1cb93a386Sopenharmony_ci/*
2cb93a386Sopenharmony_ci * Copyright 2015 Google Inc.
3cb93a386Sopenharmony_ci *
4cb93a386Sopenharmony_ci * Use of this source code is governed by a BSD-style license that can be
5cb93a386Sopenharmony_ci * found in the LICENSE file.
6cb93a386Sopenharmony_ci */
7cb93a386Sopenharmony_ci
8cb93a386Sopenharmony_ci#include "src/gpu/geometry/GrAAConvexTessellator.h"
9cb93a386Sopenharmony_ci
10cb93a386Sopenharmony_ci#include "include/core/SkCanvas.h"
11cb93a386Sopenharmony_ci#include "include/core/SkPath.h"
12cb93a386Sopenharmony_ci#include "include/core/SkPoint.h"
13cb93a386Sopenharmony_ci#include "include/core/SkString.h"
14cb93a386Sopenharmony_ci#include "include/private/SkTPin.h"
15cb93a386Sopenharmony_ci#include "src/gpu/geometry/GrPathUtils.h"
16cb93a386Sopenharmony_ci
17cb93a386Sopenharmony_ci// Next steps:
18cb93a386Sopenharmony_ci//  add an interactive sample app slide
19cb93a386Sopenharmony_ci//  add debug check that all points are suitably far apart
20cb93a386Sopenharmony_ci//  test more degenerate cases
21cb93a386Sopenharmony_ci
22cb93a386Sopenharmony_ci// The tolerance for fusing vertices and eliminating colinear lines (It is in device space).
23cb93a386Sopenharmony_cistatic const SkScalar kClose = (SK_Scalar1 / 16);
24cb93a386Sopenharmony_cistatic const SkScalar kCloseSqd = kClose * kClose;
25cb93a386Sopenharmony_ci
26cb93a386Sopenharmony_ci// tesselation tolerance values, in device space pixels
27cb93a386Sopenharmony_cistatic const SkScalar kQuadTolerance = 0.2f;
28cb93a386Sopenharmony_cistatic const SkScalar kCubicTolerance = 0.2f;
29cb93a386Sopenharmony_cistatic const SkScalar kConicTolerance = 0.25f;
30cb93a386Sopenharmony_ci
31cb93a386Sopenharmony_ci// dot product below which we use a round cap between curve segments
32cb93a386Sopenharmony_cistatic const SkScalar kRoundCapThreshold = 0.8f;
33cb93a386Sopenharmony_ci
34cb93a386Sopenharmony_ci// dot product above which we consider two adjacent curves to be part of the "same" curve
35cb93a386Sopenharmony_cistatic const SkScalar kCurveConnectionThreshold = 0.8f;
36cb93a386Sopenharmony_ci
37cb93a386Sopenharmony_cistatic bool intersect(const SkPoint& p0, const SkPoint& n0,
38cb93a386Sopenharmony_ci                      const SkPoint& p1, const SkPoint& n1,
39cb93a386Sopenharmony_ci                      SkScalar* t) {
40cb93a386Sopenharmony_ci    const SkPoint v = p1 - p0;
41cb93a386Sopenharmony_ci    SkScalar perpDot = n0.fX * n1.fY - n0.fY * n1.fX;
42cb93a386Sopenharmony_ci    if (SkScalarNearlyZero(perpDot)) {
43cb93a386Sopenharmony_ci        return false;
44cb93a386Sopenharmony_ci    }
45cb93a386Sopenharmony_ci    *t = (v.fX * n1.fY - v.fY * n1.fX) / perpDot;
46cb93a386Sopenharmony_ci    return SkScalarIsFinite(*t);
47cb93a386Sopenharmony_ci}
48cb93a386Sopenharmony_ci
49cb93a386Sopenharmony_ci// This is a special case version of intersect where we have the vector
50cb93a386Sopenharmony_ci// perpendicular to the second line rather than the vector parallel to it.
51cb93a386Sopenharmony_cistatic SkScalar perp_intersect(const SkPoint& p0, const SkPoint& n0,
52cb93a386Sopenharmony_ci                               const SkPoint& p1, const SkPoint& perp) {
53cb93a386Sopenharmony_ci    const SkPoint v = p1 - p0;
54cb93a386Sopenharmony_ci    SkScalar perpDot = n0.dot(perp);
55cb93a386Sopenharmony_ci    return v.dot(perp) / perpDot;
56cb93a386Sopenharmony_ci}
57cb93a386Sopenharmony_ci
58cb93a386Sopenharmony_cistatic bool duplicate_pt(const SkPoint& p0, const SkPoint& p1) {
59cb93a386Sopenharmony_ci    SkScalar distSq = SkPointPriv::DistanceToSqd(p0, p1);
60cb93a386Sopenharmony_ci    return distSq < kCloseSqd;
61cb93a386Sopenharmony_ci}
62cb93a386Sopenharmony_ci
63cb93a386Sopenharmony_cistatic bool points_are_colinear_and_b_is_middle(const SkPoint& a, const SkPoint& b,
64cb93a386Sopenharmony_ci                                                const SkPoint& c, float* accumError) {
65cb93a386Sopenharmony_ci    // First check distance from b to the infinite line through a, c
66cb93a386Sopenharmony_ci    SkVector aToC = c - a;
67cb93a386Sopenharmony_ci    SkVector n = {aToC.fY, -aToC.fX};
68cb93a386Sopenharmony_ci    n.normalize();
69cb93a386Sopenharmony_ci
70cb93a386Sopenharmony_ci    SkScalar distBToLineAC = SkScalarAbs(n.dot(b) - n.dot(a));
71cb93a386Sopenharmony_ci    if (*accumError + distBToLineAC >= kClose || aToC.dot(b - a) <= 0.f || aToC.dot(c - b) <= 0.f) {
72cb93a386Sopenharmony_ci        // Too far from the line or not between the line segment from a to c
73cb93a386Sopenharmony_ci        return false;
74cb93a386Sopenharmony_ci    } else {
75cb93a386Sopenharmony_ci        // Accumulate the distance from b to |ac| that goes "away" when this near-colinear point
76cb93a386Sopenharmony_ci        // is removed to simplify the path.
