1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7#include "src/core/SkTSort.h" 8#include "src/pathops/SkOpSegment.h" 9#include "src/pathops/SkOpSpan.h" 10#include "src/pathops/SkPathOpsPoint.h" 11#include "src/pathops/SkPathWriter.h" 12 13// wrap path to keep track of whether the contour is initialized and non-empty 14SkPathWriter::SkPathWriter(SkPath& path) 15 : fPathPtr(&path) 16{ 17 init(); 18} 19 20void SkPathWriter::close() { 21 if (fCurrent.isEmpty()) { 22 return; 23 } 24 SkASSERT(this->isClosed()); 25#if DEBUG_PATH_CONSTRUCTION 26 SkDebugf("path.close();\n"); 27#endif 28 fCurrent.close(); 29 fPathPtr->addPath(fCurrent); 30 fCurrent.reset(); 31 init(); 32} 33 34void SkPathWriter::conicTo(const SkPoint& pt1, const SkOpPtT* pt2, SkScalar weight) { 35 SkPoint pt2pt = this->update(pt2); 36#if DEBUG_PATH_CONSTRUCTION 37 SkDebugf("path.conicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g);\n", 38 pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY, weight); 39#endif 40 fCurrent.conicTo(pt1, pt2pt, weight); 41} 42 43void SkPathWriter::cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkOpPtT* pt3) { 44 SkPoint pt3pt = this->update(pt3); 45#if DEBUG_PATH_CONSTRUCTION 46 SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", 47 pt1.fX, pt1.fY, pt2.fX, pt2.fY, pt3pt.fX, pt3pt.fY); 48#endif 49 fCurrent.cubicTo(pt1, pt2, pt3pt); 50} 51 52bool SkPathWriter::deferredLine(const SkOpPtT* pt) { 53 SkASSERT(fFirstPtT); 54 SkASSERT(fDefer[0]); 55 if (fDefer[0] == pt) { 56 // FIXME: why we're adding a degenerate line? Caller should have preflighted this. 57 return true; 58 } 59 if (pt->contains(fDefer[0])) { 60 // FIXME: why we're adding a degenerate line? 61 return true; 62 } 63 if (this->matchedLast(pt)) { 64 return false; 65 } 66 if (fDefer[1] && this->changedSlopes(pt)) { 67 this->lineTo(); 68 fDefer[0] = fDefer[1]; 69 } 70 fDefer[1] = pt; 71 return true; 72} 73 74void SkPathWriter::deferredMove(const SkOpPtT* pt) { 75 if (!fDefer[1]) { 76 fFirstPtT = fDefer[0] = pt; 77 return; 78 } 79 SkASSERT(fDefer[0]); 80 if (!this->matchedLast(pt)) { 81 this->finishContour(); 82 fFirstPtT = fDefer[0] = pt; 83 } 84} 85 86void SkPathWriter::finishContour() { 87 if (!this->matchedLast(fDefer[0])) { 88 if (!fDefer[1]) { 89 return; 90 } 91 this->lineTo(); 92 } 93 if (fCurrent.isEmpty()) { 94 return; 95 } 96 if (this->isClosed()) { 97 this->close(); 98 } else { 99 SkASSERT(fDefer[1]); 100 fEndPtTs.push_back(fFirstPtT); 101 fEndPtTs.push_back(fDefer[1]); 102 fPartials.push_back(fCurrent); 103 this->init(); 104 } 105} 106 107void SkPathWriter::init() { 108 fCurrent.reset(); 109 fFirstPtT = fDefer[0] = fDefer[1] = nullptr; 110} 111 112bool SkPathWriter::isClosed() const { 113 return this->matchedLast(fFirstPtT); 114} 115 116void SkPathWriter::lineTo() { 117 if (fCurrent.isEmpty()) { 118 this->moveTo(); 119 } 120#if DEBUG_PATH_CONSTRUCTION 121 SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1]->fPt.fX, fDefer[1]->fPt.fY); 122#endif 123 fCurrent.lineTo(fDefer[1]->fPt); 124} 125 126bool SkPathWriter::matchedLast(const SkOpPtT* test) const { 127 if (test == fDefer[1]) { 128 return true; 129 } 130 