xref: /third_party/skia/src/pathops/SkOpAngle.cpp (revision cb93a386)
1/*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "src/core/SkTSort.h"
8#include "src/pathops/SkOpAngle.h"
9#include "src/pathops/SkOpSegment.h"
10#include "src/pathops/SkPathOpsCurve.h"
11
12/* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest
13   positive y. The largest angle has a positive x and a zero y. */
14
15#if DEBUG_ANGLE
16    static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append,
17             bool compare) {
18        SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append);
19        SkDebugf("%sPart %s\n", func, bugPart[0].c_str());
20        SkDebugf("%sPart %s\n", func, bugPart[1].c_str());
21        SkDebugf("%sPart %s\n", func, bugPart[2].c_str());
22        return compare;
23    }
24
25    #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \
26            compare)
27#else
28    #define COMPARE_RESULT(append, compare) compare
29#endif
30
31/*             quarter angle values for sector
32
3331   x > 0, y == 0              horizontal line (to the right)
340    x > 0, y == epsilon        quad/cubic horizontal tangent eventually going +y
351    x > 0, y > 0, x > y        nearer horizontal angle
362                  x + e == y   quad/cubic 45 going horiz
373    x > 0, y > 0, x == y       45 angle
384                  x == y + e   quad/cubic 45 going vert
395    x > 0, y > 0, x < y        nearer vertical angle
406    x == epsilon, y > 0        quad/cubic vertical tangent eventually going +x
417    x == 0, y > 0              vertical line (to the top)
42
43                                      8  7  6
44                                 9       |       5
45                              10         |          4
46                            11           |            3
47                          12  \          |           / 2
48                         13              |              1
49                        14               |               0
50                        15 --------------+------------- 31
51                        16               |              30
52                         17              |             29
53                          18  /          |          \ 28
54                            19           |           27
55                              20         |         26
56                                 21      |      25
57                                     22 23 24
58*/
59
60// return true if lh < this < rh
61bool SkOpAngle::after(SkOpAngle* test) {
62    SkOpAngle* lh = test;
63    SkOpAngle* rh = lh->fNext;
64    SkASSERT(lh != rh);
65    fPart.fCurve = fOriginalCurvePart;
66    lh->fPart.fCurve = lh->fOriginalCurvePart;
67    lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]);
68    rh->fPart.fCurve = rh->fOriginalCurvePart;
69    rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]);
70
71#if DEBUG_ANGLE
72    SkString bugOut;
73    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
74                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
75                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
76            lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
77            lh->fStart->t(), lh->fEnd->t(),
78            segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
79            rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
80            rh->fStart->t(), rh->fEnd->t());
81    SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() };
82#endif
83    if (lh->fComputeSector && !lh->computeSector()) {
84        return COMPARE_RESULT(1, true);
85    }
86    if (fComputeSector && !this->computeSector()) {
87        return COMPARE_RESULT(2, true);
88    }
89    if (rh->fComputeSector && !rh->computeSector()) {
90        return COMPARE_RESULT(3, true);
91    }
92#if DEBUG_ANGLE  // reset bugOut with computed sectors
93    bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
94                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g"
95                  " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__,
96            lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd,
97            lh->fStart->t(), lh->fEnd->t(),
98            segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(),
99            rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd,
100            rh->fStart->t(), rh->fEnd->t());
101#endif
102    bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask;
103    bool lrOverlap = lh->fSectorMask & rh->fSectorMask;
104    int lrOrder;  // set to -1 if either order works
105    if (!lrOverlap) {  // no lh/rh sector overlap
106        if (!ltrOverlap) {  // no lh/this/rh sector overlap
107            return COMPARE_RESULT(4,  (lh->fSectorEnd > rh->fSectorStart)
108                    ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart));
109        }
110        int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f;
111        /* A tiny change can move the start +/- 4. The order can only be determined if
112           lr gap is not 12 to 20 or -12 to -20.
113               -31 ..-21      1
114               -20 ..-12     -1
115               -11 .. -1      0
116                 0          shouldn't get here
117                11 ..  1      1
118                12 .. 20     -1
119                21 .. 31      0
120         */
121        lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1;
122    } else {
123        lrOrder = lh->orderable(rh);
124        if (!ltrOverlap && lrOrder >= 0) {
125            return COMPARE_RESULT(5, !lrOrder);
126        }
127    }
128    int ltOrder;
129    SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder);
130    if (lh->fSectorMask & fSectorMask) {
131        ltOrder = lh->orderable(this);
132    } else {
133        int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f;
134        ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1;
135    }
136    int trOrder;
137    if (rh->fSectorMask & fSectorMask) {
138        trOrder = this->orderable(rh);
139    } else {
140        int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f;
141        trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1;
142    }
143    this->alignmentSameSide(lh, &ltOrder);
144    this->alignmentSameSide(rh, &trOrder);
145    if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) {
146        return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder));
147    }
148//    SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0);
149// There's not enough information to sort. Get the pairs of angles in opposite planes.
150// If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs.
