1/* 2 * Copyright 2015 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "src/gpu/geometry/GrTriangulator.h" 9 10#include "src/gpu/BufferWriter.h" 11#include "src/gpu/GrEagerVertexAllocator.h" 12#include "src/gpu/geometry/GrPathUtils.h" 13 14#include "src/core/SkGeometry.h" 15#include "src/core/SkPointPriv.h" 16 17#include <algorithm> 18 19 20#if TRIANGULATOR_LOGGING 21#define TESS_LOG printf 22#define DUMP_MESH(M) (M).dump() 23#else 24#define TESS_LOG(...) 25#define DUMP_MESH(M) 26#endif 27 28using EdgeType = GrTriangulator::EdgeType; 29using Vertex = GrTriangulator::Vertex; 30using VertexList = GrTriangulator::VertexList; 31using Line = GrTriangulator::Line; 32using Edge = GrTriangulator::Edge; 33using EdgeList = GrTriangulator::EdgeList; 34using Poly = GrTriangulator::Poly; 35using MonotonePoly = GrTriangulator::MonotonePoly; 36using Comparator = GrTriangulator::Comparator; 37 38template <class T, T* T::*Prev, T* T::*Next> 39static void list_insert(T* t, T* prev, T* next, T** head, T** tail) { 40 t->*Prev = prev; 41 t->*Next = next; 42 if (prev) { 43 prev->*Next = t; 44 } else if (head) { 45 *head = t; 46 } 47 if (next) { 48 next->*Prev = t; 49 } else if (tail) { 50 *tail = t; 51 } 52} 53 54template <class T, T* T::*Prev, T* T::*Next> 55static void list_remove(T* t, T** head, T** tail) { 56 if (t->*Prev) { 57 t->*Prev->*Next = t->*Next; 58 } else if (head) { 59 *head = t->*Next; 60 } 61 if (t->*Next) { 62 t->*Next->*Prev = t->*Prev; 63 } else if (tail) { 64 *tail = t->*Prev; 65 } 66 t->*Prev = t->*Next = nullptr; 67} 68 69typedef bool (*CompareFunc)(const SkPoint& a, const SkPoint& b); 70 71static bool sweep_lt_horiz(const SkPoint& a, const SkPoint& b) { 72 return a.fX < b.fX || (a.fX == b.fX && a.fY > b.fY); 73} 74 75static bool sweep_lt_vert(const SkPoint& a, const SkPoint& b) { 76 return a.fY < b.fY || (a.fY == b.fY && a.fX < b.fX); 77} 78 79bool GrTriangulator::Comparator::sweep_lt(const SkPoint& a, const SkPoint& b) const { 80 return fDirection == Direction::kHorizontal ? sweep_lt_horiz(a, b) : sweep_lt_vert(a, b); 81} 82 83static inline void* emit_vertex(Vertex* v, bool emitCoverage, void* data) { 84 skgpu::VertexWriter verts{data}; 85 verts << v->fPoint; 86 87 if (emitCoverage) { 88 verts << GrNormalizeByteToFloat(v->fAlpha); 89 } 90 91 return verts.ptr(); 92} 93 94static void* emit_triangle(Vertex* v0, Vertex* v1, Vertex* v2, bool emitCoverage, void* data) { 95 TESS_LOG("emit_triangle %g (%g, %g) %d\n", v0->fID, v0->fPoint.fX, v0->fPoint.fY, v0->fAlpha); 96 TESS_LOG(" %g (%g, %g) %d\n", v1->fID, v1->fPoint.fX, v1->fPoint.fY, v1->fAlpha); 97 TESS_LOG(" %g (%g, %g) %d\n", v2->fID, v2->fPoint.fX, v2->fPoint.fY, v2->fAlpha); 98#if TESSELLATOR_WIREFRAME 99 data = emit_vertex(v0, emitCoverage, data); 100 data = emit_vertex(v1, emitCoverage, data); 101 data = emit_vertex(v1, emitCoverage, data); 102 data = emit_vertex(v2, emitCoverage, data); 103 data = emit_vertex(v2, emitCoverage, data); 104 data = emit_vertex(v0, emitCoverage, data); 105#else 106 data = emit_vertex(v0, emitCoverage, data); 107 data = emit_vertex(v1, emitCoverage, data); 108 data = emit_vertex(v2, emitCoverage, data); 109#endif 110 return data; 111} 112 113void GrTriangulator::VertexList::insert(Vertex* v, Vertex* prev, Vertex* next) { 114 list_insert<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, prev, next, &fHead, &fTail); 115} 116 117void GrTriangulator::VertexList::remove(Vertex* v) { 118 list_remove<Vertex, &Vertex::fPrev, &Vertex::fNext>(v, &fHead, &fTail); 119} 120 121// Round to nearest quarter-pixel. This is used for screenspace tessellation. 122 123static inline void round(SkPoint* p) { 124 p->fX = SkScalarRoundToScalar(p->fX * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f); 125 p->fY = SkScalarRoundToScalar(p->fY * SkFloatToScalar(4.0f)) * SkFloatToScalar(0.25f); 126} 127 128static inline SkScalar double_to_clamped_scalar(double d) { 129 // Clamps large values to what's finitely representable when cast back to a float. 130 static const double kMaxLimit = (double) SK_ScalarMax; 131 // It's not perfect, but a using a value larger than float_min helps protect from denormalized 132 // values and ill-conditions in intermediate calculations on coordinates. 133 static const double kNearZeroLimit = 16 * (double) std::numeric_limits<float>::min(); 134 if (std::abs(d) < kNearZeroLimit) { 135 d = 0.f; 136 } 137 return SkDoubleToScalar(std::max(-kMaxLimit, std::min(d, kMaxLimit))); 138} 139 140bool GrTriangulator::Line::intersect(const Line& other, SkPoint* point) const { 141 double denom = fA * other.fB - fB * other.fA; 142 if (denom == 0.0) { 143 return false; 144 } 145 double scale = 1.0 / denom; 146 point->fX = double_to_clamped_scalar((fB * other.fC - other.fB * fC) * scale); 147 point->fY = double_to_clamped_scalar((other.fA * fC - fA * other.fC) * scale); 148 round(point); 149 return point->isFinite(); 150} 151 152// If the edge's vertices differ by many orders of magnitude, the computed line equation can have 153// significant error in its distance and intersection tests. To avoid this, we recursively subdivide 154// long edges and effectively perform a binary search to perform a more accurate intersection test. 155static bool edge_line_needs_recursion(const SkPoint& p0, const SkPoint& p1) { 156 // ilogbf(0) returns an implementation-defined constant, but we are choosing to saturate 157 // negative exponents to 0 for comparisons sake. We're only trying to recurse on lines with 158 // very large coordinates. 159 int expDiffX = std::abs((std::abs(p0.fX) < 1.f ? 0 : std::ilogbf(p0.fX)) - 160 (std::abs(p1.fX) < 1.f ? 0 : std::ilogbf(p1.fX))); 161 int expDiffY = std::abs((std::abs(p0.fY) < 1.f ? 0 : std::ilogbf(p0.fY)) - 162 (std::abs(p1.fY) < 1.f ? 0 : std::ilogbf(p1.fY))); 163 // Differ by more than 2^20, or roughly a factor of one million. 164 return expDiffX > 20 || expDiffY > 20; 165} 166 167static bool recursive_edge_intersect(const Line& u, SkPoint u0, SkPoint u1, 168 const Line& v, SkPoint v0, SkPoint v1, 169 SkPoint* p, double* s, double* t) { 170 // First check if the bounding boxes of [u0,u1] intersects [v0,v1]. If they do not, then the 171 // two line segments cannot intersect in their domain (even if the lines themselves might). 172 // - don't use SkRect::intersect since the vertices aren't sorted and horiz/vertical lines 173 // appear as empty rects, which then never "intersect" according to SkRect. 174 if (std::min(u0.fX, u1.fX) > std::max(v0.fX, v1.fX) || 175 std::max(u0.fX, u1.fX) < std::min(v0.fX, v1.fX) || 176 std::min(u0.fY, u1.fY) > std::max(v0.fY, v1.fY) || 177 std::max(u0.fY, u1.fY) < std::min(v0.fY, v1.fY)) { 178 return false; 179 } 180 181 // Compute intersection based on current segment vertices; if an intersection is found but the 182 // vertices differ too much in magnitude, we recurse using the midpoint of the segment to 183 // reject false positives. We don't currently try to avoid false negatives (e.g. large magnitude 184 // line reports no intersection but there is one). 