1cb93a386Sopenharmony_ci/*
2cb93a386Sopenharmony_ci * Copyright 2011 Google Inc.
3cb93a386Sopenharmony_ci *
4cb93a386Sopenharmony_ci * Use of this source code is governed by a BSD-style license that can be
5cb93a386Sopenharmony_ci * found in the LICENSE file.
6cb93a386Sopenharmony_ci */
7cb93a386Sopenharmony_ci
8cb93a386Sopenharmony_ci#include "src/gpu/geometry/GrPathUtils.h"
9cb93a386Sopenharmony_ci
10cb93a386Sopenharmony_ci#include "include/gpu/GrTypes.h"
11cb93a386Sopenharmony_ci#include "src/core/SkMathPriv.h"
12cb93a386Sopenharmony_ci#include "src/core/SkPointPriv.h"
13cb93a386Sopenharmony_ci#include "src/core/SkUtils.h"
14cb93a386Sopenharmony_ci#include "src/gpu/tessellate/WangsFormula.h"
15cb93a386Sopenharmony_ci
16cb93a386Sopenharmony_cistatic const SkScalar kMinCurveTol = 0.0001f;
17cb93a386Sopenharmony_ci
18cb93a386Sopenharmony_cistatic float tolerance_to_wangs_precision(float srcTol) {
19cb93a386Sopenharmony_ci    // You should have called scaleToleranceToSrc, which guarantees this
20cb93a386Sopenharmony_ci    SkASSERT(srcTol >= kMinCurveTol);
21cb93a386Sopenharmony_ci
22cb93a386Sopenharmony_ci    // The GrPathUtil API defines tolerance as the max distance the linear segment can be from
23cb93a386Sopenharmony_ci    // the real curve. Wang's formula guarantees the linear segments will be within 1/precision
24cb93a386Sopenharmony_ci    // of the true curve, so precision = 1/srcTol
25cb93a386Sopenharmony_ci    return 1.f / srcTol;
26cb93a386Sopenharmony_ci}
27cb93a386Sopenharmony_ci
28cb93a386Sopenharmony_ciuint32_t max_bezier_vertices(uint32_t chopCount) {
29cb93a386Sopenharmony_ci    static constexpr uint32_t kMaxChopsPerCurve = 10;
30cb93a386Sopenharmony_ci    static_assert((1 << kMaxChopsPerCurve) == GrPathUtils::kMaxPointsPerCurve);
31cb93a386Sopenharmony_ci    return 1 << std::min(chopCount, kMaxChopsPerCurve);
32cb93a386Sopenharmony_ci}
33cb93a386Sopenharmony_ci
34cb93a386Sopenharmony_ciSkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol,
35cb93a386Sopenharmony_ci                                          const SkMatrix& viewM,
36cb93a386Sopenharmony_ci                                          const SkRect& pathBounds) {
37cb93a386Sopenharmony_ci    // In order to tesselate the path we get a bound on how much the matrix can
38cb93a386Sopenharmony_ci    // scale when mapping to screen coordinates.
39cb93a386Sopenharmony_ci    SkScalar stretch = viewM.getMaxScale();
40cb93a386Sopenharmony_ci
41cb93a386Sopenharmony_ci    if (stretch < 0) {
42cb93a386Sopenharmony_ci        // take worst case mapRadius amoung four corners.
43cb93a386Sopenharmony_ci        // (less than perfect)
44cb93a386Sopenharmony_ci        for (int i = 0; i < 4; ++i) {
45cb93a386Sopenharmony_ci            SkMatrix mat;
46cb93a386Sopenharmony_ci            mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight,
47cb93a386Sopenharmony_ci                             (i < 2) ? pathBounds.fTop : pathBounds.fBottom);
48cb93a386Sopenharmony_ci            mat.postConcat(viewM);
49cb93a386Sopenharmony_ci            stretch = std::max(stretch, mat.mapRadius(SK_Scalar1));
50cb93a386Sopenharmony_ci        }
51cb93a386Sopenharmony_ci    }
52cb93a386Sopenharmony_ci    SkScalar srcTol = 0;
53cb93a386Sopenharmony_ci    if (stretch <= 0) {
54cb93a386Sopenharmony_ci        // We have degenerate bounds or some degenerate matrix. Thus we set the tolerance to be the
55cb93a386Sopenharmony_ci        // max of the path pathBounds width and height.
56cb93a386Sopenharmony_ci        srcTol = std::max(pathBounds.width(), pathBounds.height());
57cb93a386Sopenharmony_ci    } else {
58cb93a386Sopenharmony_ci        srcTol = devTol / stretch;
59cb93a386Sopenharmony_ci    }
60cb93a386Sopenharmony_ci    if (srcTol < kMinCurveTol) {
61cb93a386Sopenharmony_ci        srcTol = kMinCurveTol;
62cb93a386Sopenharmony_ci    }
63cb93a386Sopenharmony_ci    return srcTol;
64cb93a386Sopenharmony_ci}
65cb93a386Sopenharmony_ci
66cb93a386Sopenharmony_ciuint32_t GrPathUtils::quadraticPointCount(const SkPoint points[], SkScalar tol) {
67cb93a386Sopenharmony_ci    return max_bezier_vertices(skgpu::wangs_formula::quadratic_log2(
68cb93a386Sopenharmony_ci            tolerance_to_wangs_precision(tol), points));
69cb93a386Sopenharmony_ci}
70cb93a386Sopenharmony_ci
71cb93a386Sopenharmony_ciuint32_t GrPathUtils::generateQuadraticPoints(const SkPoint& p0,
72cb93a386Sopenharmony_ci                                              const SkPoint& p1,
73cb93a386Sopenharmony_ci                                              const SkPoint& p2,
74cb93a386Sopenharmony_ci                                              SkScalar tolSqd,
75cb93a386Sopenharmony_ci                                              SkPoint** points,
76cb93a386Sopenharmony_ci                                              uint32_t pointsLeft) {
77cb93a386Sopenharmony_ci    if (pointsLeft < 2 ||
78cb93a386Sopenharmony_ci        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p2)) < tolSqd) {
79cb93a386Sopenharmony_ci        (*points)[0] = p2;
80cb93a386Sopenharmony_ci        *points += 1;
81cb93a386Sopenharmony_ci        return 1;
82cb93a386Sopenharmony_ci    }
83cb93a386Sopenharmony_ci
84cb93a386Sopenharmony_ci    SkPoint q[] = {
85cb93a386Sopenharmony_ci        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
86cb93a386Sopenharmony_ci        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
87cb93a386Sopenharmony_ci    };
88cb93a386Sopenharmony_ci    SkPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) };
89cb93a386Sopenharmony_ci
90cb93a386Sopenharmony_ci    pointsLeft >>= 1;
91cb93a386Sopenharmony_ci    uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft);