151    // FIXME : once all variants are understood, rewrite this more simply
152    if (ltOrder == 0 && lrOrder == 0) {
153        SkASSERT(trOrder < 0);
154        // FIXME : once this is verified to work, remove one opposite angle call
155        SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh));
156        bool ltOpposite = lh->oppositePlanes(this);
157        SkOPASSERT(lrOpposite != ltOpposite);
158        return COMPARE_RESULT(8, ltOpposite);
159    } else if (ltOrder == 1 && trOrder == 0) {
160        SkASSERT(lrOrder < 0);
161        bool trOpposite = oppositePlanes(rh);
162        return COMPARE_RESULT(9, trOpposite);
163    } else if (lrOrder == 1 && trOrder == 1) {
164        SkASSERT(ltOrder < 0);
165//        SkDEBUGCODE(bool trOpposite = oppositePlanes(rh));
166        bool lrOpposite = lh->oppositePlanes(rh);
167//        SkASSERT(lrOpposite != trOpposite);
168        return COMPARE_RESULT(10, lrOpposite);
169    }
170    // If a pair couldn't be ordered, there's not enough information to determine the sort.
171    // Refer to:  https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ
172    if (fUnorderable || lh->fUnorderable || rh->fUnorderable) {
173        // limit to lines; should work with curves, but wait for a failing test to verify
174        if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) {
175            // see if original raw data is orderable
176            // if two share a point, check if third has both points in same half plane
177            int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0];
178            int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
179            int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0];
180            // if only one pair are the same, the third point touches neither of the pair
181            if (ltShare + lrShare + trShare == 1) {
182                if (lrShare) {
183                    int ltOOrder = lh->linesOnOriginalSide(this);
184                    int rtOOrder = rh->linesOnOriginalSide(this);
185                    if ((rtOOrder ^ ltOOrder) == 1) {
186                        return ltOOrder;
187                    }
188                } else if (trShare) {
189                    int tlOOrder = this->linesOnOriginalSide(lh);
190                    int rlOOrder = rh->linesOnOriginalSide(lh);
191                    if ((tlOOrder ^ rlOOrder) == 1) {
192                        return rlOOrder;
193                    }
194                } else {
195                    SkASSERT(ltShare);
196                    int trOOrder = rh->linesOnOriginalSide(this);
197                    int lrOOrder = lh->linesOnOriginalSide(rh);
198                    // result must be 0 and 1 or 1 and 0 to be valid
199                    if ((lrOOrder ^ trOOrder) == 1) {
200                        return trOOrder;
201                    }
202                }
203            }
204        }
205    }
206    if (lrOrder < 0) {
207        if (ltOrder < 0) {
208            return COMPARE_RESULT(11, trOrder);
209        }
210        return COMPARE_RESULT(12, ltOrder);
211    }
212    return COMPARE_RESULT(13, !lrOrder);
213}
214
215int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test,
216        bool useOriginal) const {
217    double crosses[3];
218    SkPath::Verb testVerb = test->segment()->verb();
219    int iMax = SkPathOpsVerbToPoints(testVerb);
220//    SkASSERT(origin == test.fCurveHalf[0]);
221    const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve;
222    for (int index = 1; index <= iMax; ++index) {
223        double xy1 = line.fX * (testCurve[index].fY - origin.fY);
224        double xy2 = line.fY * (testCurve[index].fX - origin.fX);
225        crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
226    }
227    if (crosses[0] * crosses[1] < 0) {
228        return -1;
229    }
230    if (SkPath::kCubic_Verb == testVerb) {
231        if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) {
232            return -1;
233        }
234    }
235    if (crosses[0]) {
236        return crosses[0] < 0;
237    }
238    if (crosses[1]) {
239        return crosses[1] < 0;
240    }
241    if (SkPath::kCubic_Verb == testVerb && crosses[2]) {
242        return crosses[2] < 0;
243    }
244    return -2;
245}
246
247// given a line, see if the opposite curve's convex hull is all on one side
248// returns -1=not on one side    0=this CW of test   1=this CCW of test
249int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) {
250    SkASSERT(!fPart.isCurve());
251    SkASSERT(test->fPart.isCurve());
252    SkDPoint origin = fPart.fCurve[0];
253    SkDVector line = fPart.fCurve[1] - origin;
254    int result = this->lineOnOneSide(origin, line, test, useOriginal);
255    if (-2 == result) {
256        fUnorderable = true;
257        result = -1;
258    }
259    return result;
260}
261
262// experiment works only with lines for now
263int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) {
264    SkASSERT(!fPart.isCurve());
265    SkASSERT(!test->fPart.isCurve());
266    SkDPoint origin = fOriginalCurvePart[0];
267    SkDVector line = fOriginalCurvePart[1] - origin;
268    double dots[2];
269    double crosses[2];
270    const SkDCurve& testCurve = test->fOriginalCurvePart;
271    for (int index = 0; index < 2; ++index) {
272        SkDVector testLine = testCurve[index] - origin;
273        double xy1 = line.fX * testLine.fY;
274        double xy2 = line.fY * testLine.fX;
275        dots[index] = line.fX * testLine.fX + line.fY * testLine.fY;
276        crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2;
277    }
278    if (crosses[0] * crosses[1] < 0) {
279        return -1;
280    }
281    if (crosses[0]) {
282        return crosses[0] < 0;
283    }
284    if (crosses[1]) {
285        return crosses[1] < 0;
286    }
287    if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) {
288        return 2;  // 180 degrees apart
289    }
290    fUnorderable = true;
291    return -1;
292}
293
294// To sort the angles, all curves are translated to have the same starting point.