77cb93a386Sopenharmony_ci        *accumError += distBToLineAC;
78cb93a386Sopenharmony_ci        return true;
79cb93a386Sopenharmony_ci    }
80cb93a386Sopenharmony_ci}
81cb93a386Sopenharmony_ci
82cb93a386Sopenharmony_ciint GrAAConvexTessellator::addPt(const SkPoint& pt,
83cb93a386Sopenharmony_ci                                 SkScalar depth,
84cb93a386Sopenharmony_ci                                 SkScalar coverage,
85cb93a386Sopenharmony_ci                                 bool movable,
86cb93a386Sopenharmony_ci                                 CurveState curve) {
87cb93a386Sopenharmony_ci    SkASSERT(pt.isFinite());
88cb93a386Sopenharmony_ci    this->validate();
89cb93a386Sopenharmony_ci
90cb93a386Sopenharmony_ci    int index = fPts.count();
91cb93a386Sopenharmony_ci    *fPts.push() = pt;
92cb93a386Sopenharmony_ci    *fCoverages.push() = coverage;
93cb93a386Sopenharmony_ci    *fMovable.push() = movable;
94cb93a386Sopenharmony_ci    *fCurveState.push() = curve;
95cb93a386Sopenharmony_ci
96cb93a386Sopenharmony_ci    this->validate();
97cb93a386Sopenharmony_ci    return index;
98cb93a386Sopenharmony_ci}
99cb93a386Sopenharmony_ci
100cb93a386Sopenharmony_civoid GrAAConvexTessellator::popLastPt() {
101cb93a386Sopenharmony_ci    this->validate();
102cb93a386Sopenharmony_ci
103cb93a386Sopenharmony_ci    fPts.pop();
104cb93a386Sopenharmony_ci    fCoverages.pop();
105cb93a386Sopenharmony_ci    fMovable.pop();
106cb93a386Sopenharmony_ci    fCurveState.pop();
107cb93a386Sopenharmony_ci
108cb93a386Sopenharmony_ci    this->validate();
109cb93a386Sopenharmony_ci}
110cb93a386Sopenharmony_ci
111cb93a386Sopenharmony_civoid GrAAConvexTessellator::popFirstPtShuffle() {
112cb93a386Sopenharmony_ci    this->validate();
113cb93a386Sopenharmony_ci
114cb93a386Sopenharmony_ci    fPts.removeShuffle(0);
115cb93a386Sopenharmony_ci    fCoverages.removeShuffle(0);
116cb93a386Sopenharmony_ci    fMovable.removeShuffle(0);
117cb93a386Sopenharmony_ci    fCurveState.removeShuffle(0);
118cb93a386Sopenharmony_ci
119cb93a386Sopenharmony_ci    this->validate();
120cb93a386Sopenharmony_ci}
121cb93a386Sopenharmony_ci
122cb93a386Sopenharmony_civoid GrAAConvexTessellator::updatePt(int index,
123cb93a386Sopenharmony_ci                                     const SkPoint& pt,
124cb93a386Sopenharmony_ci                                     SkScalar depth,
125cb93a386Sopenharmony_ci                                     SkScalar coverage) {
126cb93a386Sopenharmony_ci    this->validate();
127cb93a386Sopenharmony_ci    SkASSERT(fMovable[index]);
128cb93a386Sopenharmony_ci
129cb93a386Sopenharmony_ci    fPts[index] = pt;
130cb93a386Sopenharmony_ci    fCoverages[index] = coverage;
131cb93a386Sopenharmony_ci}
132cb93a386Sopenharmony_ci
133cb93a386Sopenharmony_civoid GrAAConvexTessellator::addTri(int i0, int i1, int i2) {
134cb93a386Sopenharmony_ci    if (i0 == i1 || i1 == i2 || i2 == i0) {
135cb93a386Sopenharmony_ci        return;
136cb93a386Sopenharmony_ci    }
137cb93a386Sopenharmony_ci
138cb93a386Sopenharmony_ci    *fIndices.push() = i0;
139cb93a386Sopenharmony_ci    *fIndices.push() = i1;
140cb93a386Sopenharmony_ci    *fIndices.push() = i2;
141cb93a386Sopenharmony_ci}
142cb93a386Sopenharmony_ci
143cb93a386Sopenharmony_civoid GrAAConvexTessellator::rewind() {
144cb93a386Sopenharmony_ci    fPts.rewind();
145cb93a386Sopenharmony_ci    fCoverages.rewind();
146cb93a386Sopenharmony_ci    fMovable.rewind();
147cb93a386Sopenharmony_ci    fIndices.rewind();
148cb93a386Sopenharmony_ci    fNorms.rewind();
149cb93a386Sopenharmony_ci    fCurveState.rewind();
150cb93a386Sopenharmony_ci    fInitialRing.rewind();
151cb93a386Sopenharmony_ci    fCandidateVerts.rewind();
152cb93a386Sopenharmony_ci#if GR_AA_CONVEX_TESSELLATOR_VIZ
153cb93a386Sopenharmony_ci    fRings.rewind();        // TODO: leak in this case!
154cb93a386Sopenharmony_ci#else
155cb93a386Sopenharmony_ci    fRings[0].rewind();
156cb93a386Sopenharmony_ci    fRings[1].rewind();
157cb93a386Sopenharmony_ci#endif
158cb93a386Sopenharmony_ci}
159cb93a386Sopenharmony_ci
160cb93a386Sopenharmony_civoid GrAAConvexTessellator::computeNormals() {
161cb93a386Sopenharmony_ci    auto normalToVector = [this](SkVector v) {
162cb93a386Sopenharmony_ci        SkVector n = SkPointPriv::MakeOrthog(v, fSide);
163cb93a386Sopenharmony_ci        SkAssertResult(n.normalize());
164cb93a386Sopenharmony_ci        SkASSERT(SkScalarNearlyEqual(1.0f, n.length()));
165cb93a386Sopenharmony_ci        return n;
166cb93a386Sopenharmony_ci    };
167cb93a386Sopenharmony_ci
168cb93a386Sopenharmony_ci    // Check the cross product of the final trio
169cb93a386Sopenharmony_ci    fNorms.append(fPts.count());
170cb93a386Sopenharmony_ci    fNorms[0] = fPts[1] - fPts[0];
171cb93a386Sopenharmony_ci    fNorms.top() = fPts[0] - fPts.top();
172cb93a386Sopenharmony_ci    SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
173cb93a386Sopenharmony_ci    fSide = (cross > 0.0f) ? SkPointPriv::kRight_Side : SkPointPriv::kLeft_Side;
174cb93a386Sopenharmony_ci    fNorms[0] = normalToVector(fNorms[0]);
175cb93a386Sopenharmony_ci    for (int cur = 1; cur < fNorms.count() - 1; ++cur) {
176cb93a386Sopenharmony_ci        fNorms[cur] = normalToVector(fPts[cur + 1] - fPts[cur]);
177cb93a386Sopenharmony_ci    }
178cb93a386Sopenharmony_ci    fNorms.top() = normalToVector(fNorms.top());
179cb93a386Sopenharmony_ci}
180cb93a386Sopenharmony_ci
181cb93a386Sopenharmony_civoid GrAAConvexTessellator::computeBisectors() {
182cb93a386Sopenharmony_ci    fBisectors.setCount(fNorms.count());
183cb93a386Sopenharmony_ci
184cb93a386Sopenharmony_ci    int prev = fBisectors.count() - 1;
185cb93a386Sopenharmony_ci    for (int cur = 0; cur < fBisectors.count(); prev = cur, ++cur) {
186cb93a386Sopenharmony_ci        fBisectors[cur] = fNorms[cur] + fNorms[prev];
187cb93a386Sopenharmony_ci        if (!fBisectors[cur].normalize()) {
188cb93a386Sopenharmony_ci            fBisectors[cur] = SkPointPriv::MakeOrthog(fNorms[cur], (SkPointPriv::Side)-fSide) +
189cb93a386Sopenharmony_ci                              SkPointPriv::MakeOrthog(fNorms[prev], fSide);
190cb93a386Sopenharmony_ci            SkAssertResult(fBisectors[cur].normalize());
191cb93a386Sopenharmony_ci        } else {
192cb93a386Sopenharmony_ci            fBisectors[cur].negate();      // make the bisector face in
193cb93a386Sopenharmony_ci        }
194cb93a386Sopenharmony_ci        if (fCurveState[prev] == kIndeterminate_CurveState) {
195cb93a386Sopenharmony_ci            if (fCurveState[cur] == kSharp_CurveState) {
196cb93a386Sopenharmony_ci                fCurveState[prev] = kSharp_CurveState;
197cb93a386Sopenharmony_ci            } else {
198cb93a386Sopenharmony_ci                if (SkScalarAbs(fNorms[cur].dot(fNorms[prev])) > kCurveConnectionThreshold) {
199cb93a386Sopenharmony_ci                    fCurveState[prev] = kCurve_CurveState;
200cb93a386Sopenharmony_ci                    fCurveState[cur]  = kCurve_CurveState;
201cb93a386Sopenharmony_ci                } else {
202cb93a386Sopenharmony_ci                    fCurveState[prev] = kSharp_CurveState;
203cb93a386Sopenharmony_ci                    fCurveState[cur]  = kSharp_CurveState;
204cb93a386Sopenharmony_ci                }
205cb93a386Sopenharmony_ci            }
206cb93a386Sopenharmony_ci        }
207cb93a386Sopenharmony_ci
208cb93a386Sopenharmony_ci        SkASSERT(SkScalarNearlyEqual(1.0f, fBisectors[cur].length()));
209cb93a386Sopenharmony_ci    }
210cb93a386Sopenharmony_ci}
211cb93a386Sopenharmony_ci
212cb93a386Sopenharmony_ci// Create as many rings as we need to (up to a predefined limit) to reach the specified target
213cb93a386Sopenharmony_ci// depth. If we are in fill mode, the final ring will automatically be fanned.