92cb93a386Sopenharmony_ci    uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft);
93cb93a386Sopenharmony_ci    return a + b;
94cb93a386Sopenharmony_ci}
95cb93a386Sopenharmony_ci
96cb93a386Sopenharmony_ciuint32_t GrPathUtils::cubicPointCount(const SkPoint points[], SkScalar tol) {
97cb93a386Sopenharmony_ci    return max_bezier_vertices(skgpu::wangs_formula::cubic_log2(
98cb93a386Sopenharmony_ci            tolerance_to_wangs_precision(tol), points));
99cb93a386Sopenharmony_ci}
100cb93a386Sopenharmony_ci
101cb93a386Sopenharmony_ciuint32_t GrPathUtils::generateCubicPoints(const SkPoint& p0,
102cb93a386Sopenharmony_ci                                          const SkPoint& p1,
103cb93a386Sopenharmony_ci                                          const SkPoint& p2,
104cb93a386Sopenharmony_ci                                          const SkPoint& p3,
105cb93a386Sopenharmony_ci                                          SkScalar tolSqd,
106cb93a386Sopenharmony_ci                                          SkPoint** points,
107cb93a386Sopenharmony_ci                                          uint32_t pointsLeft) {
108cb93a386Sopenharmony_ci    if (pointsLeft < 2 ||
109cb93a386Sopenharmony_ci        (SkPointPriv::DistanceToLineSegmentBetweenSqd(p1, p0, p3) < tolSqd &&
110cb93a386Sopenharmony_ci         SkPointPriv::DistanceToLineSegmentBetweenSqd(p2, p0, p3) < tolSqd)) {
111cb93a386Sopenharmony_ci        (*points)[0] = p3;
112cb93a386Sopenharmony_ci        *points += 1;
113cb93a386Sopenharmony_ci        return 1;
114cb93a386Sopenharmony_ci    }
115cb93a386Sopenharmony_ci    SkPoint q[] = {
116cb93a386Sopenharmony_ci        { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) },
117cb93a386Sopenharmony_ci        { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) },
118cb93a386Sopenharmony_ci        { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) }
119cb93a386Sopenharmony_ci    };
120cb93a386Sopenharmony_ci    SkPoint r[] = {
121cb93a386Sopenharmony_ci        { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) },
122cb93a386Sopenharmony_ci        { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) }
123cb93a386Sopenharmony_ci    };
124cb93a386Sopenharmony_ci    SkPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) };
125cb93a386Sopenharmony_ci    pointsLeft >>= 1;
126cb93a386Sopenharmony_ci    uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft);
127cb93a386Sopenharmony_ci    uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft);
128cb93a386Sopenharmony_ci    return a + b;
129cb93a386Sopenharmony_ci}
130cb93a386Sopenharmony_ci
131cb93a386Sopenharmony_civoid GrPathUtils::QuadUVMatrix::set(const SkPoint qPts[3]) {
132cb93a386Sopenharmony_ci    SkMatrix m;
133cb93a386Sopenharmony_ci    // We want M such that M * xy_pt = uv_pt
134cb93a386Sopenharmony_ci    // We know M * control_pts = [0  1/2 1]
135cb93a386Sopenharmony_ci    //                           [0  0   1]
136cb93a386Sopenharmony_ci    //                           [1  1   1]
137cb93a386Sopenharmony_ci    // And control_pts = [x0 x1 x2]
138cb93a386Sopenharmony_ci    //                   [y0 y1 y2]
139cb93a386Sopenharmony_ci    //                   [1  1  1 ]
140cb93a386Sopenharmony_ci    // We invert the control pt matrix and post concat to both sides to get M.
141cb93a386Sopenharmony_ci    // Using the known form of the control point matrix and the result, we can
142cb93a386Sopenharmony_ci    // optimize and improve precision.
143cb93a386Sopenharmony_ci
144cb93a386Sopenharmony_ci    double x0 = qPts[0].fX;
145cb93a386Sopenharmony_ci    double y0 = qPts[0].fY;
146cb93a386Sopenharmony_ci    double x1 = qPts[1].fX;
147cb93a386Sopenharmony_ci    double y1 = qPts[1].fY;
148cb93a386Sopenharmony_ci    double x2 = qPts[2].fX;
149cb93a386Sopenharmony_ci    double y2 = qPts[2].fY;
150cb93a386Sopenharmony_ci    double det = x0*y1 - y0*x1 + x2*y0 - y2*x0 + x1*y2 - y1*x2;
151cb93a386Sopenharmony_ci
152cb93a386Sopenharmony_ci    if (!sk_float_isfinite(det)
153cb93a386Sopenharmony_ci        || SkScalarNearlyZero((float)det, SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
154cb93a386Sopenharmony_ci        // The quad is degenerate. Hopefully this is rare. Find the pts that are
155cb93a386Sopenharmony_ci        // farthest apart to compute a line (unless it is really a pt).
156cb93a386Sopenharmony_ci        SkScalar maxD = SkPointPriv::DistanceToSqd(qPts[0], qPts[1]);
157cb93a386Sopenharmony_ci        int maxEdge = 0;
158cb93a386Sopenharmony_ci        SkScalar d = SkPointPriv::DistanceToSqd(qPts[1], qPts[2]);
159cb93a386Sopenharmony_ci        if (d > maxD) {
160cb93a386Sopenharmony_ci            maxD = d;
161cb93a386Sopenharmony_ci            maxEdge = 1;
162cb93a386Sopenharmony_ci        }
163cb93a386Sopenharmony_ci        d = SkPointPriv::DistanceToSqd(qPts[2], qPts[0]);
164cb93a386Sopenharmony_ci        if (d > maxD) {
165cb93a386Sopenharmony_ci            maxD = d;
166cb93a386Sopenharmony_ci            maxEdge = 2;
167cb93a386Sopenharmony_ci        }
168cb93a386Sopenharmony_ci        // We could have a tolerance here, not sure if it would improve anything
169cb93a386Sopenharmony_ci        if (maxD > 0) {
170cb93a386Sopenharmony_ci            // Set the matrix to give (u = 0, v = distance_to_line)
171cb93a386Sopenharmony_ci            SkVector lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge];
172cb93a386Sopenharmony_ci            // when looking from the point 0 down the line we want positive
173cb93a386Sopenharmony_ci            // distances to be to the left. This matches the non-degenerate
174cb93a386Sopenharmony_ci            // case.