295// If the curve's control point in its original position is on one side of a compared line,
296// and translated is on the opposite side, reverse the previously computed order.
297void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const {
298    if (*order < 0) {
299        return;
300    }
301    if (fPart.isCurve()) {
302        // This should support all curve types, but only bug that requires this has lines
303        // Turning on for curves causes existing tests to fail
304        return;
305    }
306    if (test->fPart.isCurve()) {
307        return;
308    }
309    const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0];
310    const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0];
311    if (xOrigin == oOrigin) {
312        return;
313    }
314    int iMax = SkPathOpsVerbToPoints(this->segment()->verb());
315    SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin;
316    SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin;
317    for (int index = 1; index <= iMax; ++index) {
318        const SkDPoint& testPt = fPart.fCurve[index];
319        double xCross = oLine.crossCheck(testPt - xOrigin);
320        double oCross = xLine.crossCheck(testPt - oOrigin);
321        if (oCross * xCross < 0) {
322            *order ^= 1;
323            break;
324        }
325    }
326}
327
328bool SkOpAngle::checkCrossesZero() const {
329    int start = std::min(fSectorStart, fSectorEnd);
330    int end = std::max(fSectorStart, fSectorEnd);
331    bool crossesZero = end - start > 16;
332    return crossesZero;
333}
334
335bool SkOpAngle::checkParallel(SkOpAngle* rh) {
336    SkDVector scratch[2];
337    const SkDVector* sweep, * tweep;
338    if (this->fPart.isOrdered()) {
339        sweep = this->fPart.fSweep;
340    } else {
341        scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0];
342        sweep = &scratch[0];
343    }
344    if (rh->fPart.isOrdered()) {
345        tweep = rh->fPart.fSweep;
346    } else {
347        scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0];
348        tweep = &scratch[1];
349    }
350    double s0xt0 = sweep->crossCheck(*tweep);
351    if (tangentsDiverge(rh, s0xt0)) {
352        return s0xt0 < 0;
353    }
354    // compute the perpendicular to the endpoints and see where it intersects the opposite curve
355    // if the intersections within the t range, do a cross check on those
356    bool inside;
357    if (!fEnd->contains(rh->fEnd)) {
358        if (this->endToSide(rh, &inside)) {
359            return inside;
360        }
361        if (rh->endToSide(this, &inside)) {
362            return !inside;
363        }
364    }
365    if (this->midToSide(rh, &inside)) {
366        return inside;
367    }
368    if (rh->midToSide(this, &inside)) {
369        return !inside;
370    }
371    // compute the cross check from the mid T values (last resort)
372    SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
373    SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
374    double m0xm1 = m0.crossCheck(m1);
375    if (m0xm1 == 0) {
376        this->fUnorderable = true;
377        rh->fUnorderable = true;
378        return true;
379    }
380    return m0xm1 < 0;
381}
382
383// the original angle is too short to get meaningful sector information
384// lengthen it until it is long enough to be meaningful or leave it unset if lengthening it
385// would cause it to intersect one of the adjacent angles
386bool SkOpAngle::computeSector() {
387    if (fComputedSector) {
388        return !fUnorderable;
389    }
390    fComputedSector = true;
391    bool stepUp = fStart->t() < fEnd->t();
392    SkOpSpanBase* checkEnd = fEnd;
393    if (checkEnd->final() && stepUp) {
394        fUnorderable = true;
395        return false;
396    }
397    do {
398// advance end
399        const SkOpSegment* other = checkEnd->segment();
400        const SkOpSpanBase* oSpan = other->head();
401        do {
402            if (oSpan->segment() != segment()) {
403                continue;
404            }
405            if (oSpan == checkEnd) {
406                continue;
407            }
408            if (!approximately_equal(oSpan->t(), checkEnd->t())) {
409                continue;
410            }
411            goto recomputeSector;
412        } while (!oSpan->final() && (oSpan = oSpan->upCast()->next()));
413        checkEnd = stepUp ? !checkEnd->final()
414                ? checkEnd->upCast()->next() : nullptr
415                : checkEnd->prev();
416    } while (checkEnd);
417recomputeSector:
418    SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head()
419            : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail();
420    if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) {
421        fUnorderable = true;
422        return false;
423    }
424    if (stepUp != (fStart->t() < computedEnd->t())) {
425        fUnorderable = true;
426        return false;
427    }
428    SkOpSpanBase* saveEnd = fEnd;
429    fComputedEnd = fEnd = computedEnd;
430    setSpans();
431    setSector();
432    fEnd = saveEnd;
433    return !fUnorderable;
434}
435