185 double denom = u.fA * v.fB - u.fB * v.fA; 186 if (denom == 0.0) { 187 return false; 188 } 189 double dx = static_cast<double>(v0.fX) - u0.fX; 190 double dy = static_cast<double>(v0.fY) - u0.fY; 191 double sNumer = dy * v.fB + dx * v.fA; 192 double tNumer = dy * u.fB + dx * u.fA; 193 // If (sNumer / denom) or (tNumer / denom) is not in [0..1], exit early. 194 // This saves us doing the divide below unless absolutely necessary. 195 if (denom > 0.0 ? (sNumer < 0.0 || sNumer > denom || tNumer < 0.0 || tNumer > denom) 196 : (sNumer > 0.0 || sNumer < denom || tNumer > 0.0 || tNumer < denom)) { 197 return false; 198 } 199 200 *s = sNumer / denom; 201 *t = tNumer / denom; 202 SkASSERT(*s >= 0.0 && *s <= 1.0 && *t >= 0.0 && *t <= 1.0); 203 204 const bool uNeedsSplit = edge_line_needs_recursion(u0, u1); 205 const bool vNeedsSplit = edge_line_needs_recursion(v0, v1); 206 if (!uNeedsSplit && !vNeedsSplit) { 207 p->fX = double_to_clamped_scalar(u0.fX - (*s) * u.fB); 208 p->fY = double_to_clamped_scalar(u0.fY + (*s) * u.fA); 209 return true; 210 } else { 211 double sScale = 1.0, sShift = 0.0; 212 double tScale = 1.0, tShift = 0.0; 213 214 if (uNeedsSplit) { 215 SkPoint uM = {(float) (0.5 * u0.fX + 0.5 * u1.fX), 216 (float) (0.5 * u0.fY + 0.5 * u1.fY)}; 217 sScale = 0.5; 218 if (*s >= 0.5) { 219 u1 = uM; 220 sShift = 0.5; 221 } else { 222 u0 = uM; 223 } 224 } 225 if (vNeedsSplit) { 226 SkPoint vM = {(float) (0.5 * v0.fX + 0.5 * v1.fX), 227 (float) (0.5 * v0.fY + 0.5 * v1.fY)}; 228 tScale = 0.5; 229 if (*t >= 0.5) { 230 v1 = vM; 231 tShift = 0.5; 232 } else { 233 v0 = vM; 234 } 235 } 236 237 // Just recompute both lines, even if only one was split; we're already in a slow path. 238 if (recursive_edge_intersect(Line(u0, u1), u0, u1, Line(v0, v1), v0, v1, p, s, t)) { 239 // Adjust s and t back to full range 240 *s = sScale * (*s) + sShift; 241 *t = tScale * (*t) + tShift; 242 return true; 243 } else { 244 // False positive 245 return false; 246 } 247 } 248} 249 250bool GrTriangulator::Edge::intersect(const Edge& other, SkPoint* p, uint8_t* alpha) const { 251 TESS_LOG("intersecting %g -> %g with %g -> %g\n", 252 fTop->fID, fBottom->fID, other.fTop->fID, other.fBottom->fID); 253 if (fTop == other.fTop || fBottom == other.fBottom || 254 fTop == other.fBottom || fBottom == other.fTop) { 255 // If the two edges share a vertex by construction, they have already been split and 256 // shouldn't be considered "intersecting" anymore. 257 return false; 258 } 259 260 double s, t; // needed to interpolate vertex alpha 261 const bool intersects = recursive_edge_intersect( 262 fLine, fTop->fPoint, fBottom->fPoint, 263 other.fLine, other.fTop->fPoint, other.fBottom->fPoint, 264 p, &s, &t); 265 if (!intersects) { 266 return false; 267 } 268 269 if (alpha) { 270 if (fType == EdgeType::kInner || other.fType == EdgeType::kInner) { 271 // If the intersection is on any interior edge, it needs to stay fully opaque or later 272 // triangulation could leech transparency into the inner fill region. 273 *alpha = 255; 274 } else if (fType == EdgeType::kOuter && other.fType == EdgeType::kOuter) { 275 // Trivially, the intersection will be fully transparent since since it is by 276 // construction on the outer edge. 277 *alpha = 0; 278 } else { 279 // Could be two connectors crossing, or a connector crossing an outer edge. 280 // Take the max interpolated alpha 281 SkASSERT(fType == EdgeType::kConnector || other.fType == EdgeType::kConnector); 282 *alpha = std::max((1.0 - s) * fTop->fAlpha + s * fBottom->fAlpha, 283 (1.0 - t) * other.fTop->fAlpha + t * other.fBottom->fAlpha); 284 } 285 } 286 return true; 287} 288 289void GrTriangulator::EdgeList::insert(Edge* edge, Edge* prev, Edge* next) { 290 list_insert<Edge, &Edge::fLeft, &Edge::fRight>(edge, prev, next, &fHead, &fTail); 291} 292 293void GrTriangulator::EdgeList::remove(Edge* edge) { 294 TESS_LOG("removing edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); 295 SkASSERT(this->contains(edge)); 296 list_remove<Edge, &Edge::fLeft, &Edge::fRight>(edge, &fHead, &fTail); 297} 298 299void GrTriangulator::MonotonePoly::addEdge(Edge* edge) { 300 if (fSide == kRight_Side) { 301 SkASSERT(!edge->fUsedInRightPoly); 302 list_insert<Edge, &Edge::fRightPolyPrev, &Edge::fRightPolyNext>( 303 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); 304 edge->fUsedInRightPoly = true; 305 } else { 306 SkASSERT(!edge->fUsedInLeftPoly); 307 list_insert<Edge, &Edge::fLeftPolyPrev, &Edge::fLeftPolyNext>( 308 edge, fLastEdge, nullptr, &fFirstEdge, &fLastEdge); 309 edge->fUsedInLeftPoly = true; 310 } 311} 312 313void* GrTriangulator::emitMonotonePoly(const MonotonePoly* monotonePoly, void* data) const { 314 SkASSERT(monotonePoly->fWinding != 0); 315 Edge* e = monotonePoly->fFirstEdge; 316 VertexList vertices; 317 vertices.append(e->fTop); 318 int count = 1; 319 while (e != nullptr) { 320 if (kRight_Side == monotonePoly->fSide) { 321 vertices.append(e->fBottom); 322 e = e->fRightPolyNext; 323 } else { 324 vertices.prepend(e->fBottom); 325 e = e->fLeftPolyNext; 326 } 327 count++; 328 } 329 Vertex* first = vertices.fHead; 330 Vertex* v = first->fNext; 331 while (v != vertices.fTail) { 332 SkASSERT(v && v->fPrev && v->fNext); 333 Vertex* prev = v->fPrev; 334 Vertex* curr = v; 335 Vertex* next = v->fNext; 336 if (count == 3) { 337 return this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data); 338 } 339 double ax = static_cast<double>(curr->fPoint.fX) - prev->fPoint.fX; 340 double ay = static_cast<double>(curr->fPoint.fY) - prev->fPoint.fY; 341 double bx = static_cast<double>(next->fPoint.fX) - curr->fPoint.fX; 342 double by = static_cast<double>(next->fPoint.fY) - curr->fPoint.fY; 343 if (ax * by - ay * bx >= 0.0) { 344 data = this->emitTriangle(prev, curr, next, monotonePoly->fWinding, data); 345 v->fPrev->fNext = v->fNext; 346 v->fNext->fPrev = v->fPrev; 347 count--; 348 if (v->fPrev == first) { 349 v = v->fNext; 350 } else { 351 v = v->fPrev; 352 } 353 } else { 354 v = v->fNext; 355 } 356 } 357 return data; 358} 359 360void* GrTriangulator::emitTriangle(Vertex* prev, Vertex* curr, Vertex* next, int winding, 361 void* data) const { 362 if (winding > 0) { 363 // Ensure our triangles always wind in the same direction as if the path had been 364 // triangulated as a simple fan (a la red book). 365 std::swap(prev, next); 366 } 367 if (fCollectBreadcrumbTriangles && abs(winding) > 1 && 368 fPath.getFillType() == SkPathFillType::kWinding) { 369 // The first winding count will come from the actual triangle we emit. The remaining counts 370 // come from the breadcrumb triangle. 