175cb93a386Sopenharmony_ci            lineVec = SkPointPriv::MakeOrthog(lineVec, SkPointPriv::kLeft_Side);
176cb93a386Sopenharmony_ci            // first row
177cb93a386Sopenharmony_ci            fM[0] = 0;
178cb93a386Sopenharmony_ci            fM[1] = 0;
179cb93a386Sopenharmony_ci            fM[2] = 0;
180cb93a386Sopenharmony_ci            // second row
181cb93a386Sopenharmony_ci            fM[3] = lineVec.fX;
182cb93a386Sopenharmony_ci            fM[4] = lineVec.fY;
183cb93a386Sopenharmony_ci            fM[5] = -lineVec.dot(qPts[maxEdge]);
184cb93a386Sopenharmony_ci        } else {
185cb93a386Sopenharmony_ci            // It's a point. It should cover zero area. Just set the matrix such
186cb93a386Sopenharmony_ci            // that (u, v) will always be far away from the quad.
187cb93a386Sopenharmony_ci            fM[0] = 0; fM[1] = 0; fM[2] = 100.f;
188cb93a386Sopenharmony_ci            fM[3] = 0; fM[4] = 0; fM[5] = 100.f;
189cb93a386Sopenharmony_ci        }
190cb93a386Sopenharmony_ci    } else {
191cb93a386Sopenharmony_ci        double scale = 1.0/det;
192cb93a386Sopenharmony_ci
193cb93a386Sopenharmony_ci        // compute adjugate matrix
194cb93a386Sopenharmony_ci        double a2, a3, a4, a5, a6, a7, a8;
195cb93a386Sopenharmony_ci        a2 = x1*y2-x2*y1;
196cb93a386Sopenharmony_ci
197cb93a386Sopenharmony_ci        a3 = y2-y0;
198cb93a386Sopenharmony_ci        a4 = x0-x2;
199cb93a386Sopenharmony_ci        a5 = x2*y0-x0*y2;
200cb93a386Sopenharmony_ci
201cb93a386Sopenharmony_ci        a6 = y0-y1;
202cb93a386Sopenharmony_ci        a7 = x1-x0;
203cb93a386Sopenharmony_ci        a8 = x0*y1-x1*y0;
204cb93a386Sopenharmony_ci
205cb93a386Sopenharmony_ci        // this performs the uv_pts*adjugate(control_pts) multiply,
206cb93a386Sopenharmony_ci        // then does the scale by 1/det afterwards to improve precision
207cb93a386Sopenharmony_ci        m[SkMatrix::kMScaleX] = (float)((0.5*a3 + a6)*scale);
208cb93a386Sopenharmony_ci        m[SkMatrix::kMSkewX]  = (float)((0.5*a4 + a7)*scale);
209cb93a386Sopenharmony_ci        m[SkMatrix::kMTransX] = (float)((0.5*a5 + a8)*scale);
210cb93a386Sopenharmony_ci
211cb93a386Sopenharmony_ci        m[SkMatrix::kMSkewY]  = (float)(a6*scale);
212cb93a386Sopenharmony_ci        m[SkMatrix::kMScaleY] = (float)(a7*scale);
213cb93a386Sopenharmony_ci        m[SkMatrix::kMTransY] = (float)(a8*scale);
214cb93a386Sopenharmony_ci
215cb93a386Sopenharmony_ci        // kMPersp0 & kMPersp1 should algebraically be zero
216cb93a386Sopenharmony_ci        m[SkMatrix::kMPersp0] = 0.0f;
217cb93a386Sopenharmony_ci        m[SkMatrix::kMPersp1] = 0.0f;
218cb93a386Sopenharmony_ci        m[SkMatrix::kMPersp2] = (float)((a2 + a5 + a8)*scale);
219cb93a386Sopenharmony_ci
220cb93a386Sopenharmony_ci        // It may not be normalized to have 1.0 in the bottom right
221cb93a386Sopenharmony_ci        float m33 = m.get(SkMatrix::kMPersp2);
222cb93a386Sopenharmony_ci        if (1.f != m33) {
223cb93a386Sopenharmony_ci            m33 = 1.f / m33;
224cb93a386Sopenharmony_ci            fM[0] = m33 * m.get(SkMatrix::kMScaleX);
225cb93a386Sopenharmony_ci            fM[1] = m33 * m.get(SkMatrix::kMSkewX);
226cb93a386Sopenharmony_ci            fM[2] = m33 * m.get(SkMatrix::kMTransX);
227cb93a386Sopenharmony_ci            fM[3] = m33 * m.get(SkMatrix::kMSkewY);
228cb93a386Sopenharmony_ci            fM[4] = m33 * m.get(SkMatrix::kMScaleY);
229cb93a386Sopenharmony_ci            fM[5] = m33 * m.get(SkMatrix::kMTransY);
230cb93a386Sopenharmony_ci        } else {
231cb93a386Sopenharmony_ci            fM[0] = m.get(SkMatrix::kMScaleX);
232cb93a386Sopenharmony_ci            fM[1] = m.get(SkMatrix::kMSkewX);
233cb93a386Sopenharmony_ci            fM[2] = m.get(SkMatrix::kMTransX);
234cb93a386Sopenharmony_ci            fM[3] = m.get(SkMatrix::kMSkewY);
235cb93a386Sopenharmony_ci            fM[4] = m.get(SkMatrix::kMScaleY);
236cb93a386Sopenharmony_ci            fM[5] = m.get(SkMatrix::kMTransY);
237cb93a386Sopenharmony_ci        }
238cb93a386Sopenharmony_ci    }
239cb93a386Sopenharmony_ci}
240cb93a386Sopenharmony_ci
241cb93a386Sopenharmony_ci////////////////////////////////////////////////////////////////////////////////
242cb93a386Sopenharmony_ci
243cb93a386Sopenharmony_ci// k = (y2 - y0, x0 - x2, x2*y0 - x0*y2)
244cb93a386Sopenharmony_ci// l = (y1 - y0, x0 - x1, x1*y0 - x0*y1) * 2*w
245cb93a386Sopenharmony_ci// m = (y2 - y1, x1 - x2, x2*y1 - x1*y2) * 2*w
246cb93a386Sopenharmony_civoid GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkMatrix* out) {
247cb93a386Sopenharmony_ci    SkMatrix& klm = *out;
248cb93a386Sopenharmony_ci    const SkScalar w2 = 2.f * weight;
249cb93a386Sopenharmony_ci    klm[0] = p[2].fY - p[0].fY;
250cb93a386Sopenharmony_ci    klm[1] = p[0].fX - p[2].fX;
251cb93a386Sopenharmony_ci    klm[2] = p[2].fX * p[0].fY - p[0].fX * p[2].fY;
252cb93a386Sopenharmony_ci
253cb93a386Sopenharmony_ci    klm[3] = w2 * (p[1].fY - p[0].fY);
254cb93a386Sopenharmony_ci    klm[4] = w2 * (p[0].fX - p[1].fX);
255cb93a386Sopenharmony_ci    klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY);
256cb93a386Sopenharmony_ci
257cb93a386Sopenharmony_ci    klm[6] = w2 * (p[2].fY - p[1].fY);
258cb93a386Sopenharmony_ci    klm[7] = w2 * (p[1].fX - p[2].fX);
259cb93a386Sopenharmony_ci    klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY);
260cb93a386Sopenharmony_ci
261cb93a386Sopenharmony_ci    // scale the max absolute value of coeffs to 10
262cb93a386Sopenharmony_ci    SkScalar scale = 0.f;
263cb93a386Sopenharmony_ci    for (int i = 0; i < 9; ++i) {
264cb93a386Sopenharmony_ci       scale = std::max(scale, SkScalarAbs(klm[i]));
265cb93a386Sopenharmony_ci    }
266cb93a386Sopenharmony_ci    SkASSERT(scale > 0.f);
267cb93a386Sopenharmony_ci    scale = 10.f / scale;
268cb93a386Sopenharmony_ci    for (int i = 0; i < 9; ++i) {
269cb93a386Sopenharmony_ci        klm[i] *= scale;
270cb93a386Sopenharmony_ci    }
271cb93a386Sopenharmony_ci}
272cb93a386Sopenharmony_ci
273cb93a386Sopenharmony_ci////////////////////////////////////////////////////////////////////////////////
274cb93a386Sopenharmony_ci
275cb93a386Sopenharmony_cinamespace {
276cb93a386Sopenharmony_ci
277cb93a386Sopenharmony_ci// a is the first control point of the cubic.