436int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) {
437    const SkDVector* sweep = this->fPart.fSweep;
438    const SkDVector* tweep = rh->fPart.fSweep;
439    double s0xs1 = sweep[0].crossCheck(sweep[1]);
440    double s0xt0 = sweep[0].crossCheck(tweep[0]);
441    double s1xt0 = sweep[1].crossCheck(tweep[0]);
442    bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
443    double s0xt1 = sweep[0].crossCheck(tweep[1]);
444    double s1xt1 = sweep[1].crossCheck(tweep[1]);
445    tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
446    double t0xt1 = tweep[0].crossCheck(tweep[1]);
447    if (tBetweenS) {
448        return -1;
449    }
450    if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
451        return -1;
452    }
453    bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
454    sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
455    if (sBetweenT) {
456        return -1;
457    }
458    // if all of the sweeps are in the same half plane, then the order of any pair is enough
459    if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
460        return 0;
461    }
462    if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
463        return 1;
464    }
465    // if the outside sweeps are greater than 180 degress:
466        // first assume the inital tangents are the ordering
467        // if the midpoint direction matches the inital order, that is enough
468    SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0];
469    SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0];
470    double m0xm1 = m0.crossCheck(m1);
471    if (s0xt0 > 0 && m0xm1 > 0) {
472        return 0;
473    }
474    if (s0xt0 < 0 && m0xm1 < 0) {
475        return 1;
476    }
477    if (tangentsDiverge(rh, s0xt0)) {
478        return s0xt0 < 0;
479    }
480    return m0xm1 < 0;
481}
482
483// OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup
484double SkOpAngle::distEndRatio(double dist) const {
485    double longest = 0;
486    const SkOpSegment& segment = *this->segment();
487    int ptCount = SkPathOpsVerbToPoints(segment.verb());
488    const SkPoint* pts = segment.pts();
489    for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) {
490        for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) {
491            if (idx1 == idx2) {
492                continue;
493            }
494            SkDVector v;
495            v.set(pts[idx2] - pts[idx1]);
496            double lenSq = v.lengthSquared();
497            longest = std::max(longest, lenSq);
498        }
499    }
500    return sqrt(longest) / dist;
501}
502
503bool SkOpAngle::endsIntersect(SkOpAngle* rh) {
504    SkPath::Verb lVerb = this->segment()->verb();
505    SkPath::Verb rVerb = rh->segment()->verb();
506    int lPts = SkPathOpsVerbToPoints(lVerb);
507    int rPts = SkPathOpsVerbToPoints(rVerb);
508    SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}},
509            {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}};
510    if (this->fEnd->contains(rh->fEnd)) {
511        return checkParallel(rh);
512    }
513    double smallTs[2] = {-1, -1};
514    bool limited[2] = {false, false};
515    for (int index = 0; index < 2; ++index) {
516        SkPath::Verb cVerb = index ? rVerb : lVerb;
517        // if the curve is a line, then the line and the ray intersect only at their crossing
518        if (cVerb == SkPath::kLine_Verb) {
519            continue;
520        }
521        const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
522        SkIntersections i;
523        (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i);
524        double tStart = index ? rh->fStart->t() : this->fStart->t();
525        double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t();
526        bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t());
527        double t = testAscends ? 0 : 1;
528        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
529            double testT = i[0][idx2];
530            if (!approximately_between_orderable(tStart, testT, tEnd)) {
531                continue;
532            }
533            if (approximately_equal_orderable(tStart, testT)) {
534                continue;
535            }
536            smallTs[index] = t = testAscends ? std::max(t, testT) : std::min(t, testT);
537            limited[index] = approximately_equal_orderable(t, tEnd);
538        }
539    }
540    bool sRayLonger = false;
541    SkDVector sCept = {0, 0};
542    double sCeptT = -1;
543    int sIndex = -1;
544    bool useIntersect = false;
545    for (int index = 0; index < 2; ++index) {
546        if (smallTs[index] < 0) {
547            continue;
548        }
549        const SkOpSegment& segment = index ? *rh->segment() : *this->segment();
550        const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
551        SkDVector cept = dPt - rays[index][0];
552        // If this point is on the curve, it should have been detected earlier by ordinary
553        // curve intersection. This may be hard to determine in general, but for lines,
554        // the point could be close to or equal to its end, but shouldn't be near the start.