if (!test) { 131 return false; 132 } 133 if (!fDefer[1]) { 134 return false; 135 } 136 return test->contains(fDefer[1]); 137} 138 139void SkPathWriter::moveTo() { 140#if DEBUG_PATH_CONSTRUCTION 141 SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fFirstPtT->fPt.fX, fFirstPtT->fPt.fY); 142#endif 143 fCurrent.moveTo(fFirstPtT->fPt); 144} 145 146void SkPathWriter::quadTo(const SkPoint& pt1, const SkOpPtT* pt2) { 147 SkPoint pt2pt = this->update(pt2); 148#if DEBUG_PATH_CONSTRUCTION 149 SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", 150 pt1.fX, pt1.fY, pt2pt.fX, pt2pt.fY); 151#endif 152 fCurrent.quadTo(pt1, pt2pt); 153} 154 155// if last point to be written matches the current path's first point, alter the 156// last to avoid writing a degenerate lineTo when the path is closed 157SkPoint SkPathWriter::update(const SkOpPtT* pt) { 158 if (!fDefer[1]) { 159 this->moveTo(); 160 } else if (!this->matchedLast(fDefer[0])) { 161 this->lineTo(); 162 } 163 SkPoint result = pt->fPt; 164 if (fFirstPtT && result != fFirstPtT->fPt && fFirstPtT->contains(pt)) { 165 result = fFirstPtT->fPt; 166 } 167 fDefer[0] = fDefer[1] = pt; // set both to know that there is not a pending deferred line 168 return result; 169} 170 171bool SkPathWriter::someAssemblyRequired() { 172 this->finishContour(); 173 return fEndPtTs.count() > 0; 174} 175 176bool SkPathWriter::changedSlopes(const SkOpPtT* ptT) const { 177 if (matchedLast(fDefer[0])) { 178 return false; 179 } 180 SkVector deferDxdy = fDefer[1]->fPt - fDefer[0]->fPt; 181 SkVector lineDxdy = ptT->fPt - fDefer[1]->fPt; 182 return deferDxdy.fX * lineDxdy.fY != deferDxdy.fY * lineDxdy.fX; 183} 184 185class DistanceLessThan { 186public: 187 DistanceLessThan(double* distances) : fDistances(distances) { } 188 double* fDistances; 189 bool operator()(const int one, const int two) const { 190 return fDistances[one] < fDistances[two]; 191 } 192}; 193 194 /* 195 check start and end of each contour 196 if not the same, record them 197 match them up 198 connect closest 199 reassemble contour pieces into new path 200 */ 201void SkPathWriter::assemble() { 202 if (!this->someAssemblyRequired()) { 203 return; 204 } 205#if DEBUG_PATH_CONSTRUCTION 206 SkDebugf("%s\n", __FUNCTION__); 207#endif 208 SkOpPtT const* const* runs = fEndPtTs.begin(); // starts, ends of partial contours 209 int endCount = fEndPtTs.count(); // all starts and ends 210 SkASSERT(endCount > 0); 211 SkASSERT(endCount == fPartials.count() * 2); 212#if DEBUG_ASSEMBLE 213 for (int index = 0; index < endCount; index += 2) { 214 const SkOpPtT* eStart = runs[index]; 215 const SkOpPtT* eEnd = runs[index + 1]; 216 SkASSERT(eStart != eEnd); 217 SkASSERT(!eStart->contains(eEnd)); 218 SkDebugf("%s contour start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", __FUNCTION__, 219 eStart->fPt.fX, eStart->fPt.fY, eEnd->fPt.fX, eEnd->fPt.fY); 220 } 221#endif 222 // lengthen any partial contour adjacent to a simple segment 223 for (int pIndex = 0; pIndex < endCount; pIndex++) { 224 SkOpPtT* opPtT = const_cast<SkOpPtT*>(runs[pIndex]); 225 SkPath p; 226 SkPathWriter partWriter(p); 227 do { 228 if (!zero_or_one(opPtT->fT)) { 229 break; 230 } 231 SkOpSpanBase* opSpanBase = opPtT->span(); 232 SkOpSpanBase* start = opPtT->fT ? opSpanBase->prev() : opSpanBase->upCast()->next(); 233 int step = opPtT->fT ? 