278cb93a386Sopenharmony_ci// ab is the vector from a to the second control point.
279cb93a386Sopenharmony_ci// dc is the vector from the fourth to the third control point.
280cb93a386Sopenharmony_ci// d is the fourth control point.
281cb93a386Sopenharmony_ci// p is the candidate quadratic control point.
282cb93a386Sopenharmony_ci// this assumes that the cubic doesn't inflect and is simple
283cb93a386Sopenharmony_cibool is_point_within_cubic_tangents(const SkPoint& a,
284cb93a386Sopenharmony_ci                                    const SkVector& ab,
285cb93a386Sopenharmony_ci                                    const SkVector& dc,
286cb93a386Sopenharmony_ci                                    const SkPoint& d,
287cb93a386Sopenharmony_ci                                    SkPathFirstDirection dir,
288cb93a386Sopenharmony_ci                                    const SkPoint p) {
289cb93a386Sopenharmony_ci    SkVector ap = p - a;
290cb93a386Sopenharmony_ci    SkScalar apXab = ap.cross(ab);
291cb93a386Sopenharmony_ci    if (SkPathFirstDirection::kCW == dir) {
292cb93a386Sopenharmony_ci        if (apXab > 0) {
293cb93a386Sopenharmony_ci            return false;
294cb93a386Sopenharmony_ci        }
295cb93a386Sopenharmony_ci    } else {
296cb93a386Sopenharmony_ci        SkASSERT(SkPathFirstDirection::kCCW == dir);
297cb93a386Sopenharmony_ci        if (apXab < 0) {
298cb93a386Sopenharmony_ci            return false;
299cb93a386Sopenharmony_ci        }
300cb93a386Sopenharmony_ci    }
301cb93a386Sopenharmony_ci
302cb93a386Sopenharmony_ci    SkVector dp = p - d;
303cb93a386Sopenharmony_ci    SkScalar dpXdc = dp.cross(dc);
304cb93a386Sopenharmony_ci    if (SkPathFirstDirection::kCW == dir) {
305cb93a386Sopenharmony_ci        if (dpXdc < 0) {
306cb93a386Sopenharmony_ci            return false;
307cb93a386Sopenharmony_ci        }
308cb93a386Sopenharmony_ci    } else {
309cb93a386Sopenharmony_ci        SkASSERT(SkPathFirstDirection::kCCW == dir);
310cb93a386Sopenharmony_ci        if (dpXdc > 0) {
311cb93a386Sopenharmony_ci            return false;
312cb93a386Sopenharmony_ci        }
313cb93a386Sopenharmony_ci    }
314cb93a386Sopenharmony_ci    return true;
315cb93a386Sopenharmony_ci}
316cb93a386Sopenharmony_ci
317cb93a386Sopenharmony_civoid convert_noninflect_cubic_to_quads(const SkPoint p[4],
318cb93a386Sopenharmony_ci                                       SkScalar toleranceSqd,
319cb93a386Sopenharmony_ci                                       SkTArray<SkPoint, true>* quads,
320cb93a386Sopenharmony_ci                                       int sublevel = 0,
321cb93a386Sopenharmony_ci                                       bool preserveFirstTangent = true,
322cb93a386Sopenharmony_ci                                       bool preserveLastTangent = true) {
323cb93a386Sopenharmony_ci    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
324cb93a386Sopenharmony_ci    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
325cb93a386Sopenharmony_ci    SkVector ab = p[1] - p[0];
326cb93a386Sopenharmony_ci    SkVector dc = p[2] - p[3];
327cb93a386Sopenharmony_ci
328cb93a386Sopenharmony_ci    if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
329cb93a386Sopenharmony_ci        if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
330cb93a386Sopenharmony_ci            SkPoint* degQuad = quads->push_back_n(3);
331cb93a386Sopenharmony_ci            degQuad[0] = p[0];
332cb93a386Sopenharmony_ci            degQuad[1] = p[0];
333cb93a386Sopenharmony_ci            degQuad[2] = p[3];
334cb93a386Sopenharmony_ci            return;
335cb93a386Sopenharmony_ci        }
336cb93a386Sopenharmony_ci        ab = p[2] - p[0];
337cb93a386Sopenharmony_ci    }
338cb93a386Sopenharmony_ci    if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
339cb93a386Sopenharmony_ci        dc = p[1] - p[3];
340cb93a386Sopenharmony_ci    }
341cb93a386Sopenharmony_ci
342cb93a386Sopenharmony_ci    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
343cb93a386Sopenharmony_ci    static const int kMaxSubdivs = 10;
344cb93a386Sopenharmony_ci
345cb93a386Sopenharmony_ci    ab.scale(kLengthScale);
346cb93a386Sopenharmony_ci    dc.scale(kLengthScale);
347cb93a386Sopenharmony_ci
348cb93a386Sopenharmony_ci    // c0 and c1 are extrapolations along vectors ab and dc.
349cb93a386Sopenharmony_ci    SkPoint c0 = p[0] + ab;
350cb93a386Sopenharmony_ci    SkPoint c1 = p[3] + dc;
351cb93a386Sopenharmony_ci
352cb93a386Sopenharmony_ci    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
353cb93a386Sopenharmony_ci    if (dSqd < toleranceSqd) {
354cb93a386Sopenharmony_ci        SkPoint newC;
355cb93a386Sopenharmony_ci        if (preserveFirstTangent == preserveLastTangent) {
356cb93a386Sopenharmony_ci            // We used to force a split when both tangents need to be preserved and c0 != c1.