555        if ((index ? lPts : rPts) == 1) {
556            SkDVector total = rays[index][1] - rays[index][0];
557            if (cept.lengthSquared() * 2 < total.lengthSquared()) {
558                continue;
559            }
560        }
561        SkDVector end = rays[index][1] - rays[index][0];
562        if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
563            continue;
564        }
565        double rayDist = cept.length();
566        double endDist = end.length();
567        bool rayLonger = rayDist > endDist;
568        if (limited[0] && limited[1] && rayLonger) {
569            useIntersect = true;
570            sRayLonger = rayLonger;
571            sCept = cept;
572            sCeptT = smallTs[index];
573            sIndex = index;
574            break;
575        }
576        double delta = fabs(rayDist - endDist);
577        double minX, minY, maxX, maxY;
578        minX = minY = SK_ScalarInfinity;
579        maxX = maxY = -SK_ScalarInfinity;
580        const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve;
581        int ptCount = index ? rPts : lPts;
582        for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
583            minX = std::min(minX, curve[idx2].fX);
584            minY = std::min(minY, curve[idx2].fY);
585            maxX = std::max(maxX, curve[idx2].fX);
586            maxY = std::max(maxY, curve[idx2].fY);
587        }
588        double maxWidth = std::max(maxX - minX, maxY - minY);
589        delta = sk_ieee_double_divide(delta, maxWidth);
590        // FIXME: move these magic numbers
591        // This fixes skbug.com/8380
592        // Larger changes (like changing the constant in the next block) cause other
593        // tests to fail as documented in the bug.
594        // This could probably become a more general test: e.g., if translating the
595        // curve causes the cross product of any control point or end point to change
596        // sign with regard to the opposite curve's hull, treat the curves as parallel.
597
598        // Moreso, this points to the general fragility of this approach of assigning
599        // winding by sorting the angles of curves sharing a common point, as mentioned
600        // in the bug.
601        if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve()
602                && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) {
603            // see if original curve is on one side of hull; translated is on the other
604            const SkDPoint& origin = rh->fOriginalCurvePart[0];
605            int count = SkPathOpsVerbToPoints(rh->segment()->verb());
606            const SkDVector line = rh->fOriginalCurvePart[count] - origin;
607            int originalSide = rh->lineOnOneSide(origin, line, this, true);
608            if (originalSide >= 0) {
609                int translatedSide = rh->lineOnOneSide(origin, line, this, false);
610                if (originalSide != translatedSide) {
611                    continue;
612                }
613            }
614        }
615        if (delta > 1e-3 && (useIntersect ^= true)) {
616            sRayLonger = rayLonger;
617            sCept = cept;
618            sCeptT = smallTs[index];
619            sIndex = index;
620        }
621    }
622    if (useIntersect) {
623        const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve;
624        const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment();
625        double tStart = sIndex ? rh->fStart->t() : fStart->t();
626        SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
627        double septDir = mid.crossCheck(sCept);
628        if (!septDir) {
629            return checkParallel(rh);
630        }
631        return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
632    } else {
633        return checkParallel(rh);
634    }
635}
636
637bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const {
638    const SkOpSegment* segment = this->segment();
639    SkPath::Verb verb = segment->verb();
640    SkDLine rayEnd;
641    rayEnd[0].set(this->fEnd->pt());
642    rayEnd[1] = rayEnd[0];
643    SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(),
644            this->fEnd->t());
645    rayEnd[1].fX += slopeAtEnd.fY;
646    rayEnd[1].fY -= slopeAtEnd.fX;
647    SkIntersections iEnd;
648    const SkOpSegment* oppSegment = rh->segment();
649    SkPath::Verb oppVerb = oppSegment->verb();
650    (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd);
651    double endDist;
652    int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist);
653    if (closestEnd < 0) {
654        return false;
655    }
656    if (!endDist) {
657        return false;
658    }
659    SkDPoint start;
660    start.set(this->fStart->pt());
661    // OPTIMIZATION: multiple times in the code we find the max scalar
662    double minX, minY, maxX, maxY;
663    minX = minY = SK_ScalarInfinity;
664    maxX = maxY = -SK_ScalarInfinity;
665    const SkDCurve& curve = rh->fPart.fCurve;
666    int oppPts = SkPathOpsVerbToPoints(oppVerb);
667    for (int idx2 = 0; idx2 <= oppPts; ++idx2) {
668        minX = std::min(minX, curve[idx2].fX);
669        minY = std::min(minY, curve[idx2].fY);
670        maxX = std::max(maxX, curve[idx2].fX);
671        maxY = std::max(maxY, curve[idx2].fY);
672    }
673    double maxWidth = std::max(maxX - minX, maxY - minY);
674    endDist = sk_ieee_double_divide(endDist, maxWidth);
675    if (!(endDist >= 5e-12)) {  // empirically found
676        return false; // ! above catches NaN
677    }
678    const SkDPoint* endPt = &rayEnd[0];
679    SkDPoint oppPt = iEnd.pt(closestEnd);
680    SkDVector vLeft = *endPt - start;
681    SkDVector vRight = oppPt - start;
682    double dir = vLeft.crossNoNormalCheck(vRight);
683    if (!dir) {
684        return false;
685    }
686    *inside = dir < 0;
687    return true;
688}
689
690/*      y<0 y==0 y>0  x<0 x==0 x>0 xy<0 xy==0 xy>0
691    0    x                      x               x
692    1    x                      x          x
693    2    x                      x    x
694    3    x                  x        x
695    4    x             x             x
696    5    x             x                   x
697    6    x             x                        x
698    7         x        x                        x
699    8             x    x                        x
700    9             x    x                   x
701    10            x    x             x
702    11            x         x        x
703    12            x             x    x
704    13            x             x          x
705    14            x             x               x
706    15        x                 x               x
707*/
708int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const {
709    double absX = fabs(x);
710    double absY = fabs(y);
711    double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0;
712    // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim,
713    // one could coin the term sedecimant for a space divided into 16 sections.