1 : -1; 234 const SkOpSegment* opSegment = opSpanBase->segment(); 235 const SkOpSegment* nextSegment = opSegment->isSimple(&start, &step); 236 if (!nextSegment) { 237 break; 238 } 239 SkOpSpanBase* opSpanEnd = start->t() ? start->prev() : start->upCast()->next(); 240 if (start->starter(opSpanEnd)->alreadyAdded()) { 241 break; 242 } 243 nextSegment->addCurveTo(start, opSpanEnd, &partWriter); 244 opPtT = opSpanEnd->ptT(); 245 SkOpPtT** runsPtr = const_cast<SkOpPtT**>(&runs[pIndex]); 246 *runsPtr = opPtT; 247 } while (true); 248 partWriter.finishContour(); 249 const SkTArray<SkPath>& partPartials = partWriter.partials(); 250 if (!partPartials.count()) { 251 continue; 252 } 253 // if pIndex is even, reverse and prepend to fPartials; otherwise, append 254 SkPath& partial = const_cast<SkPath&>(fPartials[pIndex >> 1]); 255 const SkPath& part = partPartials[0]; 256 if (pIndex & 1) { 257 partial.addPath(part, SkPath::kExtend_AddPathMode); 258 } else { 259 SkPath reverse; 260 reverse.reverseAddPath(part); 261 reverse.addPath(partial, SkPath::kExtend_AddPathMode); 262 partial = reverse; 263 } 264 } 265 SkTDArray<int> sLink, eLink; 266 int linkCount = endCount / 2; // number of partial contours 267 sLink.append(linkCount); 268 eLink.append(linkCount); 269 int rIndex, iIndex; 270 for (rIndex = 0; rIndex < linkCount; ++rIndex) { 271 sLink[rIndex] = eLink[rIndex] = SK_MaxS32; 272 } 273 const int entries = endCount * (endCount - 1) / 2; // folded triangle 274 SkSTArray<8, double, true> distances(entries); 275 SkSTArray<8, int, true> sortedDist(entries); 276 SkSTArray<8, int, true> distLookup(entries); 277 int rRow = 0; 278 int dIndex = 0; 279 for (rIndex = 0; rIndex < endCount - 1; ++rIndex) { 280 const SkOpPtT* oPtT = runs[rIndex]; 281 for (iIndex = rIndex + 1; iIndex < endCount; ++iIndex) { 282 const SkOpPtT* iPtT = runs[iIndex]; 283 double dx = iPtT->fPt.fX - oPtT->fPt.fX; 284 double dy = iPtT->fPt.fY - oPtT->fPt.fY; 285 double dist = dx * dx + dy * dy; 286 distLookup.push_back(rRow + iIndex); 287 distances.push_back(dist); // oStart distance from iStart 288 sortedDist.push_back(dIndex++); 289 } 290 rRow += endCount; 291 } 292 SkASSERT(dIndex == entries); 293 SkTQSort<int>(sortedDist.begin(), sortedDist.end(), DistanceLessThan(distances.begin())); 294 int remaining = linkCount; // number of start/end pairs 295 for (rIndex = 0; rIndex < entries; ++rIndex) { 296 int pair = sortedDist[rIndex]; 297 pair = distLookup[pair]; 298 int row = pair / endCount; 299 int col = pair - row * endCount; 300 int ndxOne = row >> 1; 301 bool endOne = row & 1; 302 int* linkOne = endOne ? eLink.begin() : sLink.begin(); 303 if (linkOne[ndxOne] != SK_MaxS32) { 304 continue; 305 } 306 int ndxTwo = col >> 1; 307 bool endTwo = col & 1; 308 int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); 309 if (linkTwo[ndxTwo] != SK_MaxS32) { 310 continue; 311 } 312 SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); 313 bool flip = endOne == endTwo; 314 linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; 315 linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; 316 if (!