357cb93a386Sopenharmony_ci            // This introduced a large performance regression for tiny paths for no noticeable
358cb93a386Sopenharmony_ci            // quality improvement. However, we aren't quite fulfilling our contract of guaranteeing
359cb93a386Sopenharmony_ci            // the two tangent vectors and this could introduce a missed pixel in
360cb93a386Sopenharmony_ci            // AAHairlinePathRenderer.
361cb93a386Sopenharmony_ci            newC = (c0 + c1) * 0.5f;
362cb93a386Sopenharmony_ci        } else if (preserveFirstTangent) {
363cb93a386Sopenharmony_ci            newC = c0;
364cb93a386Sopenharmony_ci        } else {
365cb93a386Sopenharmony_ci            newC = c1;
366cb93a386Sopenharmony_ci        }
367cb93a386Sopenharmony_ci
368cb93a386Sopenharmony_ci        SkPoint* pts = quads->push_back_n(3);
369cb93a386Sopenharmony_ci        pts[0] = p[0];
370cb93a386Sopenharmony_ci        pts[1] = newC;
371cb93a386Sopenharmony_ci        pts[2] = p[3];
372cb93a386Sopenharmony_ci        return;
373cb93a386Sopenharmony_ci    }
374cb93a386Sopenharmony_ci    SkPoint choppedPts[7];
375cb93a386Sopenharmony_ci    SkChopCubicAtHalf(p, choppedPts);
376cb93a386Sopenharmony_ci    convert_noninflect_cubic_to_quads(
377cb93a386Sopenharmony_ci            choppedPts + 0, toleranceSqd, quads, sublevel + 1, preserveFirstTangent, false);
378cb93a386Sopenharmony_ci    convert_noninflect_cubic_to_quads(
379cb93a386Sopenharmony_ci            choppedPts + 3, toleranceSqd, quads, sublevel + 1, false, preserveLastTangent);
380cb93a386Sopenharmony_ci}
381cb93a386Sopenharmony_ci
382cb93a386Sopenharmony_civoid convert_noninflect_cubic_to_quads_with_constraint(const SkPoint p[4],
383cb93a386Sopenharmony_ci                                                       SkScalar toleranceSqd,
384cb93a386Sopenharmony_ci                                                       SkPathFirstDirection dir,
385cb93a386Sopenharmony_ci                                                       SkTArray<SkPoint, true>* quads,
386cb93a386Sopenharmony_ci                                                       int sublevel = 0) {
387cb93a386Sopenharmony_ci    // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is
388cb93a386Sopenharmony_ci    // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1].
389cb93a386Sopenharmony_ci
390cb93a386Sopenharmony_ci    SkVector ab = p[1] - p[0];
391cb93a386Sopenharmony_ci    SkVector dc = p[2] - p[3];
392cb93a386Sopenharmony_ci
393cb93a386Sopenharmony_ci    if (SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero) {
394cb93a386Sopenharmony_ci        if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
395cb93a386Sopenharmony_ci            SkPoint* degQuad = quads->push_back_n(3);
396cb93a386Sopenharmony_ci            degQuad[0] = p[0];
397cb93a386Sopenharmony_ci            degQuad[1] = p[0];
398cb93a386Sopenharmony_ci            degQuad[2] = p[3];
399cb93a386Sopenharmony_ci            return;
400cb93a386Sopenharmony_ci        }
401cb93a386Sopenharmony_ci        ab = p[2] - p[0];
402cb93a386Sopenharmony_ci    }
403cb93a386Sopenharmony_ci    if (SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero) {
404cb93a386Sopenharmony_ci        dc = p[1] - p[3];
405cb93a386Sopenharmony_ci    }
406cb93a386Sopenharmony_ci
407cb93a386Sopenharmony_ci    // When the ab and cd tangents are degenerate or nearly parallel with vector from d to a the
408cb93a386Sopenharmony_ci    // constraint that the quad point falls between the tangents becomes hard to enforce and we are
409cb93a386Sopenharmony_ci    // likely to hit the max subdivision count. However, in this case the cubic is approaching a
410cb93a386Sopenharmony_ci    // line and the accuracy of the quad point isn't so important. We check if the two middle cubic
411cb93a386Sopenharmony_ci    // control points are very close to the baseline vector. If so then we just pick quadratic
412cb93a386Sopenharmony_ci    // points on the control polygon.
413cb93a386Sopenharmony_ci
414cb93a386Sopenharmony_ci    SkVector da = p[0] - p[3];
415cb93a386Sopenharmony_ci    bool doQuads = SkPointPriv::LengthSqd(dc) < SK_ScalarNearlyZero ||
416cb93a386Sopenharmony_ci                   SkPointPriv::LengthSqd(ab) < SK_ScalarNearlyZero;
417cb93a386Sopenharmony_ci    if (!doQuads) {
418cb93a386Sopenharmony_ci        SkScalar invDALengthSqd = SkPointPriv::LengthSqd(da);
419cb93a386Sopenharmony_ci        if (invDALengthSqd > SK_ScalarNearlyZero) {
420cb93a386Sopenharmony_ci            invDALengthSqd = SkScalarInvert(invDALengthSqd);
421cb93a386Sopenharmony_ci            // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a.
422cb93a386Sopenharmony_ci            // same goes for point c using vector cd.
423cb93a386Sopenharmony_ci            SkScalar detABSqd = ab.cross(da);
424cb93a386Sopenharmony_ci            detABSqd = SkScalarSquare(detABSqd);
425cb93a386Sopenharmony_ci            SkScalar detDCSqd = dc.cross(da);
426cb93a386Sopenharmony_ci            detDCSqd = SkScalarSquare(detDCSqd);
427cb93a386Sopenharmony_ci            if (detABSqd * invDALengthSqd < toleranceSqd &&
428cb93a386Sopenharmony_ci                detDCSqd * invDALengthSqd < toleranceSqd) {
429cb93a386Sopenharmony_ci                doQuads = true;
430cb93a386Sopenharmony_ci            }
431cb93a386Sopenharmony_ci        }
432cb93a386Sopenharmony_ci    }
433cb93a386Sopenharmony_ci    if (doQuads) {
434cb93a386Sopenharmony_ci        SkPoint b = p[0] + ab;
435cb93a386Sopenharmony_ci        SkPoint c = p[3] + dc;
436cb93a386Sopenharmony_ci        SkPoint mid = b + c;
437cb93a386Sopenharmony_ci        mid.scale(SK_ScalarHalf);
438cb93a386Sopenharmony_ci        // Insert two quadratics to cover the case when ab points away from d and/or dc
439cb93a386Sopenharmony_ci        // points away from a.