214cb93a386Sopenharmony_cibool GrAAConvexTessellator::createInsetRings(Ring& previousRing, SkScalar initialDepth,
215cb93a386Sopenharmony_ci                                             SkScalar initialCoverage, SkScalar targetDepth,
216cb93a386Sopenharmony_ci                                             SkScalar targetCoverage, Ring** finalRing) {
217cb93a386Sopenharmony_ci    static const int kMaxNumRings = 8;
218cb93a386Sopenharmony_ci
219cb93a386Sopenharmony_ci    if (previousRing.numPts() < 3) {
220cb93a386Sopenharmony_ci        return false;
221cb93a386Sopenharmony_ci    }
222cb93a386Sopenharmony_ci    Ring* currentRing = &previousRing;
223cb93a386Sopenharmony_ci    int i;
224cb93a386Sopenharmony_ci    for (i = 0; i < kMaxNumRings; ++i) {
225cb93a386Sopenharmony_ci        Ring* nextRing = this->getNextRing(currentRing);
226cb93a386Sopenharmony_ci        SkASSERT(nextRing != currentRing);
227cb93a386Sopenharmony_ci
228cb93a386Sopenharmony_ci        bool done = this->createInsetRing(*currentRing, nextRing, initialDepth, initialCoverage,
229cb93a386Sopenharmony_ci                                          targetDepth, targetCoverage, i == 0);
230cb93a386Sopenharmony_ci        currentRing = nextRing;
231cb93a386Sopenharmony_ci        if (done) {
232cb93a386Sopenharmony_ci            break;
233cb93a386Sopenharmony_ci        }
234cb93a386Sopenharmony_ci        currentRing->init(*this);
235cb93a386Sopenharmony_ci    }
236cb93a386Sopenharmony_ci
237cb93a386Sopenharmony_ci    if (kMaxNumRings == i) {
238cb93a386Sopenharmony_ci        // Bail if we've exceeded the amount of time we want to throw at this.
239cb93a386Sopenharmony_ci        this->terminate(*currentRing);
240cb93a386Sopenharmony_ci        return false;
241cb93a386Sopenharmony_ci    }
242cb93a386Sopenharmony_ci    bool done = currentRing->numPts() >= 3;
243cb93a386Sopenharmony_ci    if (done) {
244cb93a386Sopenharmony_ci        currentRing->init(*this);
245cb93a386Sopenharmony_ci    }
246cb93a386Sopenharmony_ci    *finalRing = currentRing;
247cb93a386Sopenharmony_ci    return done;
248cb93a386Sopenharmony_ci}
249cb93a386Sopenharmony_ci
250cb93a386Sopenharmony_ci// The general idea here is to, conceptually, start with the original polygon and slide
251cb93a386Sopenharmony_ci// the vertices along the bisectors until the first intersection. At that
252cb93a386Sopenharmony_ci// point two of the edges collapse and the process repeats on the new polygon.
253cb93a386Sopenharmony_ci// The polygon state is captured in the Ring class while the GrAAConvexTessellator
254cb93a386Sopenharmony_ci// controls the iteration. The CandidateVerts holds the formative points for the
255cb93a386Sopenharmony_ci// next ring.
256cb93a386Sopenharmony_cibool GrAAConvexTessellator::tessellate(const SkMatrix& m, const SkPath& path) {
257cb93a386Sopenharmony_ci    if (!this->extractFromPath(m, path)) {
258cb93a386Sopenharmony_ci        return false;
259cb93a386Sopenharmony_ci    }
260cb93a386Sopenharmony_ci
261cb93a386Sopenharmony_ci    SkScalar coverage = 1.0f;
262cb93a386Sopenharmony_ci    SkScalar scaleFactor = 0.0f;
263cb93a386Sopenharmony_ci
264cb93a386Sopenharmony_ci    if (SkStrokeRec::kStrokeAndFill_Style == fStyle) {
265cb93a386Sopenharmony_ci        SkASSERT(m.isSimilarity());
266cb93a386Sopenharmony_ci        scaleFactor = m.getMaxScale(); // x and y scale are the same
267cb93a386Sopenharmony_ci        SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
268cb93a386Sopenharmony_ci        Ring outerStrokeAndAARing;
269cb93a386Sopenharmony_ci        this->createOuterRing(fInitialRing,
270cb93a386Sopenharmony_ci                              effectiveStrokeWidth / 2 + kAntialiasingRadius, 0.0,
271cb93a386Sopenharmony_ci                              &outerStrokeAndAARing);
272cb93a386Sopenharmony_ci
273cb93a386Sopenharmony_ci        // discard all the triangles added between the originating ring and the new outer ring
274cb93a386Sopenharmony_ci        fIndices.rewind();
275cb93a386Sopenharmony_ci
276cb93a386Sopenharmony_ci        outerStrokeAndAARing.init(*this);
277cb93a386Sopenharmony_ci
278cb93a386Sopenharmony_ci        outerStrokeAndAARing.makeOriginalRing();
279cb93a386Sopenharmony_ci
280cb93a386Sopenharmony_ci        // Add the outer stroke ring's normals to the originating ring's normals
281cb93a386Sopenharmony_ci        // so it can also act as an originating ring
282cb93a386Sopenharmony_ci        fNorms.setCount(fNorms.count() + outerStrokeAndAARing.numPts());
283cb93a386Sopenharmony_ci        for (int i = 0; i < outerStrokeAndAARing.numPts(); ++i) {
284cb93a386Sopenharmony_ci            SkASSERT(outerStrokeAndAARing.index(i) < fNorms.count());
285cb93a386Sopenharmony_ci            fNorms[outerStrokeAndAARing.index(i)] = outerStrokeAndAARing.norm(i);
286cb93a386Sopenharmony_ci        }
287cb93a386Sopenharmony_ci
288cb93a386Sopenharmony_ci        // the bisectors are only needed for the computation of the outer ring
289cb93a386Sopenharmony_ci        fBisectors.rewind();
290cb93a386Sopenharmony_ci
291cb93a386Sopenharmony_ci        Ring* insetAARing;
292cb93a386Sopenharmony_ci        this->createInsetRings(outerStrokeAndAARing,
293cb93a386Sopenharmony_ci                               0.0f, 0.0f, 2*kAntialiasingRadius, 1.0f,
294cb93a386Sopenharmony_ci                               &insetAARing);
295cb93a386Sopenharmony_ci
296cb93a386Sopenharmony_ci        SkDEBUGCODE(this->validate();)
297cb93a386Sopenharmony_ci        return true;
298cb93a386Sopenharmony_ci    }
299cb93a386Sopenharmony_ci
300cb93a386Sopenharmony_ci    if (SkStrokeRec::kStroke_Style == fStyle) {