--remaining) { 317 break; 318 } 319 } 320 SkASSERT(!remaining); 321#if DEBUG_ASSEMBLE 322 for (rIndex = 0; rIndex < linkCount; ++rIndex) { 323 int s = sLink[rIndex]; 324 int e = eLink[rIndex]; 325 SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', 326 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); 327 } 328#endif 329 rIndex = 0; 330 do { 331 bool forward = true; 332 bool first = true; 333 int sIndex = sLink[rIndex]; 334 SkASSERT(sIndex != SK_MaxS32); 335 sLink[rIndex] = SK_MaxS32; 336 int eIndex; 337 if (sIndex < 0) { 338 eIndex = sLink[~sIndex]; 339 sLink[~sIndex] = SK_MaxS32; 340 } else { 341 eIndex = eLink[sIndex]; 342 eLink[sIndex] = SK_MaxS32; 343 } 344 SkASSERT(eIndex != SK_MaxS32); 345#if DEBUG_ASSEMBLE 346 SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', 347 sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', 348 eIndex < 0 ? ~eIndex : eIndex); 349#endif 350 do { 351 const SkPath& contour = fPartials[rIndex]; 352 if (!first) { 353 SkPoint prior, next; 354 if (!fPathPtr->getLastPt(&prior)) { 355 return; 356 } 357 if (forward) { 358 next = contour.getPoint(0); 359 } else { 360 SkAssertResult(contour.getLastPt(&next)); 361 } 362 if (prior != next) { 363 /* TODO: if there is a gap between open path written so far and path to come, 364 connect by following segments from one to the other, rather than introducing 365 a diagonal to connect the two. 366 */ 367 } 368 } 369 if (forward) { 370 fPathPtr->addPath(contour, 371 first ? SkPath::kAppend_AddPathMode : SkPath::kExtend_AddPathMode); 372 } else { 373 SkASSERT(!first); 374 fPathPtr->reversePathTo(contour); 375 } 376 if (first) { 377 first = false; 378 } 379#if DEBUG_ASSEMBLE 380 SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, 381 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, 382 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); 383#endif 384 if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { 385 fPathPtr->close(); 386 break; 387 } 388 if (forward) { 389 eIndex = eLink[rIndex]; 390 SkASSERT(eIndex != SK_MaxS32); 391 eLink[rIndex] = SK_MaxS32; 392 if (eIndex >= 0) { 393 SkASSERT(sLink[eIndex] == rIndex); 394 sLink[eIndex] = SK_MaxS32; 395 } else { 396 SkASSERT(eLink[~eIndex] == ~rIndex); 397 eLink[~eIndex] = SK_MaxS32; 398 } 399 } else { 400 eIndex = sLink[rIndex]; 401 SkASSERT(eIndex != SK_MaxS32); 402 sLink[rIndex] = SK_MaxS32; 403 if (eIndex >= 0) { 404 SkASSERT(eLink[eIndex] == rIndex); 405 eLink[eIndex] = SK_MaxS32; 406 } else { 407 SkASSERT(sLink[~eIndex] == ~rIndex); 408 sLink[~eIndex] = SK_MaxS32; 409 } 410 } 411 rIndex = eIndex; 412 if (rIndex < 0) { 413 forward ^= 1; 414 rIndex = ~rIndex; 415 } 416 } while (true); 417 for (rIndex = 0; rIndex < linkCount; ++rIndex) { 418 if (sLink[rIndex] != SK_MaxS32) { 419 break; 420 } 421 } 422 } while (rIndex < linkCount); 423#if DEBUG_ASSEMBLE 424 for (rIndex = 0; rIndex < linkCount; ++rIndex) { 425 SkASSERT(sLink[rIndex] == SK_MaxS32); 426 SkASSERT(eLink[rIndex] == SK_MaxS32); 427 } 428#endif 429 return; 430} 431