440cb93a386Sopenharmony_ci        if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab, da) > 0) {
441cb93a386Sopenharmony_ci            SkPoint* qpts = quads->push_back_n(6);
442cb93a386Sopenharmony_ci            qpts[0] = p[0];
443cb93a386Sopenharmony_ci            qpts[1] = b;
444cb93a386Sopenharmony_ci            qpts[2] = mid;
445cb93a386Sopenharmony_ci            qpts[3] = mid;
446cb93a386Sopenharmony_ci            qpts[4] = c;
447cb93a386Sopenharmony_ci            qpts[5] = p[3];
448cb93a386Sopenharmony_ci        } else {
449cb93a386Sopenharmony_ci            SkPoint* qpts = quads->push_back_n(3);
450cb93a386Sopenharmony_ci            qpts[0] = p[0];
451cb93a386Sopenharmony_ci            qpts[1] = mid;
452cb93a386Sopenharmony_ci            qpts[2] = p[3];
453cb93a386Sopenharmony_ci        }
454cb93a386Sopenharmony_ci        return;
455cb93a386Sopenharmony_ci    }
456cb93a386Sopenharmony_ci
457cb93a386Sopenharmony_ci    static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2;
458cb93a386Sopenharmony_ci    static const int kMaxSubdivs = 10;
459cb93a386Sopenharmony_ci
460cb93a386Sopenharmony_ci    ab.scale(kLengthScale);
461cb93a386Sopenharmony_ci    dc.scale(kLengthScale);
462cb93a386Sopenharmony_ci
463cb93a386Sopenharmony_ci    // c0 and c1 are extrapolations along vectors ab and dc.
464cb93a386Sopenharmony_ci    SkVector c0 = p[0] + ab;
465cb93a386Sopenharmony_ci    SkVector c1 = p[3] + dc;
466cb93a386Sopenharmony_ci
467cb93a386Sopenharmony_ci    SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : SkPointPriv::DistanceToSqd(c0, c1);
468cb93a386Sopenharmony_ci    if (dSqd < toleranceSqd) {
469cb93a386Sopenharmony_ci        SkPoint cAvg = (c0 + c1) * 0.5f;
470cb93a386Sopenharmony_ci        bool subdivide = false;
471cb93a386Sopenharmony_ci
472cb93a386Sopenharmony_ci        if (!is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) {
473cb93a386Sopenharmony_ci            // choose a new cAvg that is the intersection of the two tangent lines.
474cb93a386Sopenharmony_ci            ab = SkPointPriv::MakeOrthog(ab);
475cb93a386Sopenharmony_ci            SkScalar z0 = -ab.dot(p[0]);
476cb93a386Sopenharmony_ci            dc = SkPointPriv::MakeOrthog(dc);
477cb93a386Sopenharmony_ci            SkScalar z1 = -dc.dot(p[3]);
478cb93a386Sopenharmony_ci            cAvg.fX = ab.fY * z1 - z0 * dc.fY;
479cb93a386Sopenharmony_ci            cAvg.fY = z0 * dc.fX - ab.fX * z1;
480cb93a386Sopenharmony_ci            SkScalar z = ab.fX * dc.fY - ab.fY * dc.fX;
481cb93a386Sopenharmony_ci            z = SkScalarInvert(z);
482cb93a386Sopenharmony_ci            cAvg.fX *= z;
483cb93a386Sopenharmony_ci            cAvg.fY *= z;
484cb93a386Sopenharmony_ci            if (sublevel <= kMaxSubdivs) {
485cb93a386Sopenharmony_ci                SkScalar d0Sqd = SkPointPriv::DistanceToSqd(c0, cAvg);
486cb93a386Sopenharmony_ci                SkScalar d1Sqd = SkPointPriv::DistanceToSqd(c1, cAvg);
487cb93a386Sopenharmony_ci                // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know
488cb93a386Sopenharmony_ci                // the distances and tolerance can't be negative.
489cb93a386Sopenharmony_ci                // (d0 + d1)^2 > toleranceSqd
490cb93a386Sopenharmony_ci                // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd
491cb93a386Sopenharmony_ci                SkScalar d0d1 = SkScalarSqrt(d0Sqd * d1Sqd);
492cb93a386Sopenharmony_ci                subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd;
493cb93a386Sopenharmony_ci            }
494cb93a386Sopenharmony_ci        }
495cb93a386Sopenharmony_ci        if (!subdivide) {
496cb93a386Sopenharmony_ci            SkPoint* pts = quads->push_back_n(3);
497cb93a386Sopenharmony_ci            pts[0] = p[0];
498cb93a386Sopenharmony_ci            pts[1] = cAvg;
499cb93a386Sopenharmony_ci            pts[2] = p[3];
500cb93a386Sopenharmony_ci            return;
501cb93a386Sopenharmony_ci        }
502cb93a386Sopenharmony_ci    }
503cb93a386Sopenharmony_ci    SkPoint choppedPts[7];
504cb93a386Sopenharmony_ci    SkChopCubicAtHalf(p, choppedPts);
505cb93a386Sopenharmony_ci    convert_noninflect_cubic_to_quads_with_constraint(
506cb93a386Sopenharmony_ci            choppedPts + 0, toleranceSqd, dir, quads, sublevel + 1);
507cb93a386Sopenharmony_ci    convert_noninflect_cubic_to_quads_with_constraint(
508cb93a386Sopenharmony_ci            choppedPts + 3, toleranceSqd, dir, quads, sublevel + 1);
509cb93a386Sopenharmony_ci}
510cb93a386Sopenharmony_ci}  // namespace
511cb93a386Sopenharmony_ci
512cb93a386Sopenharmony_civoid GrPathUtils::convertCubicToQuads(const SkPoint p[4],
513cb93a386Sopenharmony_ci                                      SkScalar tolScale,
514cb93a386Sopenharmony_ci                                      SkTArray<SkPoint, true>* quads) {
515cb93a386Sopenharmony_ci    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
516cb93a386Sopenharmony_ci        return;
517cb93a386Sopenharmony_ci    }
518cb93a386Sopenharmony_ci    if (!SkScalarIsFinite(tolScale)) {
519cb93a386Sopenharmony_ci        return;
520cb93a386Sopenharmony_ci    }
521cb93a386Sopenharmony_ci    SkPoint chopped[10];
522cb93a386Sopenharmony_ci    int count = SkChopCubicAtInflections(p, chopped);
523cb93a386Sopenharmony_ci
524cb93a386Sopenharmony_ci    const SkScalar tolSqd = SkScalarSquare(tolScale);
525cb93a386Sopenharmony_ci
526cb93a386Sopenharmony_ci    for (int i = 0; i < count; ++i) {
527cb93a386Sopenharmony_ci        SkPoint* cubic = chopped + 3*i;
528cb93a386Sopenharmony_ci        convert_noninflect_cubic_to_quads(cubic, tolSqd, quads);