371 fBreadcrumbList.append(fAlloc, prev->fPoint, curr->fPoint, next->fPoint, abs(winding) - 1); 372 } 373 return emit_triangle(prev, curr, next, fEmitCoverage, data); 374} 375 376GrTriangulator::Poly::Poly(Vertex* v, int winding) 377 : fFirstVertex(v) 378 , fWinding(winding) 379 , fHead(nullptr) 380 , fTail(nullptr) 381 , fNext(nullptr) 382 , fPartner(nullptr) 383 , fCount(0) 384{ 385#if TRIANGULATOR_LOGGING 386 static int gID = 0; 387 fID = gID++; 388 TESS_LOG("*** created Poly %d\n", fID); 389#endif 390} 391 392Poly* GrTriangulator::Poly::addEdge(Edge* e, Side side, SkArenaAlloc* alloc) { 393 TESS_LOG("addEdge (%g -> %g) to poly %d, %s side\n", 394 e->fTop->fID, e->fBottom->fID, fID, side == kLeft_Side ? "left" : "right"); 395 Poly* partner = fPartner; 396 Poly* poly = this; 397 if (side == kRight_Side) { 398 if (e->fUsedInRightPoly) { 399 return this; 400 } 401 } else { 402 if (e->fUsedInLeftPoly) { 403 return this; 404 } 405 } 406 if (partner) { 407 fPartner = partner->fPartner = nullptr; 408 } 409 if (!fTail) { 410 fHead = fTail = alloc->make<MonotonePoly>(e, side, fWinding); 411 fCount += 2; 412 } else if (e->fBottom == fTail->fLastEdge->fBottom) { 413 return poly; 414 } else if (side == fTail->fSide) { 415 fTail->addEdge(e); 416 fCount++; 417 } else { 418 e = alloc->make<Edge>(fTail->fLastEdge->fBottom, e->fBottom, 1, EdgeType::kInner); 419 fTail->addEdge(e); 420 fCount++; 421 if (partner) { 422 partner->addEdge(e, side, alloc); 423 poly = partner; 424 } else { 425 MonotonePoly* m = alloc->make<MonotonePoly>(e, side, fWinding); 426 m->fPrev = fTail; 427 fTail->fNext = m; 428 fTail = m; 429 } 430 } 431 return poly; 432} 433void* GrTriangulator::emitPoly(const Poly* poly, void *data) const { 434 if (poly->fCount < 3) { 435 return data; 436 } 437 TESS_LOG("emit() %d, size %d\n", poly->fID, poly->fCount); 438 for (MonotonePoly* m = poly->fHead; m != nullptr; m = m->fNext) { 439 data = this->emitMonotonePoly(m, data); 440 } 441 return data; 442} 443 444static bool coincident(const SkPoint& a, const SkPoint& b) { 445 return a == b; 446} 447 448Poly* GrTriangulator::makePoly(Poly** head, Vertex* v, int winding) const { 449 Poly* poly = fAlloc->make<Poly>(v, winding); 450 poly->fNext = *head; 451 *head = poly; 452 return poly; 453} 454 455void GrTriangulator::appendPointToContour(const SkPoint& p, VertexList* contour) const { 456 Vertex* v = fAlloc->make<Vertex>(p, 255); 457#if TRIANGULATOR_LOGGING 458 static float gID = 0.0f; 459 v->fID = gID++; 460#endif 461 contour->append(v); 462} 463 464static SkScalar quad_error_at(const SkPoint pts[3], SkScalar t, SkScalar u) { 465 SkQuadCoeff quad(pts); 466 SkPoint p0 = to_point(quad.eval(t - 0.5f * u)); 467 SkPoint mid = to_point(quad.eval(t)); 468 SkPoint p1 = to_point(quad.eval(t + 0.5f * u)); 469 if (!p0.isFinite() || !mid.isFinite() || !p1.isFinite()) { 470 return 0; 471 } 472 return SkPointPriv::DistanceToLineSegmentBetweenSqd(mid, p0, p1); 473} 474 475void GrTriangulator::appendQuadraticToContour(const SkPoint pts[3], SkScalar toleranceSqd, 476 VertexList* contour) const { 477 SkQuadCoeff quad(pts); 478 Sk2s aa = quad.fA * quad.fA; 479 SkScalar denom = 2.0f * (aa[0] + aa[1]); 480 Sk2s ab = quad.fA * quad.fB; 481 SkScalar t = denom ? (-ab[0] - ab[1]) / denom : 0.0f; 482 int nPoints = 1; 483 SkScalar u = 1.0f; 484 // Test possible subdivision values only at the point of maximum curvature. 485 // If it passes the flatness metric there, it'll pass everywhere. 486 while (nPoints < GrPathUtils::kMaxPointsPerCurve) { 487 u = 1.0f / nPoints; 488 if (quad_error_at(pts, t, u) < toleranceSqd) { 489 break; 490 } 491 nPoints++; 492 } 493 for (int j = 1; j <= nPoints; j++) { 494 this->appendPointToContour(to_point(quad.eval(j * u)), contour); 495 } 496} 497 498void GrTriangulator::generateCubicPoints(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2, 499 const SkPoint& p3, SkScalar tolSqd, VertexList* contour, 500 int pointsLeft) const { 501 SkScalar d1 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3); 502 SkScalar d2 = SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3); 503 if (pointsLeft < 2 || (d1 < tolSqd && d2 < tolSqd) || 504 !SkScalarIsFinite(d1) || !SkScalarIsFinite(d2)) { 505 this->appendPointToContour(p3, contour); 506 return; 507 } 508 const SkPoint q[] = { 509 { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, 510 { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, 511 { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } 512 }; 513 const SkPoint r[] = { 514 { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, 515 { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } 516 }; 517 const SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; 518 pointsLeft >>= 1; 519 this->generateCubicPoints(p0, q[0], r[0], s, tolSqd, contour, pointsLeft); 520 this->generateCubicPoints(s, r[1], q[2], p3, tolSqd, contour, pointsLeft); 521} 522 523// Stage 1: convert the input path to a set of linear contours (linked list of Vertices). 524 525void GrTriangulator::pathToContours(float tolerance, const SkRect& clipBounds, 526 VertexList* contours, bool* isLinear) const { 527 SkScalar toleranceSqd = tolerance * tolerance; 528 SkPoint pts[4]; 529 *isLinear = true; 530 VertexList* contour = contours; 531 SkPath::Iter iter(fPath, false); 532 if (fPath.isInverseFillType()) { 533 SkPoint quad[4]; 534 clipBounds.toQuad(quad); 535 for (int i = 3; i >= 0; i--) { 536 this->appendPointToContour(quad[i], contours); 537 } 538 contour++; 539 } 540 SkAutoConicToQuads converter; 541 SkPath::Verb verb; 542 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { 543 switch (verb) { 544 case SkPath::kConic_Verb: { 545 *isLinear = false; 546 if (toleranceSqd == 0) { 547 this->appendPointToContour(pts[2], contour); 548 break; 549 } 550 SkScalar weight = iter.conicWeight(); 551 const SkPoint* quadPts = converter.computeQuads(pts, weight, toleranceSqd); 552 for (int i = 0; i < converter.countQuads(); ++i) { 553 this->appendQuadraticToContour(quadPts, toleranceSqd, contour); 554 quadPts += 2; 555 } 556 break; 557 } 558 case SkPath::kMove_Verb: 559 if (contour->fHead) { 560 contour++; 561 } 562 this->appendPointToContour(pts[0], contour); 563 break; 564 case SkPath::kLine_Verb: { 565 this->appendPointToContour(pts[1], contour); 566 break; 567 } 568 case SkPath::kQuad_Verb: { 569 *isLinear = false; 570 if (toleranceSqd == 0) { 571 this->appendPointToContour(pts[2], contour); 572 break; 573 } 574 this->appendQuadraticToContour(pts, toleranceSqd, contour); 575 break; 576 } 577 case SkPath::kCubic_Verb: { 578 *isLinear = false; 579 if (toleranceSqd == 0) { 580 this->appendPointToContour(pts[3], contour); 581 break; 582 } 583 int pointsLeft = GrPathUtils::cubicPointCount(pts, tolerance); 584 this->generateCubicPoints(pts[0], pts[1], pts[2], pts[3], toleranceSqd, contour, 585 pointsLeft); 586 break; 587 } 588 case SkPath::kClose_Verb: 589 case SkPath::kDone_Verb: 590 break; 591 } 592 } 593} 594 595static inline bool apply_fill_type(SkPathFillType fillType, int winding) { 596 switch (fillType) { 597 case SkPathFillType::kWinding: 598 return winding != 0; 599 case SkPathFillType::kEvenOdd: 600 return (winding & 1) != 0; 601 case SkPathFillType::kInverseWinding: 602 return winding == 1; 603 case SkPathFillType::kInverseEvenOdd: 604 return (winding & 1) == 1; 605 default: 606 SkASSERT(false); 607 return false; 608 } 609} 610 611bool GrTriangulator::applyFillType(int winding) const { 612 return apply_fill_type(fPath.getFillType(), winding); 613} 614 615static inline bool apply_fill_type(SkPathFillType fillType, Poly* poly) { 616 return poly && apply_fill_type(fillType, poly->fWinding); 617} 618 619Edge* GrTriangulator::makeEdge(Vertex* prev, Vertex* next, EdgeType type, 620 const Comparator& c) const { 621 SkASSERT(prev->fPoint != next->fPoint); 622 int winding = c.sweep_lt(prev->fPoint, next->fPoint) ? 