301cb93a386Sopenharmony_ci        SkASSERT(fStrokeWidth >= 0.0f);
302cb93a386Sopenharmony_ci        SkASSERT(m.isSimilarity());
303cb93a386Sopenharmony_ci        scaleFactor = m.getMaxScale(); // x and y scale are the same
304cb93a386Sopenharmony_ci        SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
305cb93a386Sopenharmony_ci        Ring outerStrokeRing;
306cb93a386Sopenharmony_ci        this->createOuterRing(fInitialRing, effectiveStrokeWidth / 2 - kAntialiasingRadius,
307cb93a386Sopenharmony_ci                              coverage, &outerStrokeRing);
308cb93a386Sopenharmony_ci        outerStrokeRing.init(*this);
309cb93a386Sopenharmony_ci        Ring outerAARing;
310cb93a386Sopenharmony_ci        this->createOuterRing(outerStrokeRing, kAntialiasingRadius * 2, 0.0f, &outerAARing);
311cb93a386Sopenharmony_ci    } else {
312cb93a386Sopenharmony_ci        Ring outerAARing;
313cb93a386Sopenharmony_ci        this->createOuterRing(fInitialRing, kAntialiasingRadius, 0.0f, &outerAARing);
314cb93a386Sopenharmony_ci    }
315cb93a386Sopenharmony_ci
316cb93a386Sopenharmony_ci    // the bisectors are only needed for the computation of the outer ring
317cb93a386Sopenharmony_ci    fBisectors.rewind();
318cb93a386Sopenharmony_ci    if (SkStrokeRec::kStroke_Style == fStyle && fInitialRing.numPts() > 2) {
319cb93a386Sopenharmony_ci        SkASSERT(fStrokeWidth >= 0.0f);
320cb93a386Sopenharmony_ci        SkScalar effectiveStrokeWidth = scaleFactor * fStrokeWidth;
321cb93a386Sopenharmony_ci        Ring* insetStrokeRing;
322cb93a386Sopenharmony_ci        SkScalar strokeDepth = effectiveStrokeWidth / 2 - kAntialiasingRadius;
323cb93a386Sopenharmony_ci        if (this->createInsetRings(fInitialRing, 0.0f, coverage, strokeDepth, coverage,
324cb93a386Sopenharmony_ci                                   &insetStrokeRing)) {
325cb93a386Sopenharmony_ci            Ring* insetAARing;
326cb93a386Sopenharmony_ci            this->createInsetRings(*insetStrokeRing, strokeDepth, coverage, strokeDepth +
327cb93a386Sopenharmony_ci                                   kAntialiasingRadius * 2, 0.0f, &insetAARing);
328cb93a386Sopenharmony_ci        }
329cb93a386Sopenharmony_ci    } else {
330cb93a386Sopenharmony_ci        Ring* insetAARing;
331cb93a386Sopenharmony_ci        this->createInsetRings(fInitialRing, 0.0f, 0.5f, kAntialiasingRadius, 1.0f, &insetAARing);
332cb93a386Sopenharmony_ci    }
333cb93a386Sopenharmony_ci
334cb93a386Sopenharmony_ci    SkDEBUGCODE(this->validate();)
335cb93a386Sopenharmony_ci    return true;
336cb93a386Sopenharmony_ci}
337cb93a386Sopenharmony_ci
338cb93a386Sopenharmony_ciSkScalar GrAAConvexTessellator::computeDepthFromEdge(int edgeIdx, const SkPoint& p) const {
339cb93a386Sopenharmony_ci    SkASSERT(edgeIdx < fNorms.count());
340cb93a386Sopenharmony_ci
341cb93a386Sopenharmony_ci    SkPoint v = p - fPts[edgeIdx];
342cb93a386Sopenharmony_ci    SkScalar depth = -fNorms[edgeIdx].dot(v);
343cb93a386Sopenharmony_ci    return depth;
344cb93a386Sopenharmony_ci}
345cb93a386Sopenharmony_ci
346cb93a386Sopenharmony_ci// Find a point that is 'desiredDepth' away from the 'edgeIdx'-th edge and lies
347cb93a386Sopenharmony_ci// along the 'bisector' from the 'startIdx'-th point.
348cb93a386Sopenharmony_cibool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
349cb93a386Sopenharmony_ci                                                   const SkVector& bisector,
350cb93a386Sopenharmony_ci                                                   int edgeIdx,
351cb93a386Sopenharmony_ci                                                   SkScalar desiredDepth,
352cb93a386Sopenharmony_ci                                                   SkPoint* result) const {
353cb93a386Sopenharmony_ci    const SkPoint& norm = fNorms[edgeIdx];
354cb93a386Sopenharmony_ci
355cb93a386Sopenharmony_ci    // First find the point where the edge and the bisector intersect
356cb93a386Sopenharmony_ci    SkPoint newP;
357cb93a386Sopenharmony_ci
358cb93a386Sopenharmony_ci    SkScalar t = perp_intersect(fPts[startIdx], bisector, fPts[edgeIdx], norm);
359cb93a386Sopenharmony_ci    if (SkScalarNearlyEqual(t, 0.0f)) {
360cb93a386Sopenharmony_ci        // the start point was one of the original ring points
361cb93a386Sopenharmony_ci        SkASSERT(startIdx < fPts.count());
362cb93a386Sopenharmony_ci        newP = fPts[startIdx];
363cb93a386Sopenharmony_ci    } else if (t < 0.0f) {
364cb93a386Sopenharmony_ci        newP = bisector;
365cb93a386Sopenharmony_ci        newP.scale(t);
366cb93a386Sopenharmony_ci        newP += fPts[startIdx];
367cb93a386Sopenharmony_ci    } else {
368cb93a386Sopenharmony_ci        return false;
369cb93a386Sopenharmony_ci    }
370cb93a386Sopenharmony_ci
371cb93a386Sopenharmony_ci    // Then offset along the bisector from that point the correct distance
372cb93a386Sopenharmony_ci    SkScalar dot = bisector.dot(norm);
373cb93a386Sopenharmony_ci    t = -desiredDepth / dot;
374cb93a386Sopenharmony_ci    *result = bisector;
375cb93a386Sopenharmony_ci    result->scale(t);
376cb93a386Sopenharmony_ci    *result += newP;
377cb93a386Sopenharmony_ci
378cb93a386Sopenharmony_ci    return true;
379cb93a386Sopenharmony_ci}
380cb93a386Sopenharmony_ci
381cb93a386Sopenharmony_cibool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
382cb93a386Sopenharmony_ci    SkASSERT(path.isConvex());
383cb93a386Sopenharmony_ci
384cb93a386Sopenharmony_ci    SkRect bounds = path.getBounds();
385cb93a386Sopenharmony_ci    m.mapRect(&bounds);
386cb93a386Sopenharmony_ci    if (!bounds.isFinite()) {
387cb93a386Sopenharmony_ci        // We could do something smarter here like clip the path based on the bounds of the dst.