714   // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts
715    static const int sedecimant[3][3][3] = {
716    //       y<0           y==0           y>0
717    //   x<0 x==0 x>0  x<0 x==0 x>0  x<0 x==0 x>0
718        {{ 4,  3,  2}, { 7, -1, 15}, {10, 11, 12}},  // abs(x) <  abs(y)
719        {{ 5, -1,  1}, {-1, -1, -1}, { 9, -1, 13}},  // abs(x) == abs(y)
720        {{ 6,  3,  0}, { 7, -1, 15}, { 8, 11, 14}},  // abs(x) >  abs(y)
721    };
722    int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1;
723//    SkASSERT(SkPath::kLine_Verb == verb || sector >= 0);
724    return sector;
725}
726
727SkOpGlobalState* SkOpAngle::globalState() const {
728    return this->segment()->globalState();
729}
730
731
732// OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side
733// OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side
734bool SkOpAngle::insert(SkOpAngle* angle) {
735    if (angle->fNext) {
736        if (loopCount() >= angle->loopCount()) {
737            if (!merge(angle)) {
738                return true;
739            }
740        } else if (fNext) {
741            if (!angle->merge(this)) {
742                return true;
743            }
744        } else {
745            angle->insert(this);
746        }
747        return true;
748    }
749    bool singleton = nullptr == fNext;
750    if (singleton) {
751        fNext = this;
752    }
753    SkOpAngle* next = fNext;
754    if (next->fNext == this) {
755        if (singleton || angle->after(this)) {
756            this->fNext = angle;
757            angle->fNext = next;
758        } else {
759            next->fNext = angle;
760            angle->fNext = this;
761        }
762        debugValidateNext();
763        return true;
764    }
765    SkOpAngle* last = this;
766    bool flipAmbiguity = false;
767    do {
768        SkASSERT(last->fNext == next);
769        if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) {
770            last->fNext = angle;
771            angle->fNext = next;
772            debugValidateNext();
773            return true;
774        }
775        last = next;
776        if (last == this) {
777            FAIL_IF(flipAmbiguity);
778            // We're in a loop. If a sort was ambiguous, flip it to end the loop.
779            flipAmbiguity = true;
780        }
781        next = next->fNext;
782    } while (true);
783    return true;
784}
785
786SkOpSpanBase* SkOpAngle::lastMarked() const {
787    if (fLastMarked) {
788        if (fLastMarked->chased()) {
789            return nullptr;
790        }
791        fLastMarked->setChased(true);
792    }
793    return fLastMarked;
794}
795
796bool SkOpAngle::loopContains(const SkOpAngle* angle) const {
797    if (!fNext) {
798        return false;
799    }
800    const SkOpAngle* first = this;
801    const SkOpAngle* loop = this;
802    const SkOpSegment* tSegment = angle->fStart->segment();
803    double tStart = angle->fStart->t();
804    double tEnd = angle->fEnd->t();
805    do {
806        const SkOpSegment* lSegment = loop->fStart->segment();
807        if (lSegment != tSegment) {
808            continue;
809        }
810        double lStart = loop->fStart->t();
811        if (lStart != tEnd) {
812            continue;
813        }
814        double lEnd = loop->fEnd->t();
815        if (lEnd == tStart) {
816            return true;
817        }
818    } while ((loop = loop->fNext) != first);
819    return false;
820}
821
822int SkOpAngle::loopCount() const {
823    int count = 0;
824    const SkOpAngle* first = this;
825    const SkOpAngle* next = this;
826    do {
827        next = next->fNext;
828        ++count;
829    } while (next && next != first);
830    return count;
831}
832
833bool SkOpAngle::merge(SkOpAngle* angle) {
834    SkASSERT(fNext);
835    SkASSERT(angle->fNext);
836    SkOpAngle* working = angle;
837    do {
838        if (this == working) {
839            return false;
840        }
841        working = working->fNext;
842    } while (working != angle);
843    do {
844        SkOpAngle* next = working->fNext;
845        working->fNext = nullptr;
846        insert(working);
847        working = next;
848    } while (working != angle);
849    // it's likely that a pair of the angles are unorderable
850    debugValidateNext();
851    return true;
852}
853
854double SkOpAngle::midT() const {
855    return (fStart->t() + fEnd->t()) / 2;
856}
857
858bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const {
859    const SkOpSegment* segment = this->segment();
860    SkPath::Verb verb = segment->verb();
861    const SkPoint& startPt = this->fStart->pt();
862    const SkPoint& endPt = this->fEnd->pt();
863    SkDPoint dStartPt;
864    dStartPt.set(startPt);
865    SkDLine rayMid;
866    rayMid[0].fX = (startPt.fX + endPt.fX) / 2;
867    rayMid[0].fY = (startPt.fY + endPt.fY) / 2;
868    rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY);
869    rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX);
870    SkIntersections iMid;
871    (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid);
872    int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt);
873    if (iOutside < 0) {
874        return false;
875    }
876    const SkOpSegment* oppSegment = rh->segment();