1 : -1; 623 Vertex* top = winding < 0 ? next : prev; 624 Vertex* bottom = winding < 0 ? prev : next; 625 return fAlloc->make<Edge>(top, bottom, winding, type); 626} 627 628void EdgeList::insert(Edge* edge, Edge* prev) { 629 TESS_LOG("inserting edge %g -> %g\n", edge->fTop->fID, edge->fBottom->fID); 630 SkASSERT(!this->contains(edge)); 631 Edge* next = prev ? prev->fRight : fHead; 632 this->insert(edge, prev, next); 633} 634 635void GrTriangulator::FindEnclosingEdges(Vertex* v, EdgeList* edges, Edge** left, Edge** right) { 636 if (v->fFirstEdgeAbove && v->fLastEdgeAbove) { 637 *left = v->fFirstEdgeAbove->fLeft; 638 *right = v->fLastEdgeAbove->fRight; 639 return; 640 } 641 Edge* next = nullptr; 642 Edge* prev; 643 for (prev = edges->fTail; prev != nullptr; prev = prev->fLeft) { 644 if (prev->isLeftOf(v)) { 645 break; 646 } 647 next = prev; 648 } 649 *left = prev; 650 *right = next; 651} 652 653void GrTriangulator::Edge::insertAbove(Vertex* v, const Comparator& c) { 654 if (fTop->fPoint == fBottom->fPoint || 655 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) { 656 return; 657 } 658 TESS_LOG("insert edge (%g -> %g) above vertex %g\n", fTop->fID, fBottom->fID, v->fID); 659 Edge* prev = nullptr; 660 Edge* next; 661 for (next = v->fFirstEdgeAbove; next; next = next->fNextEdgeAbove) { 662 if (next->isRightOf(fTop)) { 663 break; 664 } 665 prev = next; 666 } 667 list_insert<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( 668 this, prev, next, &v->fFirstEdgeAbove, &v->fLastEdgeAbove); 669} 670 671void GrTriangulator::Edge::insertBelow(Vertex* v, const Comparator& c) { 672 if (fTop->fPoint == fBottom->fPoint || 673 c.sweep_lt(fBottom->fPoint, fTop->fPoint)) { 674 return; 675 } 676 TESS_LOG("insert edge (%g -> %g) below vertex %g\n", fTop->fID, fBottom->fID, v->fID); 677 Edge* prev = nullptr; 678 Edge* next; 679 for (next = v->fFirstEdgeBelow; next; next = next->fNextEdgeBelow) { 680 if (next->isRightOf(fBottom)) { 681 break; 682 } 683 prev = next; 684 } 685 list_insert<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( 686 this, prev, next, &v->fFirstEdgeBelow, &v->fLastEdgeBelow); 687} 688 689static void remove_edge_above(Edge* edge) { 690 SkASSERT(edge->fTop && edge->fBottom); 691 TESS_LOG("removing edge (%g -> %g) above vertex %g\n", edge->fTop->fID, edge->fBottom->fID, 692 edge->fBottom->fID); 693 list_remove<Edge, &Edge::fPrevEdgeAbove, &Edge::fNextEdgeAbove>( 694 edge, &edge->fBottom->fFirstEdgeAbove, &edge->fBottom->fLastEdgeAbove); 695} 696 697static void remove_edge_below(Edge* edge) { 698 SkASSERT(edge->fTop && edge->fBottom); 699 TESS_LOG("removing edge (%g -> %g) below vertex %g\n", 700 edge->fTop->fID, edge->fBottom->fID, edge->fTop->fID); 701 list_remove<Edge, &Edge::fPrevEdgeBelow, &Edge::fNextEdgeBelow>( 702 edge, &edge->fTop->fFirstEdgeBelow, &edge->fTop->fLastEdgeBelow); 703} 704 705void GrTriangulator::Edge::disconnect() { 706 remove_edge_above(this); 707 remove_edge_below(this); 708} 709 710static void rewind(EdgeList* activeEdges, Vertex** current, Vertex* dst, const Comparator& c) { 711 if (!current || *current == dst || c.sweep_lt((*current)->fPoint, dst->fPoint)) { 712 return; 713 } 714 Vertex* v = *current; 715 TESS_LOG("rewinding active edges from vertex %g to vertex %g\n", v->fID, dst->fID); 716 while (v != dst) { 717 v = v->fPrev; 718 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { 719 activeEdges->remove(e); 720 } 721 Edge* leftEdge = v->fLeftEnclosingEdge; 722 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { 723 activeEdges->insert(e, leftEdge); 724 leftEdge = e; 725 Vertex* top = e->fTop; 726 if (c.sweep_lt(top->fPoint, dst->fPoint) && 727 ((top->fLeftEnclosingEdge && !top->fLeftEnclosingEdge->isLeftOf(e->fTop)) || 728 (top->fRightEnclosingEdge && !top->fRightEnclosingEdge->isRightOf(e->fTop)))) { 729 dst = top; 730 } 731 } 732 } 733 *current = v; 734} 735 736static void rewind_if_necessary(Edge* edge, EdgeList* activeEdges, Vertex** current, 737 const Comparator& c) { 738 if (!activeEdges || !current) { 739 return; 740 } 741 Vertex* top = edge->fTop; 742 Vertex* bottom = edge->fBottom; 743 if (edge->fLeft) { 744 Vertex* leftTop = edge->fLeft->fTop; 745 Vertex* leftBottom = edge->fLeft->fBottom; 746 if (c.sweep_lt(leftTop->fPoint, top->fPoint) && !edge->fLeft->isLeftOf(top)) { 747 rewind(activeEdges, current, leftTop, c); 748 } else if (c.sweep_lt(top->fPoint, leftTop->fPoint) && !edge->isRightOf(leftTop)) { 749 rewind(activeEdges, current, top, c); 750 } else if (c.sweep_lt(bottom->fPoint, leftBottom->fPoint) && 751 !edge->fLeft->isLeftOf(bottom)) { 752 rewind(activeEdges, current, leftTop, c); 753 } else if (c.sweep_lt(leftBottom->fPoint, bottom->fPoint) && !edge->isRightOf(leftBottom)) { 754 rewind(activeEdges, current, top, c); 755 } 756 } 757 if (edge->fRight) { 758 Vertex* rightTop = edge->fRight->fTop; 759 Vertex* rightBottom = edge->fRight->fBottom; 760 if (c.sweep_lt(rightTop->fPoint, top->fPoint) && !edge->fRight->isRightOf(top)) { 761 rewind(activeEdges, current, rightTop, c); 762 } else if (c.sweep_lt(top->fPoint, rightTop->fPoint) && !edge->isLeftOf(rightTop)) { 763 rewind(activeEdges, current, top, c); 764 } else if (c.sweep_lt(bottom->fPoint, rightBottom->fPoint) && 765 !edge->fRight->isRightOf(bottom)) { 766 rewind(activeEdges, current, rightTop, c); 767 } else if (c.sweep_lt(rightBottom->fPoint, bottom->fPoint) && 768 !edge->isLeftOf(rightBottom)) { 769 rewind(activeEdges, current, top, c); 770 } 771 } 772} 773 774void GrTriangulator::setTop(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 775 const Comparator& c) const { 776 remove_edge_below(edge); 777 if (fCollectBreadcrumbTriangles) { 778 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint, 779 edge->fWinding); 780 } 781 edge->fTop = v; 782 edge->recompute(); 783 edge->insertBelow(v, c); 784 rewind_if_necessary(edge, activeEdges, current, c); 785 this->mergeCollinearEdges(edge, activeEdges, current, c); 786} 787 788void GrTriangulator::setBottom(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 789 const Comparator& c) const { 790 remove_edge_above(edge); 791 if (fCollectBreadcrumbTriangles) { 792 fBreadcrumbList.append(fAlloc, edge->fTop->fPoint, edge->fBottom->fPoint, v->fPoint, 793 edge->fWinding); 794 } 795 edge->fBottom = v; 796 edge->recompute(); 797 edge->insertAbove(v, c); 798 rewind_if_necessary(edge, activeEdges, current, c); 799 this->mergeCollinearEdges(edge, activeEdges, current, c); 800} 801 802void GrTriangulator::mergeEdgesAbove(Edge* edge, Edge* other, EdgeList* activeEdges, 803 Vertex** current, const Comparator& c) const { 804 if (coincident(edge->fTop->fPoint, other->fTop->fPoint)) { 805 TESS_LOG("merging coincident above edges (%g, %g) -> (%g, %g)\n", 806 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, 807 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); 808 rewind(activeEdges, current, edge->fTop, c); 809 other->fWinding += edge->fWinding; 810 edge->disconnect(); 811 edge->fTop = edge->fBottom = nullptr; 812 } else if (c.sweep_lt(edge->fTop->fPoint, other->fTop->fPoint)) { 813 rewind(activeEdges, current, edge->fTop, c); 814 other->fWinding += edge->fWinding; 815 