388cb93a386Sopenharmony_ci        // We'd have to be careful about strokes to ensure we don't draw something wrong.
389cb93a386Sopenharmony_ci        return false;
390cb93a386Sopenharmony_ci    }
391cb93a386Sopenharmony_ci
392cb93a386Sopenharmony_ci    // Outer ring: 3*numPts
393cb93a386Sopenharmony_ci    // Middle ring: numPts
394cb93a386Sopenharmony_ci    // Presumptive inner ring: numPts
395cb93a386Sopenharmony_ci    this->reservePts(5*path.countPoints());
396cb93a386Sopenharmony_ci    // Outer ring: 12*numPts
397cb93a386Sopenharmony_ci    // Middle ring: 0
398cb93a386Sopenharmony_ci    // Presumptive inner ring: 6*numPts + 6
399cb93a386Sopenharmony_ci    fIndices.setReserve(18*path.countPoints() + 6);
400cb93a386Sopenharmony_ci
401cb93a386Sopenharmony_ci    // Reset the accumulated error for all the future lineTo() calls when iterating over the path.
402cb93a386Sopenharmony_ci    fAccumLinearError = 0.f;
403cb93a386Sopenharmony_ci    // TODO: is there a faster way to extract the points from the path? Perhaps
404cb93a386Sopenharmony_ci    // get all the points via a new entry point, transform them all in bulk
405cb93a386Sopenharmony_ci    // and then walk them to find duplicates?
406cb93a386Sopenharmony_ci    SkPathEdgeIter iter(path);
407cb93a386Sopenharmony_ci    while (auto e = iter.next()) {
408cb93a386Sopenharmony_ci        switch (e.fEdge) {
409cb93a386Sopenharmony_ci            case SkPathEdgeIter::Edge::kLine:
410cb93a386Sopenharmony_ci                if (!SkPathPriv::AllPointsEq(e.fPts, 2)) {
411cb93a386Sopenharmony_ci                    this->lineTo(m, e.fPts[1], kSharp_CurveState);
412cb93a386Sopenharmony_ci                }
413cb93a386Sopenharmony_ci                break;
414cb93a386Sopenharmony_ci            case SkPathEdgeIter::Edge::kQuad:
415cb93a386Sopenharmony_ci                if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
416cb93a386Sopenharmony_ci                    this->quadTo(m, e.fPts);
417cb93a386Sopenharmony_ci                }
418cb93a386Sopenharmony_ci                break;
419cb93a386Sopenharmony_ci            case SkPathEdgeIter::Edge::kCubic:
420cb93a386Sopenharmony_ci                if (!SkPathPriv::AllPointsEq(e.fPts, 4)) {
421cb93a386Sopenharmony_ci                    this->cubicTo(m, e.fPts);
422cb93a386Sopenharmony_ci                }
423cb93a386Sopenharmony_ci                break;
424cb93a386Sopenharmony_ci            case SkPathEdgeIter::Edge::kConic:
425cb93a386Sopenharmony_ci                if (!SkPathPriv::AllPointsEq(e.fPts, 3)) {
426cb93a386Sopenharmony_ci                    this->conicTo(m, e.fPts, iter.conicWeight());
427cb93a386Sopenharmony_ci                }
428cb93a386Sopenharmony_ci                break;
429cb93a386Sopenharmony_ci        }
430cb93a386Sopenharmony_ci    }
431cb93a386Sopenharmony_ci
432cb93a386Sopenharmony_ci    if (this->numPts() < 2) {
433cb93a386Sopenharmony_ci        return false;
434cb93a386Sopenharmony_ci    }
435cb93a386Sopenharmony_ci
436cb93a386Sopenharmony_ci    // check if last point is a duplicate of the first point. If so, remove it.
437cb93a386Sopenharmony_ci    if (duplicate_pt(fPts[this->numPts()-1], fPts[0])) {
438cb93a386Sopenharmony_ci        this->popLastPt();
439cb93a386Sopenharmony_ci    }
440cb93a386Sopenharmony_ci
441cb93a386Sopenharmony_ci    // Remove any lingering colinear points where the path wraps around
442cb93a386Sopenharmony_ci    fAccumLinearError = 0.f;
443cb93a386Sopenharmony_ci    bool noRemovalsToDo = false;
444cb93a386Sopenharmony_ci    while (!noRemovalsToDo && this->numPts() >= 3) {
445cb93a386Sopenharmony_ci        if (points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), fPts[0],
446cb93a386Sopenharmony_ci                                                &fAccumLinearError)) {
447cb93a386Sopenharmony_ci            this->popLastPt();
448cb93a386Sopenharmony_ci        } else if (points_are_colinear_and_b_is_middle(fPts.top(), fPts[0], fPts[1],
449cb93a386Sopenharmony_ci                                                       &fAccumLinearError)) {
450cb93a386Sopenharmony_ci            this->popFirstPtShuffle();
451cb93a386Sopenharmony_ci        } else {
452cb93a386Sopenharmony_ci            noRemovalsToDo = true;
453cb93a386Sopenharmony_ci        }
454cb93a386Sopenharmony_ci    }
455cb93a386Sopenharmony_ci
456cb93a386Sopenharmony_ci    // Compute the normals and bisectors.
457cb93a386Sopenharmony_ci    SkASSERT(fNorms.empty());
458cb93a386Sopenharmony_ci    if (this->numPts() >= 3) {
459cb93a386Sopenharmony_ci        this->computeNormals();
460cb93a386Sopenharmony_ci        this->computeBisectors();
461cb93a386Sopenharmony_ci    } else if (this->numPts() == 2) {
462cb93a386Sopenharmony_ci        // We've got two points, so we're degenerate.
