return builder->uniformF(uniforms.pushF(0.0f)); }; 2023 2024 // Assume identity CTM 2025 skvm::Coord device = {pun_to_F32(builder->index()), new_uni()}; 2026 skvm::Coord local = device; 2027 2028 struct Child { 2029 skvm::Uniform addr; 2030 skvm::I32 rowBytesAsPixels; 2031 }; 2032 2033 std::vector<Child> children; 2034 for (int i = 0; i < childSlots; ++i) { 2035 children.push_back({uniforms.pushPtr(nullptr), builder->uniform32(uniforms.push(0))}); 2036 } 2037 2038 auto sampleShader = [&](int i, skvm::Coord coord) { 2039 skvm::PixelFormat pixelFormat = skvm::SkColorType_to_PixelFormat(kRGBA_F32_SkColorType); 2040 skvm::I32 index = trunc(coord.x); 2041 index += trunc(coord.y) * children[i].rowBytesAsPixels; 2042 return gather(pixelFormat, children[i].addr, index); 2043 }; 2044 2045 std::vector<skvm::Val> uniformVals; 2046 for (size_t i = 0; i < uniformSlots; ++i) { 2047 uniformVals.push_back(new_uni().id); 2048 } 2049 2050 skvm::Color inColor = builder->uniformColor(SkColors::kWhite, &uniforms); 2051 skvm::Color destColor = builder->uniformColor(SkColors::kBlack, &uniforms); 2052 2053 skvm::Color result = SkSL::ProgramToSkVM(program, *main, builder, debugInfo, 2054 SkMakeSpan(uniformVals), device, local, inColor, 2055 destColor, sampleShader, /*sampleColorFilter=*/nullptr, 2056 /*sampleBlender=*/nullptr); 2057 2058 storeF(builder->varying<float>(), result.r); 2059 storeF(builder->varying<float>(), result.g); 2060 storeF(builder->varying<float>(), result.b); 2061 storeF(builder->varying<float>(), result.a); 2062 2063 return true; 2064} 2065 2066} // namespace SkSL 2067