this->setBottom(edge, other->fTop, activeEdges, current, c); 816 } else { 817 rewind(activeEdges, current, other->fTop, c); 818 edge->fWinding += other->fWinding; 819 this->setBottom(other, edge->fTop, activeEdges, current, c); 820 } 821} 822 823void GrTriangulator::mergeEdgesBelow(Edge* edge, Edge* other, EdgeList* activeEdges, 824 Vertex** current, const Comparator& c) const { 825 if (coincident(edge->fBottom->fPoint, other->fBottom->fPoint)) { 826 TESS_LOG("merging coincident below edges (%g, %g) -> (%g, %g)\n", 827 edge->fTop->fPoint.fX, edge->fTop->fPoint.fY, 828 edge->fBottom->fPoint.fX, edge->fBottom->fPoint.fY); 829 rewind(activeEdges, current, edge->fTop, c); 830 other->fWinding += edge->fWinding; 831 edge->disconnect(); 832 edge->fTop = edge->fBottom = nullptr; 833 } else if (c.sweep_lt(edge->fBottom->fPoint, other->fBottom->fPoint)) { 834 rewind(activeEdges, current, other->fTop, c); 835 edge->fWinding += other->fWinding; 836 this->setTop(other, edge->fBottom, activeEdges, current, c); 837 } else { 838 rewind(activeEdges, current, edge->fTop, c); 839 other->fWinding += edge->fWinding; 840 this->setTop(edge, other->fBottom, activeEdges, current, c); 841 } 842} 843 844static bool top_collinear(Edge* left, Edge* right) { 845 if (!left || !right) { 846 return false; 847 } 848 return left->fTop->fPoint == right->fTop->fPoint || 849 !left->isLeftOf(right->fTop) || !right->isRightOf(left->fTop); 850} 851 852static bool bottom_collinear(Edge* left, Edge* right) { 853 if (!left || !right) { 854 return false; 855 } 856 return left->fBottom->fPoint == right->fBottom->fPoint || 857 !left->isLeftOf(right->fBottom) || !right->isRightOf(left->fBottom); 858} 859 860void GrTriangulator::mergeCollinearEdges(Edge* edge, EdgeList* activeEdges, Vertex** current, 861 const Comparator& c) const { 862 for (;;) { 863 if (top_collinear(edge->fPrevEdgeAbove, edge)) { 864 this->mergeEdgesAbove(edge->fPrevEdgeAbove, edge, activeEdges, current, c); 865 } else if (top_collinear(edge, edge->fNextEdgeAbove)) { 866 this->mergeEdgesAbove(edge->fNextEdgeAbove, edge, activeEdges, current, c); 867 } else if (bottom_collinear(edge->fPrevEdgeBelow, edge)) { 868 this->mergeEdgesBelow(edge->fPrevEdgeBelow, edge, activeEdges, current, c); 869 } else if (bottom_collinear(edge, edge->fNextEdgeBelow)) { 870 this->mergeEdgesBelow(edge->fNextEdgeBelow, edge, activeEdges, current, c); 871 } else { 872 break; 873 } 874 } 875 SkASSERT(!top_collinear(edge->fPrevEdgeAbove, edge)); 876 SkASSERT(!top_collinear(edge, edge->fNextEdgeAbove)); 877 SkASSERT(!bottom_collinear(edge->fPrevEdgeBelow, edge)); 878 SkASSERT(!bottom_collinear(edge, edge->fNextEdgeBelow)); 879} 880 881bool GrTriangulator::splitEdge(Edge* edge, Vertex* v, EdgeList* activeEdges, Vertex** current, 882 const Comparator& c) const { 883 if (!edge->fTop || !edge->fBottom || v == edge->fTop || v == edge->fBottom) { 884 return false; 885 } 886 TESS_LOG("splitting edge (%g -> %g) at vertex %g (%g, %g)\n", 887 edge->fTop->fID, edge->fBottom->fID, v->fID, v->fPoint.fX, v->fPoint.fY); 888 Vertex* top; 889 Vertex* bottom; 890 int winding = edge->fWinding; 891 // Theoretically, and ideally, the edge betwee p0 and p1 is being split by v, and v is "between" 892 // the segment end points according to c. This is equivalent to p0 < v < p1. Unfortunately, if 893 // v was clamped/rounded this relation doesn't always hold. 894 if (c.sweep_lt(v->fPoint, edge->fTop->fPoint)) { 895 // Actually "v < p0 < p1": update 'edge' to be v->p1 and add v->p0. We flip the winding on 896 // the new edge so that it winds as if it were p0->v. 897 top = v; 898 bottom = edge->fTop; 899 winding *= -1; 900 this->setTop(edge, v, activeEdges, current, c); 901 } else if (c.sweep_lt(edge->fBottom->fPoint, v->fPoint)) { 902 // Actually "p0 < p1 < v": update 'edge' to be p0->v and add p1->v. We flip the winding on 903 // the new edge so that it winds as if it were v->p1. 904 top = edge->fBottom; 905 bottom = v; 906 winding *= -1; 907 this->setBottom(edge, v, activeEdges, current, c); 908 } else { 909 // The ideal case, "p0 < v < p1": update 'edge' to be p0->v and add v->p1. Original winding 910 // is valid for both edges. 911 top = v; 912 bottom = edge->fBottom; 913 this->setBottom(edge, v, activeEdges, current, c); 914 } 915 Edge* newEdge = fAlloc->make<Edge>(top, bottom, winding, edge->fType); 916 newEdge->insertBelow(top, c); 917 newEdge->insertAbove(bottom, c); 918 this->mergeCollinearEdges(newEdge, activeEdges, current, c); 919 return true; 920} 921 922bool GrTriangulator::intersectEdgePair(Edge* left, Edge* right, EdgeList* activeEdges, 923 Vertex** current, const Comparator& c) const { 924 if (!left->fTop || !left->fBottom || !right->fTop || !right->fBottom) { 925 return false; 926 } 927 if (left->fTop == right->fTop || left->fBottom == right->fBottom) { 928 return false; 929 } 930 if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { 931 if (!left->isLeftOf(right->fTop)) { 932 rewind(activeEdges, current, right->fTop, c); 933 return this->splitEdge(left, right->fTop, activeEdges, current, c); 934 } 935 } else { 936 if (!right->isRightOf(left->fTop)) { 937 rewind(activeEdges, current, left->fTop, c); 938 return this->splitEdge(right, left->fTop, activeEdges, current, c); 939 } 940 } 941 if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { 942 if (!left->isLeftOf(right->fBottom)) { 943 rewind(activeEdges, current, right->fBottom, c); 944 return this->splitEdge(left, right->fBottom, activeEdges, current, c); 945 } 946 } else { 947 if (!right->isRightOf(left->fBottom)) { 948 rewind(activeEdges, current, left->fBottom, c); 949 return this->splitEdge(right, left->fBottom, activeEdges, current, c); 950 } 951 } 952 return false; 953} 954 955Edge* GrTriangulator::makeConnectingEdge(Vertex* prev, Vertex* next, EdgeType type, 956 const Comparator& c, int windingScale) const { 957 if (!prev || !next || prev->fPoint == next->fPoint) { 958 return nullptr; 959 } 960 Edge* edge = this->makeEdge(prev, next, type, c); 961 edge->insertBelow(edge->fTop, c); 962 edge->insertAbove(edge->fBottom, c); 963 edge->fWinding *= windingScale; 964 this->mergeCollinearEdges(edge, nullptr, nullptr, c); 965 return edge; 966} 967 968void GrTriangulator::mergeVertices(Vertex* src, Vertex* dst, VertexList* mesh, 969 const Comparator& c) const { 970 TESS_LOG("found coincident verts at %g, %g; merging %g into %g\n", 971 src->fPoint.fX, src->fPoint.fY, src->fID, dst->fID); 972 dst->fAlpha = std::max(src->fAlpha, dst->fAlpha); 973 if (src->fPartner) { 974 src->fPartner->fPartner = dst; 975 } 976 while (Edge* edge = src->fFirstEdgeAbove) { 977 this->setBottom(edge, dst, nullptr, nullptr, c); 978 } 979 while (Edge* edge = src->fFirstEdgeBelow) { 980 this->setTop(edge, dst, nullptr, nullptr, c); 981 } 982 mesh->remove(src); 983 dst->fSynthetic = true; 984} 985 986Vertex* GrTriangulator::makeSortedVertex(const SkPoint& p, uint8_t alpha, VertexList* mesh, 987 Vertex* reference, const Comparator& c) const { 988 Vertex* prevV = reference; 989 while (prevV && c.sweep_lt(p, prevV->fPoint)) { 990 prevV = prevV->fPrev; 991 } 992 Vertex* nextV = prevV ? prevV->fNext : mesh->fHead; 993 while (nextV && c.sweep_lt(nextV->fPoint, p)) { 994 prevV = nextV; 995 nextV = nextV->fNext; 996 } 997 Vertex* v; 998 if (prevV && coincident(prevV->fPoint, p)) { 999 v = prevV; 1000 } else if (nextV && coincident(nextV->fPoint, p)) { 1001 v = nextV; 1002 } else { 1003 v = fAlloc->make<Vertex>(p, alpha); 1004#if TRIANGULATOR_LOGGING 1005 if (!prevV) { 1006 v->fID = mesh->fHead->fID - 1.0f; 1007 } else if (!nextV) { 1008 v->fID = mesh->fTail->fID + 1.0f; 1009 } else { 1010 v->fID = (prevV->fID + nextV->fID) * 0.5f; 1011 } 1012#endif 1013 mesh->insert(v, prevV, nextV); 1014 } 1015 return v; 1016} 1017 1018// Clamps x and y coordinates independently, so the returned point will lie within the bounding 1019// box formed by the corners of 'min' and 'max' (although min/max here refer to the ordering 1020// imposed by 'c'). 