463cb93a386Sopenharmony_ci        if (fStyle == SkStrokeRec::kFill_Style) {
464cb93a386Sopenharmony_ci            // it's a fill, so we don't need to worry about degenerate paths
465cb93a386Sopenharmony_ci            return false;
466cb93a386Sopenharmony_ci        }
467cb93a386Sopenharmony_ci        // For stroking, we still need to process the degenerate path, so fix it up
468cb93a386Sopenharmony_ci        fSide = SkPointPriv::kLeft_Side;
469cb93a386Sopenharmony_ci
470cb93a386Sopenharmony_ci        fNorms.append(2);
471cb93a386Sopenharmony_ci        fNorms[0] = SkPointPriv::MakeOrthog(fPts[1] - fPts[0], fSide);
472cb93a386Sopenharmony_ci        fNorms[0].normalize();
473cb93a386Sopenharmony_ci        fNorms[1] = -fNorms[0];
474cb93a386Sopenharmony_ci        SkASSERT(SkScalarNearlyEqual(1.0f, fNorms[0].length()));
475cb93a386Sopenharmony_ci        // we won't actually use the bisectors, so just push zeroes
476cb93a386Sopenharmony_ci        fBisectors.push_back(SkPoint::Make(0.0, 0.0));
477cb93a386Sopenharmony_ci        fBisectors.push_back(SkPoint::Make(0.0, 0.0));
478cb93a386Sopenharmony_ci    } else {
479cb93a386Sopenharmony_ci        return false;
480cb93a386Sopenharmony_ci    }
481cb93a386Sopenharmony_ci
482cb93a386Sopenharmony_ci    fCandidateVerts.setReserve(this->numPts());
483cb93a386Sopenharmony_ci    fInitialRing.setReserve(this->numPts());
484cb93a386Sopenharmony_ci    for (int i = 0; i < this->numPts(); ++i) {
485cb93a386Sopenharmony_ci        fInitialRing.addIdx(i, i);
486cb93a386Sopenharmony_ci    }
487cb93a386Sopenharmony_ci    fInitialRing.init(fNorms, fBisectors);
488cb93a386Sopenharmony_ci
489cb93a386Sopenharmony_ci    this->validate();
490cb93a386Sopenharmony_ci    return true;
491cb93a386Sopenharmony_ci}
492cb93a386Sopenharmony_ci
493cb93a386Sopenharmony_ciGrAAConvexTessellator::Ring* GrAAConvexTessellator::getNextRing(Ring* lastRing) {
494cb93a386Sopenharmony_ci#if GR_AA_CONVEX_TESSELLATOR_VIZ
495cb93a386Sopenharmony_ci    Ring* ring = *fRings.push() = new Ring;
496cb93a386Sopenharmony_ci    ring->setReserve(fInitialRing.numPts());
497cb93a386Sopenharmony_ci    ring->rewind();
498cb93a386Sopenharmony_ci    return ring;
499cb93a386Sopenharmony_ci#else
500cb93a386Sopenharmony_ci    // Flip flop back and forth between fRings[0] & fRings[1]
501cb93a386Sopenharmony_ci    int nextRing = (lastRing == &fRings[0]) ? 1 : 0;
502cb93a386Sopenharmony_ci    fRings[nextRing].setReserve(fInitialRing.numPts());
503cb93a386Sopenharmony_ci    fRings[nextRing].rewind();
504cb93a386Sopenharmony_ci    return &fRings[nextRing];
505cb93a386Sopenharmony_ci#endif
506cb93a386Sopenharmony_ci}
507cb93a386Sopenharmony_ci
508cb93a386Sopenharmony_civoid GrAAConvexTessellator::fanRing(const Ring& ring) {
509cb93a386Sopenharmony_ci    // fan out from point 0
510cb93a386Sopenharmony_ci    int startIdx = ring.index(0);
511cb93a386Sopenharmony_ci    for (int cur = ring.numPts() - 2; cur >= 0; --cur) {
512cb93a386Sopenharmony_ci        this->addTri(startIdx, ring.index(cur), ring.index(cur + 1));
513cb93a386Sopenharmony_ci    }
514cb93a386Sopenharmony_ci}
515cb93a386Sopenharmony_ci
516cb93a386Sopenharmony_civoid GrAAConvexTessellator::createOuterRing(const Ring& previousRing, SkScalar outset,
517cb93a386Sopenharmony_ci                                            SkScalar coverage, Ring* nextRing) {
518cb93a386Sopenharmony_ci    const int numPts = previousRing.numPts();
519cb93a386Sopenharmony_ci    if (numPts == 0) {
520cb93a386Sopenharmony_ci        return;
521cb93a386Sopenharmony_ci    }
522cb93a386Sopenharmony_ci
523cb93a386Sopenharmony_ci    int prev = numPts - 1;
524cb93a386Sopenharmony_ci    int lastPerpIdx = -1, firstPerpIdx = -1;
525cb93a386Sopenharmony_ci
526cb93a386Sopenharmony_ci    const SkScalar outsetSq = outset * outset;
527cb93a386Sopenharmony_ci    SkScalar miterLimitSq = outset * fMiterLimit;
528cb93a386Sopenharmony_ci    miterLimitSq = miterLimitSq * miterLimitSq;
529cb93a386Sopenharmony_ci    for (int cur = 0; cur < numPts; ++cur) {
530cb93a386Sopenharmony_ci        int originalIdx = previousRing.index(cur);
531cb93a386Sopenharmony_ci        // For each vertex of the original polygon we add at least two points to the
532cb93a386Sopenharmony_ci        // outset polygon - one extending perpendicular to each impinging edge. Connecting these
533cb93a386Sopenharmony_ci        // two points yields a bevel join. We need one additional point for a mitered join, and
534cb93a386Sopenharmony_ci        // a round join requires one or more points depending upon curvature.
535cb93a386Sopenharmony_ci
536cb93a386Sopenharmony_ci        // The perpendicular point for the last edge
537cb93a386Sopenharmony_ci        SkPoint normal1 = previousRing.norm(prev);
538cb93a386Sopenharmony_ci        SkPoint perp1 = normal1;
539cb93a386Sopenharmony_ci        perp1.scale(outset);
540cb93a386Sopenharmony_ci        perp1 += this->point(originalIdx);
541cb93a386Sopenharmony_ci
542cb93a386Sopenharmony_ci        // The perpendicular point for the next edge.
543cb93a386Sopenharmony_ci        SkPoint normal2 = previousRing.norm(cur);
544cb93a386Sopenharmony_ci        SkPoint perp2 = normal2;
545cb93a386Sopenharmony_ci        perp2.scale(outset);
546cb93a386Sopenharmony_ci        perp2 += fPts[originalIdx];
547cb93a386Sopenharmony_ci
548cb93a386Sopenharmony_ci        CurveState curve = fCurveState[originalIdx];
549cb93a386Sopenharmony_ci
550cb93a386Sopenharmony_ci        // We know it isn't a duplicate of the prior point (since it and this
551cb93a386Sopenharmony_ci        // one are just perpendicular offsets from the non-merged polygon points)
552cb93a386Sopenharmony_ci        int perp1Idx = this->addPt(perp1, -outset, coverage, false, curve);
553cb93a386Sopenharmony_ci        nextRing->addIdx(perp1Idx, originalIdx);
554cb93a386Sopenharmony_ci
555cb93a386Sopenharmony_ci        int perp2Idx;
556cb93a386Sopenharmony_ci        // For very shallow angles all the corner points could fuse.
557cb93a386Sopenharmony_ci        if (duplicate_pt(perp2, this->point(perp1Idx))) {
558cb93a386Sopenharmony_ci            perp2Idx = perp1Idx;
559cb93a386Sopenharmony_ci        } else {
560cb93a386Sopenharmony_ci            perp2Idx = this->addPt(perp2, -outset, coverage, false, curve);
561cb93a386Sopenharmony_ci        }
562cb93a386Sopenharmony_ci
563cb93a386Sopenharmony_ci        if (perp2Idx != perp1Idx) {
564cb93a386Sopenharmony_ci            if (curve == kCurve_CurveState) {
565cb93a386Sopenharmony_ci                // bevel or round depending upon curvature
566cb93a386Sopenharmony_ci                SkScalar dotProd = normal1.dot(normal2);
567cb93a386Sopenharmony_ci                if (dotProd < kRoundCapThreshold) {
568cb93a386Sopenharmony_ci                    // Currently we "round" by creating a single extra point, which produces
569cb93a386Sopenharmony_ci                    // good results for common cases. For thick strokes with high curvature, we will
570cb93a386Sopenharmony_ci                    // need to add more points; for the time being we simply fall back to software
571cb93a386Sopenharmony_ci                    // rendering for thick strokes.