529cb93a386Sopenharmony_ci    }
530cb93a386Sopenharmony_ci}
531cb93a386Sopenharmony_ci
532cb93a386Sopenharmony_civoid GrPathUtils::convertCubicToQuadsConstrainToTangents(const SkPoint p[4],
533cb93a386Sopenharmony_ci                                                         SkScalar tolScale,
534cb93a386Sopenharmony_ci                                                         SkPathFirstDirection dir,
535cb93a386Sopenharmony_ci                                                         SkTArray<SkPoint, true>* quads) {
536cb93a386Sopenharmony_ci    if (!p[0].isFinite() || !p[1].isFinite() || !p[2].isFinite() || !p[3].isFinite()) {
537cb93a386Sopenharmony_ci        return;
538cb93a386Sopenharmony_ci    }
539cb93a386Sopenharmony_ci    if (!SkScalarIsFinite(tolScale)) {
540cb93a386Sopenharmony_ci        return;
541cb93a386Sopenharmony_ci    }
542cb93a386Sopenharmony_ci    SkPoint chopped[10];
543cb93a386Sopenharmony_ci    int count = SkChopCubicAtInflections(p, chopped);
544cb93a386Sopenharmony_ci
545cb93a386Sopenharmony_ci    const SkScalar tolSqd = SkScalarSquare(tolScale);
546cb93a386Sopenharmony_ci
547cb93a386Sopenharmony_ci    for (int i = 0; i < count; ++i) {
548cb93a386Sopenharmony_ci        SkPoint* cubic = chopped + 3*i;
549cb93a386Sopenharmony_ci        convert_noninflect_cubic_to_quads_with_constraint(cubic, tolSqd, dir, quads);
550cb93a386Sopenharmony_ci    }
551cb93a386Sopenharmony_ci}
552cb93a386Sopenharmony_ci
553cb93a386Sopenharmony_ciint GrPathUtils::findCubicConvex180Chops(const SkPoint pts[], float T[2], bool* areCusps) {
554cb93a386Sopenharmony_ci    using grvx::float2;
555cb93a386Sopenharmony_ci    SkASSERT(pts);
556cb93a386Sopenharmony_ci    SkASSERT(T);
557cb93a386Sopenharmony_ci    SkASSERT(areCusps);
558cb93a386Sopenharmony_ci
559cb93a386Sopenharmony_ci    // If a chop falls within a distance of "kEpsilon" from 0 or 1, throw it out. Tangents become
560cb93a386Sopenharmony_ci    // unstable when we chop too close to the boundary. This works out because the tessellation
561cb93a386Sopenharmony_ci    // shaders don't allow more than 2^10 parametric segments, and they snap the beginning and
562cb93a386Sopenharmony_ci    // ending edges at 0 and 1. So if we overstep an inflection or point of 180-degree rotation by a
563cb93a386Sopenharmony_ci    // fraction of a tessellation segment, it just gets snapped.
564cb93a386Sopenharmony_ci    constexpr static float kEpsilon = 1.f / (1 << 11);
565cb93a386Sopenharmony_ci    // Floating-point representation of "1 - 2*kEpsilon".
566cb93a386Sopenharmony_ci    constexpr static uint32_t kIEEE_one_minus_2_epsilon = (127 << 23) - 2 * (1 << (24 - 11));
567cb93a386Sopenharmony_ci    // Unfortunately we don't have a way to static_assert this, but we can runtime assert that the
568cb93a386Sopenharmony_ci    // kIEEE_one_minus_2_epsilon bits are correct.
569cb93a386Sopenharmony_ci    SkASSERT(sk_bit_cast<float>(kIEEE_one_minus_2_epsilon) == 1 - 2*kEpsilon);
570cb93a386Sopenharmony_ci
571cb93a386Sopenharmony_ci    float2 p0 = skvx::bit_pun<float2>(pts[0]);
572cb93a386Sopenharmony_ci    float2 p1 = skvx::bit_pun<float2>(pts[1]);
573cb93a386Sopenharmony_ci    float2 p2 = skvx::bit_pun<float2>(pts[2]);
574cb93a386Sopenharmony_ci    float2 p3 = skvx::bit_pun<float2>(pts[3]);
575cb93a386Sopenharmony_ci
576cb93a386Sopenharmony_ci    // Find the cubic's power basis coefficients. These define the bezier curve as:
577cb93a386Sopenharmony_ci    //
578cb93a386Sopenharmony_ci    //                                    |T^3|
579cb93a386Sopenharmony_ci    //     Cubic(T) = x,y = |A  3B  3C| * |T^2| + P0
580cb93a386Sopenharmony_ci    //                      |.   .   .|   |T  |
581cb93a386Sopenharmony_ci    //
582cb93a386Sopenharmony_ci    // And the tangent direction (scaled by a uniform 1/3) will be:
583cb93a386Sopenharmony_ci    //
584cb93a386Sopenharmony_ci    //                                                 |T^2|
585cb93a386Sopenharmony_ci    //     Tangent_Direction(T) = dx,dy = |A  2B  C| * |T  |
586cb93a386Sopenharmony_ci    //                                    |.   .  .|   |1  |
587cb93a386Sopenharmony_ci    //
588cb93a386Sopenharmony_ci    float2 C = p1 - p0;
589cb93a386Sopenharmony_ci    float2 D = p2 - p1;
590cb93a386Sopenharmony_ci    float2 E = p3 - p0;
591cb93a386Sopenharmony_ci    float2 B = D - C;
592cb93a386Sopenharmony_ci    float2 A = -3*D + E;
593cb93a386Sopenharmony_ci
594cb93a386Sopenharmony_ci    // Now find the cubic's inflection function. There are inflections where F' x F'' == 0.
595cb93a386Sopenharmony_ci    // We formulate this as a quadratic equation:  F' x F'' == aT^2 + bT + c == 0.
596cb93a386Sopenharmony_ci    // See: https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
597cb93a386Sopenharmony_ci    // NOTE: We only need the roots, so a uniform scale factor does not affect the solution.
598cb93a386Sopenharmony_ci    float a = grvx::cross(A,B);
599cb93a386Sopenharmony_ci    float b = grvx::cross(A,C);
600cb93a386Sopenharmony_ci    float c = grvx::cross(B,C);
601cb93a386Sopenharmony_ci    float b_over_minus_2 = -.5f * b;
602cb93a386Sopenharmony_ci    float discr_over_4 = b_over_minus_2*b_over_minus_2 - a*c;
603cb93a386Sopenharmony_ci
604cb93a386Sopenharmony_ci    // If -cuspThreshold <= discr_over_4 <= cuspThreshold, it means the two roots are within
605cb93a386Sopenharmony_ci    // kEpsilon of one another (in parametric space). This is close enough for our purposes to
606cb93a386Sopenharmony_ci    // consider them a single cusp.