1021static SkPoint clamp(SkPoint p, SkPoint min, SkPoint max, const Comparator& c) { 1022 if (c.fDirection == Comparator::Direction::kHorizontal) { 1023 // With horizontal sorting, we know min.x <= max.x, but there's no relation between 1024 // Y components unless min.x == max.x. 1025 return {SkTPin(p.fX, min.fX, max.fX), 1026 min.fY < max.fY ? SkTPin(p.fY, min.fY, max.fY) 1027 : SkTPin(p.fY, max.fY, min.fY)}; 1028 } else { 1029 // And with vertical sorting, we know Y's relation but not necessarily X's. 1030 return {min.fX < max.fX ? SkTPin(p.fX, min.fX, max.fX) 1031 : SkTPin(p.fX, max.fX, min.fX), 1032 SkTPin(p.fY, min.fY, max.fY)}; 1033 } 1034} 1035 1036void GrTriangulator::computeBisector(Edge* edge1, Edge* edge2, Vertex* v) const { 1037 SkASSERT(fEmitCoverage); // Edge-AA only! 1038 Line line1 = edge1->fLine; 1039 Line line2 = edge2->fLine; 1040 line1.normalize(); 1041 line2.normalize(); 1042 double cosAngle = line1.fA * line2.fA + line1.fB * line2.fB; 1043 if (cosAngle > 0.999) { 1044 return; 1045 } 1046 line1.fC += edge1->fWinding > 0 ? -1 : 1; 1047 line2.fC += edge2->fWinding > 0 ? -1 : 1; 1048 SkPoint p; 1049 if (line1.intersect(line2, &p)) { 1050 uint8_t alpha = edge1->fType == EdgeType::kOuter ? 255 : 0; 1051 v->fPartner = fAlloc->make<Vertex>(p, alpha); 1052 TESS_LOG("computed bisector (%g,%g) alpha %d for vertex %g\n", p.fX, p.fY, alpha, v->fID); 1053 } 1054} 1055 1056bool GrTriangulator::checkForIntersection(Edge* left, Edge* right, EdgeList* activeEdges, 1057 Vertex** current, VertexList* mesh, 1058 const Comparator& c) const { 1059 if (!left || !right) { 1060 return false; 1061 } 1062 SkPoint p; 1063 uint8_t alpha; 1064 if (left->intersect(*right, &p, &alpha) && p.isFinite()) { 1065 Vertex* v; 1066 TESS_LOG("found intersection, pt is %g, %g\n", p.fX, p.fY); 1067 Vertex* top = *current; 1068 // If the intersection point is above the current vertex, rewind to the vertex above the 1069 // intersection. 1070 while (top && c.sweep_lt(p, top->fPoint)) { 1071 top = top->fPrev; 1072 } 1073 1074 // Always clamp the intersection to lie between the vertices of each segment, since 1075 // in theory that's where the intersection is, but in reality, floating point error may 1076 // have computed an intersection beyond a vertex's component(s). 1077 p = clamp(p, left->fTop->fPoint, left->fBottom->fPoint, c); 1078 p = clamp(p, right->fTop->fPoint, right->fBottom->fPoint, c); 1079 1080 if (coincident(p, left->fTop->fPoint)) { 1081 v = left->fTop; 1082 } else if (coincident(p, left->fBottom->fPoint)) { 1083 v = left->fBottom; 1084 } else if (coincident(p, right->fTop->fPoint)) { 1085 v = right->fTop; 1086 } else if (coincident(p, right->fBottom->fPoint)) { 1087 v = right->fBottom; 1088 } else { 1089 v = this->makeSortedVertex(p, alpha, mesh, top, c); 1090 if (left->fTop->fPartner) { 1091 SkASSERT(fEmitCoverage); // Edge-AA only! 1092 v->fSynthetic = true; 1093 this->computeBisector(left, right, v); 1094 } 1095 } 1096 rewind(activeEdges, current, top ? top : v, c); 1097 this->splitEdge(left, v, activeEdges, current, c); 1098 this->splitEdge(right, v, activeEdges, current, c); 1099 v->fAlpha = std::max(v->fAlpha, alpha); 1100 return true; 1101 } 1102 return this->intersectEdgePair(left, right, activeEdges, current, c); 1103} 1104 1105void GrTriangulator::sanitizeContours(VertexList* contours, int contourCnt) const { 1106 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { 1107 SkASSERT(contour->fHead); 1108 Vertex* prev = contour->fTail; 1109 prev->fPoint.fX = double_to_clamped_scalar((double) prev->fPoint.fX); 1110 prev->fPoint.fY = double_to_clamped_scalar((double) prev->fPoint.fY); 1111 if (fRoundVerticesToQuarterPixel) { 1112 round(&prev->fPoint); 1113 } 1114 for (Vertex* v = contour->fHead; v;) { 1115 v->fPoint.fX = double_to_clamped_scalar((double) v->fPoint.fX); 1116 v->fPoint.fY = double_to_clamped_scalar((double) v->fPoint.fY); 1117 if (fRoundVerticesToQuarterPixel) { 1118 round(&v->fPoint); 1119 } 1120 Vertex* next = v->fNext; 1121 Vertex* nextWrap = next ? next : contour->fHead; 1122 if (coincident(prev->fPoint, v->fPoint)) { 1123 TESS_LOG("vertex %g,%g coincident; removing\n", v->fPoint.fX, v->fPoint.fY); 1124 contour->remove(v); 1125 } else if (!v->fPoint.isFinite()) { 1126 TESS_LOG("vertex %g,%g non-finite; removing\n", v->fPoint.fX, v->fPoint.fY); 1127 contour->remove(v); 1128 } else if (!fPreserveCollinearVertices && 1129 Line(prev->fPoint, nextWrap->fPoint).dist(v->fPoint) == 0.0) { 1130 TESS_LOG("vertex %g,%g collinear; removing\n", v->fPoint.fX, v->fPoint.fY); 1131 contour->remove(v); 1132 } else { 1133 prev = v; 1134 } 1135 v = next; 1136 } 1137 } 1138} 1139 1140bool GrTriangulator::mergeCoincidentVertices(VertexList* mesh, const Comparator& c) const { 1141 if (!mesh->fHead) { 1142 return false; 1143 } 1144 bool merged = false; 1145 for (Vertex* v = mesh->fHead->fNext; v;) { 1146 Vertex* next = v->fNext; 1147 if (c.sweep_lt(v->fPoint, v->fPrev->fPoint)) { 1148 v->fPoint = v->fPrev->fPoint; 1149 } 1150 if (coincident(v->fPrev->fPoint, v->fPoint)) { 1151 this->mergeVertices(v, v->fPrev, mesh, c); 1152 merged = true; 1153 } 1154 v = next; 1155 } 1156 return merged; 1157} 1158 1159// Stage 2: convert the contours to a mesh of edges connecting the vertices. 1160 1161void GrTriangulator::buildEdges(VertexList* contours, int contourCnt, VertexList* mesh, 1162 const Comparator& c) const { 1163 for (VertexList* contour = contours; contourCnt > 0; --contourCnt, ++contour) { 1164 Vertex* prev = contour->fTail; 1165 for (Vertex* v = contour->fHead; v;) { 1166 Vertex* next = v->fNext; 1167 this->makeConnectingEdge(prev, v, EdgeType::kInner, c); 1168 mesh->append(v); 1169 prev = v; 1170 v = next; 1171 } 1172 } 1173} 1174 1175template <CompareFunc sweep_lt> 1176static void sorted_merge(VertexList* front, VertexList* back, VertexList* result) { 1177 Vertex* a = front->fHead; 1178 Vertex* b = back->fHead; 1179 while (a && b) { 1180 if (sweep_lt(a->fPoint, b->fPoint)) { 1181 front->remove(a); 1182 result->append(a); 1183 a = front->fHead; 1184 } else { 1185 back->remove(b); 1186 result->append(b); 1187 b = back->fHead; 1188 } 1189 } 1190 result->append(*front); 1191 result->append(*back); 1192} 1193 1194void GrTriangulator::SortedMerge(VertexList* front, VertexList* back, VertexList* result, 1195 const Comparator& c) { 1196 if (c.fDirection == Comparator::Direction::kHorizontal) { 1197 sorted_merge<sweep_lt_horiz>(front, back, result); 1198 } else { 1199 sorted_merge<sweep_lt_vert>(front, back, result); 1200 } 1201#if TRIANGULATOR_LOGGING 1202 float id = 0.0f; 1203 for (Vertex* v = result->fHead; v; v = v->fNext) { 1204 v->fID = id++; 1205 } 1206#endif 1207} 1208 1209// Stage 3: sort the vertices by increasing sweep direction. 