877    SkPath::Verb oppVerb = oppSegment->verb();
878    SkIntersections oppMid;
879    (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid);
880    int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt);
881    if (oppOutside < 0) {
882        return false;
883    }
884    SkDVector iSide = iMid.pt(iOutside) - dStartPt;
885    SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt;
886    double dir = iSide.crossCheck(oppSide);
887    if (!dir) {
888        return false;
889    }
890    *inside = dir < 0;
891    return true;
892}
893
894bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const {
895    int startSpan = SkTAbs(rh->fSectorStart - fSectorStart);
896    return startSpan >= 8;
897}
898
899int SkOpAngle::orderable(SkOpAngle* rh) {
900    int result;
901    if (!fPart.isCurve()) {
902        if (!rh->fPart.isCurve()) {
903            double leftX = fTangentHalf.dx();
904            double leftY = fTangentHalf.dy();
905            double rightX = rh->fTangentHalf.dx();
906            double rightY = rh->fTangentHalf.dy();
907            double x_ry = leftX * rightY;
908            double rx_y = rightX * leftY;
909            if (x_ry == rx_y) {
910                if (leftX * rightX < 0 || leftY * rightY < 0) {
911                    return 1;  // exactly 180 degrees apart
912                }
913                goto unorderable;
914            }
915            SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier
916            return x_ry < rx_y ? 1 : 0;
917        }
918        if ((result = this->lineOnOneSide(rh, false)) >= 0) {
919            return result;
920        }
921        if (fUnorderable || approximately_zero(rh->fSide)) {
922            goto unorderable;
923        }
924    } else if (!rh->fPart.isCurve()) {
925        if ((result = rh->lineOnOneSide(this, false)) >= 0) {
926            return result ? 0 : 1;
927        }
928        if (rh->fUnorderable || approximately_zero(fSide)) {
929            goto unorderable;
930        }
931    } else if ((result = this->convexHullOverlaps(rh)) >= 0) {
932        return result;
933    }
934    return this->endsIntersect(rh) ? 1 : 0;
935unorderable:
936    fUnorderable = true;
937    rh->fUnorderable = true;
938    return -1;
939}
940
941// OPTIMIZE: if this shows up in a profile, add a previous pointer
942// as is, this should be rarely called
943SkOpAngle* SkOpAngle::previous() const {
944    SkOpAngle* last = fNext;
945    do {
946        SkOpAngle* next = last->fNext;
947        if (next == this) {
948            return last;
949        }
950        last = next;
951    } while (true);
952}
953
954SkOpSegment* SkOpAngle::segment() const {
955    return fStart->segment();
956}
957
958void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) {
959    fStart = start;
960    fComputedEnd = fEnd = end;
961    SkASSERT(start != end);
962    fNext = nullptr;
963    fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false;
964    setSpans();
965    setSector();
966    SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1);
967}
968
969void SkOpAngle::setSpans() {
970    fUnorderable = false;
971    fLastMarked = nullptr;
972    if (!fStart) {
973        fUnorderable = true;
974        return;
975    }
976    const SkOpSegment* segment = fStart->segment();
977    const SkPoint* pts = segment->pts();
978    SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb);  // required for SkDCurve debug check
979    SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY
980            = SK_ScalarNaN);   //  make the non-line part uninitialized
981    SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb());  //  set the curve type for real
982    segment->subDivide(fStart, fEnd, &fPart.fCurve);  //  set at least the line part if not more
983    fOriginalCurvePart = fPart.fCurve;
984    const SkPath::Verb verb = segment->verb();
985    fPart.setCurveHullSweep(verb);
986    if (SkPath::kLine_Verb != verb && !fPart.isCurve()) {
987        SkDLine lineHalf;
988        fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)];
989        fOriginalCurvePart[1] = fPart.fCurve[1];
990        lineHalf[0].set(fPart.fCurve[0].asSkPoint());
991        lineHalf[1].set(fPart.fCurve[1].asSkPoint());
992        fTangentHalf.lineEndPoints(lineHalf);
993        fSide = 0;
994    }
995    switch (verb) {
996    case SkPath::kLine_Verb: {
997        SkASSERT(fStart != fEnd);
998        const SkPoint& cP1 = pts[fStart->t() < fEnd->t()];
999        SkDLine lineHalf;
1000        lineHalf[0].set(fStart->pt());
1001        lineHalf[1].set(cP1);
1002        fTangentHalf.lineEndPoints(lineHalf);
1003        fSide = 0;
1004        } return;
1005    case SkPath::kQuad_Verb:
1006    case SkPath::kConic_Verb: {
1007        SkLineParameters tangentPart;
1008        (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad);
1009        fSide = -tangentPart.pointDistance(fPart.fCurve[2]);  // not normalized -- compare sign only
1010        } break;
1011    case SkPath::kCubic_Verb: {
1012        SkLineParameters tangentPart;
1013        (void) tangentPart.cubicPart(fPart.fCurve.fCubic);
1014        fSide = -tangentPart.pointDistance(fPart.fCurve[3]);
1015        double testTs[4];
1016        // OPTIMIZATION: keep inflections precomputed with cubic segment?