607cb93a386Sopenharmony_ci    float cuspThreshold = a * (kEpsilon/2);
608cb93a386Sopenharmony_ci    cuspThreshold *= cuspThreshold;
609cb93a386Sopenharmony_ci
610cb93a386Sopenharmony_ci    if (discr_over_4 < -cuspThreshold) {
611cb93a386Sopenharmony_ci        // The curve does not inflect or cusp. This means it might rotate more than 180 degrees
612cb93a386Sopenharmony_ci        // instead. Chop were rotation == 180 deg. (This is the 2nd root where the tangent is
613cb93a386Sopenharmony_ci        // parallel to tan0.)
614cb93a386Sopenharmony_ci        //
615cb93a386Sopenharmony_ci        //      Tangent_Direction(T) x tan0 == 0
616cb93a386Sopenharmony_ci        //      (AT^2 x tan0) + (2BT x tan0) + (C x tan0) == 0
617cb93a386Sopenharmony_ci        //      (A x C)T^2 + (2B x C)T + (C x C) == 0  [[because tan0 == P1 - P0 == C]]
618cb93a386Sopenharmony_ci        //      bT^2 + 2cT + 0 == 0  [[because A x C == b, B x C == c]]
619cb93a386Sopenharmony_ci        //      T = [0, -2c/b]
620cb93a386Sopenharmony_ci        //
621cb93a386Sopenharmony_ci        // NOTE: if C == 0, then C != tan0. But this is fine because the curve is definitely
622cb93a386Sopenharmony_ci        // convex-180 if any points are colocated, and T[0] will equal NaN which returns 0 chops.
623cb93a386Sopenharmony_ci        *areCusps = false;
624cb93a386Sopenharmony_ci        float root = sk_ieee_float_divide(c, b_over_minus_2);
625cb93a386Sopenharmony_ci        // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
626cb93a386Sopenharmony_ci        if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
627cb93a386Sopenharmony_ci            T[0] = root;
628cb93a386Sopenharmony_ci            return 1;
629cb93a386Sopenharmony_ci        }
630cb93a386Sopenharmony_ci        return 0;
631cb93a386Sopenharmony_ci    }
632cb93a386Sopenharmony_ci
633cb93a386Sopenharmony_ci    *areCusps = (discr_over_4 <= cuspThreshold);
634cb93a386Sopenharmony_ci    if (*areCusps) {
635cb93a386Sopenharmony_ci        // The two roots are close enough that we can consider them a single cusp.
636cb93a386Sopenharmony_ci        if (a != 0 || b_over_minus_2 != 0 || c != 0) {
637cb93a386Sopenharmony_ci            // Pick the average of both roots.
638cb93a386Sopenharmony_ci            float root = sk_ieee_float_divide(b_over_minus_2, a);
639cb93a386Sopenharmony_ci            // Is "root" inside the range [kEpsilon, 1 - kEpsilon)?
640cb93a386Sopenharmony_ci            if (sk_bit_cast<uint32_t>(root - kEpsilon) < kIEEE_one_minus_2_epsilon) {
641cb93a386Sopenharmony_ci                T[0] = root;
642cb93a386Sopenharmony_ci                return 1;
643cb93a386Sopenharmony_ci            }
644cb93a386Sopenharmony_ci            return 0;
645cb93a386Sopenharmony_ci        }
646cb93a386Sopenharmony_ci
647cb93a386Sopenharmony_ci        // The curve is a flat line. The standard inflection function doesn't detect cusps from flat
648cb93a386Sopenharmony_ci        // lines. Find cusps by searching instead for points where the tangent is perpendicular to
649cb93a386Sopenharmony_ci        // tan0. This will find any cusp point.
650cb93a386Sopenharmony_ci        //
651cb93a386Sopenharmony_ci        //     dot(tan0, Tangent_Direction(T)) == 0
652cb93a386Sopenharmony_ci        //
653cb93a386Sopenharmony_ci        //                         |T^2|
654cb93a386Sopenharmony_ci        //     tan0 * |A  2B  C| * |T  | == 0
655cb93a386Sopenharmony_ci        //            |.   .  .|   |1  |
656cb93a386Sopenharmony_ci        //
657cb93a386Sopenharmony_ci        float2 tan0 = skvx::if_then_else(C != 0, C, p2 - p0);
658cb93a386Sopenharmony_ci        a = grvx::dot(tan0, A);
659cb93a386Sopenharmony_ci        b_over_minus_2 = -grvx::dot(tan0, B);
660cb93a386Sopenharmony_ci        c = grvx::dot(tan0, C);
661cb93a386Sopenharmony_ci        discr_over_4 = std::max(b_over_minus_2*b_over_minus_2 - a*c, 0.f);
662cb93a386Sopenharmony_ci    }
663cb93a386Sopenharmony_ci
664cb93a386Sopenharmony_ci    // Solve our quadratic equation to find where to chop. See the quadratic formula from
665cb93a386Sopenharmony_ci    // Numerical Recipes in C.
666cb93a386Sopenharmony_ci    float q = sqrtf(discr_over_4);
667cb93a386Sopenharmony_ci    q = copysignf(q, b_over_minus_2);
668cb93a386Sopenharmony_ci    q = q + b_over_minus_2;
669cb93a386Sopenharmony_ci    float2 roots = float2{q,c} / float2{a,q};
670cb93a386Sopenharmony_ci
671cb93a386Sopenharmony_ci    auto inside = (roots > kEpsilon) & (roots < (1 - kEpsilon));
672cb93a386Sopenharmony_ci    if (inside[0]) {
673cb93a386Sopenharmony_ci        if (inside[1] && roots[0] != roots[1]) {
674cb93a386Sopenharmony_ci            if (roots[0] > roots[1]) {
675cb93a386Sopenharmony_ci                roots = skvx::shuffle<1,0>(roots);  // Sort.
676cb93a386Sopenharmony_ci            }
677cb93a386Sopenharmony_ci            roots.store(T);
678cb93a386Sopenharmony_ci            return 2;
679cb93a386Sopenharmony_ci        }
680cb93a386Sopenharmony_ci        T[0] = roots[0];
681cb93a386Sopenharmony_ci        return 1;
682cb93a386Sopenharmony_ci    }
683cb93a386Sopenharmony_ci    if (inside[1]) {
684cb93a386Sopenharmony_ci        T[0] = roots[1];
685cb93a386Sopenharmony_ci        return 1;
686cb93a386Sopenharmony_ci    }
687cb93a386Sopenharmony_ci    return 0;
688cb93a386Sopenharmony_ci}
689