1210 1211template <CompareFunc sweep_lt> 1212static void merge_sort(VertexList* vertices) { 1213 Vertex* slow = vertices->fHead; 1214 if (!slow) { 1215 return; 1216 } 1217 Vertex* fast = slow->fNext; 1218 if (!fast) { 1219 return; 1220 } 1221 do { 1222 fast = fast->fNext; 1223 if (fast) { 1224 fast = fast->fNext; 1225 slow = slow->fNext; 1226 } 1227 } while (fast); 1228 VertexList front(vertices->fHead, slow); 1229 VertexList back(slow->fNext, vertices->fTail); 1230 front.fTail->fNext = back.fHead->fPrev = nullptr; 1231 1232 merge_sort<sweep_lt>(&front); 1233 merge_sort<sweep_lt>(&back); 1234 1235 vertices->fHead = vertices->fTail = nullptr; 1236 sorted_merge<sweep_lt>(&front, &back, vertices); 1237} 1238 1239#if TRIANGULATOR_LOGGING 1240void VertexList::dump() const { 1241 for (Vertex* v = fHead; v; v = v->fNext) { 1242 TESS_LOG("vertex %g (%g, %g) alpha %d", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); 1243 if (Vertex* p = v->fPartner) { 1244 TESS_LOG(", partner %g (%g, %g) alpha %d\n", 1245 p->fID, p->fPoint.fX, p->fPoint.fY, p->fAlpha); 1246 } else { 1247 TESS_LOG(", null partner\n"); 1248 } 1249 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { 1250 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); 1251 } 1252 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { 1253 TESS_LOG(" edge %g -> %g, winding %d\n", e->fTop->fID, e->fBottom->fID, e->fWinding); 1254 } 1255 } 1256} 1257#endif 1258 1259#ifdef SK_DEBUG 1260static void validate_edge_pair(Edge* left, Edge* right, const Comparator& c) { 1261 if (!left || !right) { 1262 return; 1263 } 1264 if (left->fTop == right->fTop) { 1265 SkASSERT(left->isLeftOf(right->fBottom)); 1266 SkASSERT(right->isRightOf(left->fBottom)); 1267 } else if (c.sweep_lt(left->fTop->fPoint, right->fTop->fPoint)) { 1268 SkASSERT(left->isLeftOf(right->fTop)); 1269 } else { 1270 SkASSERT(right->isRightOf(left->fTop)); 1271 } 1272 if (left->fBottom == right->fBottom) { 1273 SkASSERT(left->isLeftOf(right->fTop)); 1274 SkASSERT(right->isRightOf(left->fTop)); 1275 } else if (c.sweep_lt(right->fBottom->fPoint, left->fBottom->fPoint)) { 1276 SkASSERT(left->isLeftOf(right->fBottom)); 1277 } else { 1278 SkASSERT(right->isRightOf(left->fBottom)); 1279 } 1280} 1281 1282static void validate_edge_list(EdgeList* edges, const Comparator& c) { 1283 Edge* left = edges->fHead; 1284 if (!left) { 1285 return; 1286 } 1287 for (Edge* right = left->fRight; right; right = right->fRight) { 1288 validate_edge_pair(left, right, c); 1289 left = right; 1290 } 1291} 1292#endif 1293 1294// Stage 4: Simplify the mesh by inserting new vertices at intersecting edges. 1295 1296GrTriangulator::SimplifyResult GrTriangulator::simplify(VertexList* mesh, 1297 const Comparator& c) const { 1298 TESS_LOG("simplifying complex polygons\n"); 1299 EdgeList activeEdges; 1300 auto result = SimplifyResult::kAlreadySimple; 1301 for (Vertex* v = mesh->fHead; v != nullptr; v = v->fNext) { 1302 if (!v->isConnected()) { 1303 continue; 1304 } 1305 Edge* leftEnclosingEdge; 1306 Edge* rightEnclosingEdge; 1307 bool restartChecks; 1308 do { 1309 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", 1310 v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); 1311 restartChecks = false; 1312 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); 1313 v->fLeftEnclosingEdge = leftEnclosingEdge; 1314 v->fRightEnclosingEdge = rightEnclosingEdge; 1315 if (v->fFirstEdgeBelow) { 1316 for (Edge* edge = v->fFirstEdgeBelow; edge; edge = edge->fNextEdgeBelow) { 1317 if (this->checkForIntersection( 1318 leftEnclosingEdge, edge, &activeEdges, &v, mesh, c) || 1319 this->checkForIntersection( 1320 edge, rightEnclosingEdge, &activeEdges, &v, mesh, c)) { 1321 result = SimplifyResult::kFoundSelfIntersection; 1322 restartChecks = true; 1323 break; 1324 } 1325 } 1326 } else { 1327 if (this->checkForIntersection(leftEnclosingEdge, rightEnclosingEdge, &activeEdges, 1328 &v, mesh, c)) { 1329 result = SimplifyResult::kFoundSelfIntersection; 1330 restartChecks = true; 1331 } 1332 1333 } 1334 } while (restartChecks); 1335#ifdef SK_DEBUG 1336 validate_edge_list(&activeEdges, c); 1337#endif 1338 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { 1339 activeEdges.remove(e); 1340 } 1341 Edge* leftEdge = leftEnclosingEdge; 1342 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { 1343 activeEdges.insert(e, leftEdge); 1344 leftEdge = e; 1345 } 1346 } 1347 SkASSERT(!activeEdges.fHead && !activeEdges.fTail); 1348 return result; 1349} 1350 1351// Stage 5: Tessellate the simplified mesh into monotone polygons. 1352 1353Poly* GrTriangulator::tessellate(const VertexList& vertices, const Comparator&) const { 1354 TESS_LOG("\ntessellating simple polygons\n"); 1355 EdgeList activeEdges; 1356 Poly* polys = nullptr; 1357 for (Vertex* v = vertices.fHead; v != nullptr; v = v->fNext) { 1358 if (!v->isConnected()) { 1359 continue; 1360 } 1361#if TRIANGULATOR_LOGGING 1362 TESS_LOG("\nvertex %g: (%g,%g), alpha %d\n", v->fID, v->fPoint.fX, v->fPoint.fY, v->fAlpha); 1363#endif 1364 Edge* leftEnclosingEdge; 1365 Edge* rightEnclosingEdge; 1366 FindEnclosingEdges(v, &activeEdges, &leftEnclosingEdge, &rightEnclosingEdge); 1367 Poly* leftPoly; 1368 Poly* rightPoly; 1369 if (v->fFirstEdgeAbove) { 1370 leftPoly = v->fFirstEdgeAbove->fLeftPoly; 1371 rightPoly = v->fLastEdgeAbove->fRightPoly; 1372 } else { 1373 leftPoly = leftEnclosingEdge ? leftEnclosingEdge->fRightPoly : nullptr; 1374 rightPoly = rightEnclosingEdge ? rightEnclosingEdge->fLeftPoly : nullptr; 1375 } 1376#if TRIANGULATOR_LOGGING 1377 TESS_LOG("edges above:\n"); 1378 for (Edge* e = v->fFirstEdgeAbove; e; e = e->fNextEdgeAbove) { 1379 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", 1380 e->fTop->fID, e->fBottom->fID, 1381 e->fLeftPoly ? e->fLeftPoly->fID : -1, 1382 e->fRightPoly ? e->fRightPoly->fID : -1); 1383 } 1384 TESS_LOG("edges below:\n"); 1385 for (Edge* e = v->fFirstEdgeBelow; e; e = e->fNextEdgeBelow) { 1386 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", 1387 e->fTop->fID, e->fBottom->fID, 1388 e->fLeftPoly ? e->fLeftPoly->fID : -1, 1389 e->fRightPoly ? e->fRightPoly->fID : -1); 1390 } 1391#endif 1392 if (v->fFirstEdgeAbove) { 1393 if (leftPoly) { 1394 leftPoly = leftPoly->addEdge(v->fFirstEdgeAbove, kRight_Side, fAlloc); 1395 } 1396 if (rightPoly) { 1397 rightPoly = rightPoly->addEdge(v->fLastEdgeAbove, kLeft_Side, fAlloc); 1398 } 1399 for (Edge* e = v->fFirstEdgeAbove; e != v->fLastEdgeAbove; e = e->fNextEdgeAbove) { 1400 Edge* rightEdge = e->fNextEdgeAbove; 1401 activeEdges.remove(e); 1402 if (e->fRightPoly) { 1403 e->fRightPoly->addEdge(e, kLeft_Side, fAlloc); 1404 } 1405 if (rightEdge->fLeftPoly && rightEdge->fLeftPoly != e->fRightPoly) { 1406 rightEdge->fLeftPoly->addEdge(e, kRight_Side, fAlloc); 1407 } 1408 } 1409 activeEdges.remove(v->fLastEdgeAbove); 