572cb93a386Sopenharmony_ci                    SkPoint miter = previousRing.bisector(cur);
573cb93a386Sopenharmony_ci                    miter.setLength(-outset);
574cb93a386Sopenharmony_ci                    miter += fPts[originalIdx];
575cb93a386Sopenharmony_ci
576cb93a386Sopenharmony_ci                    // For very shallow angles all the corner points could fuse
577cb93a386Sopenharmony_ci                    if (!duplicate_pt(miter, this->point(perp1Idx))) {
578cb93a386Sopenharmony_ci                        int miterIdx;
579cb93a386Sopenharmony_ci                        miterIdx = this->addPt(miter, -outset, coverage, false, kSharp_CurveState);
580cb93a386Sopenharmony_ci                        nextRing->addIdx(miterIdx, originalIdx);
581cb93a386Sopenharmony_ci                        // The two triangles for the corner
582cb93a386Sopenharmony_ci                        this->addTri(originalIdx, perp1Idx, miterIdx);
583cb93a386Sopenharmony_ci                        this->addTri(originalIdx, miterIdx, perp2Idx);
584cb93a386Sopenharmony_ci                    }
585cb93a386Sopenharmony_ci                } else {
586cb93a386Sopenharmony_ci                    this->addTri(originalIdx, perp1Idx, perp2Idx);
587cb93a386Sopenharmony_ci                }
588cb93a386Sopenharmony_ci            } else {
589cb93a386Sopenharmony_ci                switch (fJoin) {
590cb93a386Sopenharmony_ci                    case SkPaint::Join::kMiter_Join: {
591cb93a386Sopenharmony_ci                        // The bisector outset point
592cb93a386Sopenharmony_ci                        SkPoint miter = previousRing.bisector(cur);
593cb93a386Sopenharmony_ci                        SkScalar dotProd = normal1.dot(normal2);
594cb93a386Sopenharmony_ci                        // The max is because this could go slightly negative if precision causes
595cb93a386Sopenharmony_ci                        // us to become slightly concave.
596cb93a386Sopenharmony_ci                        SkScalar sinHalfAngleSq = std::max(SkScalarHalf(SK_Scalar1 + dotProd), 0.f);
597cb93a386Sopenharmony_ci                        SkScalar lengthSq = sk_ieee_float_divide(outsetSq, sinHalfAngleSq);
598cb93a386Sopenharmony_ci                        if (lengthSq > miterLimitSq) {
599cb93a386Sopenharmony_ci                            // just bevel it
600cb93a386Sopenharmony_ci                            this->addTri(originalIdx, perp1Idx, perp2Idx);
601cb93a386Sopenharmony_ci                            break;
602cb93a386Sopenharmony_ci                        }
603cb93a386Sopenharmony_ci                        miter.setLength(-SkScalarSqrt(lengthSq));
604cb93a386Sopenharmony_ci                        miter += fPts[originalIdx];
605cb93a386Sopenharmony_ci
606cb93a386Sopenharmony_ci                        // For very shallow angles all the corner points could fuse
607cb93a386Sopenharmony_ci                        if (!duplicate_pt(miter, this->point(perp1Idx))) {
608cb93a386Sopenharmony_ci                            int miterIdx;
609cb93a386Sopenharmony_ci                            miterIdx = this->addPt(miter, -outset, coverage, false,
610cb93a386Sopenharmony_ci                                                   kSharp_CurveState);
611cb93a386Sopenharmony_ci                            nextRing->addIdx(miterIdx, originalIdx);
612cb93a386Sopenharmony_ci                            // The two triangles for the corner
613cb93a386Sopenharmony_ci                            this->addTri(originalIdx, perp1Idx, miterIdx);
614cb93a386Sopenharmony_ci                            this->addTri(originalIdx, miterIdx, perp2Idx);
615cb93a386Sopenharmony_ci                        } else {
616cb93a386Sopenharmony_ci                            // ignore the miter point as it's so close to perp1/perp2 and simply
617cb93a386Sopenharmony_ci                            // bevel.
618cb93a386Sopenharmony_ci                            this->addTri(originalIdx, perp1Idx, perp2Idx);
619cb93a386Sopenharmony_ci                        }
620cb93a386Sopenharmony_ci                        break;
621cb93a386Sopenharmony_ci                    }
622cb93a386Sopenharmony_ci                    case SkPaint::Join::kBevel_Join:
623cb93a386Sopenharmony_ci                        this->addTri(originalIdx, perp1Idx, perp2Idx);
624cb93a386Sopenharmony_ci                        break;
625cb93a386Sopenharmony_ci                    default:
626cb93a386Sopenharmony_ci                        // kRound_Join is unsupported for now. AALinearizingConvexPathRenderer is
627cb93a386Sopenharmony_ci                        // only willing to draw mitered or beveled, so we should never get here.
628cb93a386Sopenharmony_ci                        SkASSERT(false);
629cb93a386Sopenharmony_ci                }
630cb93a386Sopenharmony_ci            }
631cb93a386Sopenharmony_ci
632cb93a386Sopenharmony_ci            nextRing->addIdx(perp2Idx, originalIdx);
633cb93a386Sopenharmony_ci        }
634cb93a386Sopenharmony_ci
635cb93a386Sopenharmony_ci        if (0 == cur) {
636cb93a386Sopenharmony_ci            // Store the index of the first perpendicular point to finish up
637cb93a386Sopenharmony_ci            firstPerpIdx = perp1Idx;
638cb93a386Sopenharmony_ci            SkASSERT(-1 == lastPerpIdx);
639cb93a386Sopenharmony_ci        } else {
640cb93a386Sopenharmony_ci            // The triangles for the previous edge
641cb93a386Sopenharmony_ci            int prevIdx = previousRing.index(prev);
642cb93a386Sopenharmony_ci            this->addTri(prevIdx, perp1Idx, originalIdx);
643cb93a386Sopenharmony_ci            this->addTri(prevIdx, lastPerpIdx, perp1Idx);
644cb93a386Sopenharmony_ci        }
645cb93a386Sopenharmony_ci
646cb93a386Sopenharmony_ci        // Track the last perpendicular outset point so we can construct the
647cb93a386Sopenharmony_ci        // trailing edge triangles.
648cb93a386Sopenharmony_ci        lastPerpIdx = perp2Idx;
649cb93a386Sopenharmony_ci        prev = cur;
650cb93a386Sopenharmony_ci    }
651cb93a386Sopenharmony_ci
652cb93a386Sopenharmony_ci    // pick up the final edge rect
653cb93a386Sopenharmony_ci    int lastIdx = previousRing.index(numPts - 1);
654cb93a386Sopenharmony_ci    this->addTri(lastIdx, firstPerpIdx, previousRing.index(0));
655cb93a386Sopenharmony_ci    this->addTri(lastIdx, lastPerpIdx, firstPerpIdx);
656cb93a386Sopenharmony_ci
657cb93a386Sopenharmony_ci    this->validate();
658cb93a386Sopenharmony_ci}
659cb93a386Sopenharmony_ci
660cb93a386Sopenharmony_ci// Something went wrong in the creation of the next ring. If we're filling the shape, just go ahead
661cb93a386Sopenharmony_ci// and fan it.