1017        int testCount = SkDCubic::FindInflections(pts, testTs);
1018        double startT = fStart->t();
1019        double endT = fEnd->t();
1020        double limitT = endT;
1021        int index;
1022        for (index = 0; index < testCount; ++index) {
1023            if (!::between(startT, testTs[index], limitT)) {
1024                testTs[index] = -1;
1025            }
1026        }
1027        testTs[testCount++] = startT;
1028        testTs[testCount++] = endT;
1029        SkTQSort<double>(testTs, testTs + testCount);
1030        double bestSide = 0;
1031        int testCases = (testCount << 1) - 1;
1032        index = 0;
1033        while (testTs[index] < 0) {
1034            ++index;
1035        }
1036        index <<= 1;
1037        for (; index < testCases; ++index) {
1038            int testIndex = index >> 1;
1039            double testT = testTs[testIndex];
1040            if (index & 1) {
1041                testT = (testT + testTs[testIndex + 1]) / 2;
1042            }
1043            // OPTIMIZE: could avoid call for t == startT, endT
1044            SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT);
1045            SkLineParameters testPart;
1046            testPart.cubicEndPoints(fPart.fCurve.fCubic);
1047            double testSide = testPart.pointDistance(pt);
1048            if (fabs(bestSide) < fabs(testSide)) {
1049                bestSide = testSide;
1050            }
1051        }
1052        fSide = -bestSide;  // compare sign only
1053        } break;
1054    default:
1055        SkASSERT(0);
1056    }
1057}
1058
1059void SkOpAngle::setSector() {
1060    if (!fStart) {
1061        fUnorderable = true;
1062        return;
1063    }
1064    const SkOpSegment* segment = fStart->segment();
1065    SkPath::Verb verb = segment->verb();
1066    fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY);
1067    if (fSectorStart < 0) {
1068        goto deferTilLater;
1069    }
1070    if (!fPart.isCurve()) {  // if it's a line or line-like, note that both sectors are the same
1071        SkASSERT(fSectorStart >= 0);
1072        fSectorEnd = fSectorStart;
1073        fSectorMask = 1 << fSectorStart;
1074        return;
1075    }
1076    SkASSERT(SkPath::kLine_Verb != verb);
1077    fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY);
1078    if (fSectorEnd < 0) {
1079deferTilLater:
1080        fSectorStart = fSectorEnd = -1;
1081        fSectorMask = 0;
1082        fComputeSector = true;  // can't determine sector until segment length can be found
1083        return;
1084    }
1085    if (fSectorEnd == fSectorStart
1086            && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle
1087        fSectorMask = 1 << fSectorStart;
1088        return;
1089    }
1090    bool crossesZero = this->checkCrossesZero();
1091    int start = std::min(fSectorStart, fSectorEnd);
1092    bool curveBendsCCW = (fSectorStart == start) ^ crossesZero;
1093    // bump the start and end of the sector span if they are on exact compass points
1094    if ((fSectorStart & 3) == 3) {
1095        fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f;
1096    }
1097    if ((fSectorEnd & 3) == 3) {
1098        fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f;
1099    }
1100    crossesZero = this->checkCrossesZero();
1101    start = std::min(fSectorStart, fSectorEnd);
1102    int end = std::max(fSectorStart, fSectorEnd);
1103    if (!crossesZero) {
1104        fSectorMask = (unsigned) -1 >> (31 - end + start) << start;
1105    } else {
1106        fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end);
1107    }
1108}
1109
1110SkOpSpan* SkOpAngle::starter() {
1111    return fStart->starter(fEnd);
1112}
1113
1114bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) {
1115    if (s0xt0 == 0) {
1116        return false;
1117    }
1118    // if the ctrl tangents are not nearly parallel, use them
1119    // solve for opposite direction displacement scale factor == m
1120    // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
1121    // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
1122    // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
1123    //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
1124    // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
1125    // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
1126    // m = v1.cross(v2) / v1.dot(v2)
1127    const SkDVector* sweep = fPart.fSweep;
1128    const SkDVector* tweep = rh->fPart.fSweep;
1129    double s0dt0 = sweep[0].dot(tweep[0]);
1130    if (!s0dt0) {
1131        return true;
1132    }
1133    SkASSERT(s0dt0 != 0);
1134    double m = s0xt0 / s0dt0;
1135    double sDist = sweep[0].length() * m;
1136    double tDist = tweep[0].length() * m;
1137    bool useS = fabs(sDist) < fabs(tDist);
1138    double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist));
1139    fTangentsAmbiguous = mFactor >= 50 && mFactor < 200;
1140    return mFactor < 50;   // empirically found limit
1141}
1142