1410 if (!v->fFirstEdgeBelow) { 1411 if (leftPoly && rightPoly && leftPoly != rightPoly) { 1412 SkASSERT(leftPoly->fPartner == nullptr && rightPoly->fPartner == nullptr); 1413 rightPoly->fPartner = leftPoly; 1414 leftPoly->fPartner = rightPoly; 1415 } 1416 } 1417 } 1418 if (v->fFirstEdgeBelow) { 1419 if (!v->fFirstEdgeAbove) { 1420 if (leftPoly && rightPoly) { 1421 if (leftPoly == rightPoly) { 1422 if (leftPoly->fTail && leftPoly->fTail->fSide == kLeft_Side) { 1423 leftPoly = this->makePoly(&polys, leftPoly->lastVertex(), 1424 leftPoly->fWinding); 1425 leftEnclosingEdge->fRightPoly = leftPoly; 1426 } else { 1427 rightPoly = this->makePoly(&polys, rightPoly->lastVertex(), 1428 rightPoly->fWinding); 1429 rightEnclosingEdge->fLeftPoly = rightPoly; 1430 } 1431 } 1432 Edge* join = fAlloc->make<Edge>(leftPoly->lastVertex(), v, 1, 1433 EdgeType::kInner); 1434 leftPoly = leftPoly->addEdge(join, kRight_Side, fAlloc); 1435 rightPoly = rightPoly->addEdge(join, kLeft_Side, fAlloc); 1436 } 1437 } 1438 Edge* leftEdge = v->fFirstEdgeBelow; 1439 leftEdge->fLeftPoly = leftPoly; 1440 activeEdges.insert(leftEdge, leftEnclosingEdge); 1441 for (Edge* rightEdge = leftEdge->fNextEdgeBelow; rightEdge; 1442 rightEdge = rightEdge->fNextEdgeBelow) { 1443 activeEdges.insert(rightEdge, leftEdge); 1444 int winding = leftEdge->fLeftPoly ? leftEdge->fLeftPoly->fWinding : 0; 1445 winding += leftEdge->fWinding; 1446 if (winding != 0) { 1447 Poly* poly = this->makePoly(&polys, v, winding); 1448 leftEdge->fRightPoly = rightEdge->fLeftPoly = poly; 1449 } 1450 leftEdge = rightEdge; 1451 } 1452 v->fLastEdgeBelow->fRightPoly = rightPoly; 1453 } 1454#if TRIANGULATOR_LOGGING 1455 TESS_LOG("\nactive edges:\n"); 1456 for (Edge* e = activeEdges.fHead; e != nullptr; e = e->fRight) { 1457 TESS_LOG("%g -> %g, lpoly %d, rpoly %d\n", 1458 e->fTop->fID, e->fBottom->fID, 1459 e->fLeftPoly ? e->fLeftPoly->fID : -1, 1460 e->fRightPoly ? e->fRightPoly->fID : -1); 1461 } 1462#endif 1463 } 1464 return polys; 1465} 1466 1467// This is a driver function that calls stages 2-5 in turn. 1468 1469void GrTriangulator::contoursToMesh(VertexList* contours, int contourCnt, VertexList* mesh, 1470 const Comparator& c) const { 1471#if TRIANGULATOR_LOGGING 1472 for (int i = 0; i < contourCnt; ++i) { 1473 Vertex* v = contours[i].fHead; 1474 SkASSERT(v); 1475 TESS_LOG("path.moveTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); 1476 for (v = v->fNext; v; v = v->fNext) { 1477 TESS_LOG("path.lineTo(%20.20g, %20.20g);\n", v->fPoint.fX, v->fPoint.fY); 1478 } 1479 } 1480#endif 1481 this->sanitizeContours(contours, contourCnt); 1482 this->buildEdges(contours, contourCnt, mesh, c); 1483} 1484 1485void GrTriangulator::SortMesh(VertexList* vertices, const Comparator& c) { 1486 if (!vertices || !vertices->fHead) { 1487 return; 1488 } 1489 1490 // Sort vertices in Y (secondarily in X). 1491 if (c.fDirection == Comparator::Direction::kHorizontal) { 1492 merge_sort<sweep_lt_horiz>(vertices); 1493 } else { 1494 merge_sort<sweep_lt_vert>(vertices); 1495 } 1496#if TRIANGULATOR_LOGGING 1497 for (Vertex* v = vertices->fHead; v != nullptr; v = v->fNext) { 1498 static float gID = 0.0f; 1499 v->fID = gID++; 1500 } 1501#endif 1502} 1503 1504Poly* GrTriangulator::contoursToPolys(VertexList* contours, int contourCnt) const { 1505 const SkRect& pathBounds = fPath.getBounds(); 1506 Comparator c(pathBounds.width() > pathBounds.height() ? Comparator::Direction::kHorizontal 1507 : Comparator::Direction::kVertical); 1508 VertexList mesh; 1509 this->contoursToMesh(contours, contourCnt, &mesh, c); 1510 TESS_LOG("\ninitial mesh:\n"); 1511 DUMP_MESH(mesh); 1512 SortMesh(&mesh, c); 1513 TESS_LOG("\nsorted mesh:\n"); 1514 DUMP_MESH(mesh); 1515 this->mergeCoincidentVertices(&mesh, c); 1516 TESS_LOG("\nsorted+merged mesh:\n"); 1517 DUMP_MESH(mesh); 1518 this->simplify(&mesh, c); 1519 TESS_LOG("\nsimplified mesh:\n"); 1520 DUMP_MESH(mesh); 1521 return this->tessellate(mesh, c); 1522} 1523 1524// Stage 6: Triangulate the monotone polygons into a vertex buffer. 1525void* GrTriangulator::polysToTriangles(Poly* polys, void* data, 1526 SkPathFillType overrideFillType) const { 1527 for (Poly* poly = polys; poly; poly = poly->fNext) { 1528 if (apply_fill_type(overrideFillType, poly)) { 1529 data = this->emitPoly(poly, data); 1530 } 1531 } 1532 return data; 1533} 1534 1535static int get_contour_count(const SkPath& path, SkScalar tolerance) { 1536 // We could theoretically be more aggressive about not counting empty contours, but we need to 1537 // actually match the exact number of contour linked lists the tessellator will create later on. 1538 int contourCnt = 1; 1539 bool hasPoints = false; 1540 1541 SkPath::Iter iter(path, false); 1542 SkPath::Verb verb; 1543 SkPoint pts[4]; 1544 bool first = true; 1545 while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { 1546 switch (verb) { 1547 case SkPath::kMove_Verb: 1548 if (!first) { 1549 ++contourCnt; 1550 } 1551 [[fallthrough]]; 1552 case SkPath::kLine_Verb: 1553 case SkPath::kConic_Verb: 1554 case SkPath::kQuad_Verb: 1555 case SkPath::kCubic_Verb: 1556 hasPoints = true; 1557 break; 1558 default: 1559 break; 1560 } 1561 first = false; 1562 } 1563 if (!hasPoints) { 1564 return 0; 1565 } 1566 return contourCnt; 1567} 1568 1569Poly* GrTriangulator::pathToPolys(float tolerance, const SkRect& clipBounds, bool* isLinear) const { 1570 int contourCnt = get_contour_count(fPath, tolerance); 1571 if (contourCnt <= 0) { 1572 *isLinear = true; 1573 return nullptr; 1574 } 1575 1576 if (SkPathFillType_IsInverse(fPath.getFillType())) { 1577 contourCnt++; 1578 } 1579 std::unique_ptr<VertexList[]> contours(new VertexList[contourCnt]); 1580 1581 this->pathToContours(tolerance, clipBounds, contours.get(), isLinear); 1582 return this->contoursToPolys(contours.get(), contourCnt); 1583} 1584 1585int64_t GrTriangulator::CountPoints(Poly* polys, SkPathFillType overrideFillType) { 1586 int64_t count = 0; 1587 for (Poly* poly = polys; poly; poly = poly->fNext) { 1588 if (apply_fill_type(overrideFillType, poly) && poly->fCount >= 3) { 1589 count += (poly->fCount - 2) * (TRIANGULATOR_WIREFRAME ? 6 : 3); 1590 } 1591 } 1592 return count; 1593} 1594 1595// Stage 6: Triangulate the monotone polygons into a vertex buffer. 1596 1597int GrTriangulator::polysToTriangles(Poly* polys, GrEagerVertexAllocator* vertexAllocator) const { 1598 int64_t count64 = CountPoints(polys, fPath.getFillType()); 1599 if (0 == count64 || count64 > SK_MaxS32) { 1600 return 0; 1601 } 1602 int count = count64; 1603 1604 size_t vertexStride = sizeof(SkPoint); 1605 if (fEmitCoverage) { 1606 vertexStride += sizeof(float); 1607 } 1608 void* verts = vertexAllocator->lock(vertexStride, count); 1609 if (!verts) { 1610 SkDebugf("Could not allocate vertices\n"); 1611 return 0; 1612 } 1613 1614 TESS_LOG("emitting %d verts\n", count); 1615 void* end = this->polysToTriangles(polys, verts, fPath.getFillType()); 1616 1617 int actualCount = static_cast<int>((static_cast<uint8_t*>(end) - static_cast<uint8_t*>(verts)) 1618 / vertexStride); 1619 SkASSERT(actualCount <= count); 1620 vertexAllocator->unlock(actualCount); 1621 return actualCount; 1622} 1623