662cb93a386Sopenharmony_civoid GrAAConvexTessellator::terminate(const Ring& ring) {
663cb93a386Sopenharmony_ci    if (fStyle != SkStrokeRec::kStroke_Style && ring.numPts() > 0) {
664cb93a386Sopenharmony_ci        this->fanRing(ring);
665cb93a386Sopenharmony_ci    }
666cb93a386Sopenharmony_ci}
667cb93a386Sopenharmony_ci
668cb93a386Sopenharmony_cistatic SkScalar compute_coverage(SkScalar depth, SkScalar initialDepth, SkScalar initialCoverage,
669cb93a386Sopenharmony_ci                                SkScalar targetDepth, SkScalar targetCoverage) {
670cb93a386Sopenharmony_ci    if (SkScalarNearlyEqual(initialDepth, targetDepth)) {
671cb93a386Sopenharmony_ci        return targetCoverage;
672cb93a386Sopenharmony_ci    }
673cb93a386Sopenharmony_ci    SkScalar result = (depth - initialDepth) / (targetDepth - initialDepth) *
674cb93a386Sopenharmony_ci            (targetCoverage - initialCoverage) + initialCoverage;
675cb93a386Sopenharmony_ci    return SkTPin(result, 0.0f, 1.0f);
676cb93a386Sopenharmony_ci}
677cb93a386Sopenharmony_ci
678cb93a386Sopenharmony_ci// return true when processing is complete
679cb93a386Sopenharmony_cibool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing,
680cb93a386Sopenharmony_ci                                            SkScalar initialDepth, SkScalar initialCoverage,
681cb93a386Sopenharmony_ci                                            SkScalar targetDepth, SkScalar targetCoverage,
682cb93a386Sopenharmony_ci                                            bool forceNew) {
683cb93a386Sopenharmony_ci    bool done = false;
684cb93a386Sopenharmony_ci
685cb93a386Sopenharmony_ci    fCandidateVerts.rewind();
686cb93a386Sopenharmony_ci
687cb93a386Sopenharmony_ci    // Loop through all the points in the ring and find the intersection with the smallest depth
688cb93a386Sopenharmony_ci    SkScalar minDist = SK_ScalarMax, minT = 0.0f;
689cb93a386Sopenharmony_ci    int minEdgeIdx = -1;
690cb93a386Sopenharmony_ci
691cb93a386Sopenharmony_ci    for (int cur = 0; cur < lastRing.numPts(); ++cur) {
692cb93a386Sopenharmony_ci        int next = (cur + 1) % lastRing.numPts();
693cb93a386Sopenharmony_ci
694cb93a386Sopenharmony_ci        SkScalar t;
695cb93a386Sopenharmony_ci        bool result = intersect(this->point(lastRing.index(cur)),  lastRing.bisector(cur),
696cb93a386Sopenharmony_ci                                this->point(lastRing.index(next)), lastRing.bisector(next),
697cb93a386Sopenharmony_ci                                &t);
698cb93a386Sopenharmony_ci        // The bisectors may be parallel (!result) or the previous ring may have become slightly
699cb93a386Sopenharmony_ci        // concave due to accumulated error (t <= 0).
700cb93a386Sopenharmony_ci        if (!result || t <= 0) {
701cb93a386Sopenharmony_ci            continue;
702cb93a386Sopenharmony_ci        }
703cb93a386Sopenharmony_ci        SkScalar dist = -t * lastRing.norm(cur).dot(lastRing.bisector(cur));
704cb93a386Sopenharmony_ci
705cb93a386Sopenharmony_ci        if (minDist > dist) {
706cb93a386Sopenharmony_ci            minDist = dist;
707cb93a386Sopenharmony_ci            minT = t;
708cb93a386Sopenharmony_ci            minEdgeIdx = cur;
709cb93a386Sopenharmony_ci        }
710cb93a386Sopenharmony_ci    }
711cb93a386Sopenharmony_ci
712cb93a386Sopenharmony_ci    if (minEdgeIdx == -1) {
713cb93a386Sopenharmony_ci        return false;
714cb93a386Sopenharmony_ci    }
715cb93a386Sopenharmony_ci    SkPoint newPt = lastRing.bisector(minEdgeIdx);
716cb93a386Sopenharmony_ci    newPt.scale(minT);
717cb93a386Sopenharmony_ci    newPt += this->point(lastRing.index(minEdgeIdx));
718cb93a386Sopenharmony_ci
719cb93a386Sopenharmony_ci    SkScalar depth = this->computeDepthFromEdge(lastRing.origEdgeID(minEdgeIdx), newPt);
720cb93a386Sopenharmony_ci    if (depth >= targetDepth) {
721cb93a386Sopenharmony_ci        // None of the bisectors intersect before reaching the desired depth.
722cb93a386Sopenharmony_ci        // Just step them all to the desired depth
723cb93a386Sopenharmony_ci        depth = targetDepth;
724cb93a386Sopenharmony_ci        done = true;
725cb93a386Sopenharmony_ci    }
726cb93a386Sopenharmony_ci
727cb93a386Sopenharmony_ci    // 'dst' stores where each point in the last ring maps to/transforms into
728cb93a386Sopenharmony_ci    // in the next ring.
729cb93a386Sopenharmony_ci    SkTDArray<int> dst;
730cb93a386Sopenharmony_ci    dst.setCount(lastRing.numPts());
731cb93a386Sopenharmony_ci
732cb93a386Sopenharmony_ci    // Create the first point (who compares with no one)
733cb93a386Sopenharmony_ci    if (!this->computePtAlongBisector(lastRing.index(0),
734cb93a386Sopenharmony_ci                                      lastRing.bisector(0),
735cb93a386Sopenharmony_ci                                      lastRing.origEdgeID(0),
736cb93a386Sopenharmony_ci                                      depth, &newPt)) {
737cb93a386Sopenharmony_ci        this->terminate(lastRing);
738cb93a386Sopenharmony_ci        return true;
739cb93a386Sopenharmony_ci    }
740cb93a386Sopenharmony_ci    dst[0] = fCandidateVerts.addNewPt(newPt,
741cb93a386Sopenharmony_ci                                      lastRing.index(0), lastRing.origEdgeID(0),
742cb93a386Sopenharmony_ci                                      !this->movable(lastRing.index(0)));
743cb93a386Sopenharmony_ci
744cb93a386Sopenharmony_ci    // Handle the middle points (who only compare with the prior point)
745cb93a386Sopenharmony_ci    for (int cur = 1; cur < lastRing.numPts()-1; ++cur) {
746cb93a386Sopenharmony_ci        if (!this->computePtAlongBisector(lastRing.index(cur),
747cb93a386Sopenharmony_ci                                          lastRing.bisector(cur),
748cb93a386Sopenharmony_ci                                          lastRing.origEdgeID(cur),
749cb93a386Sopenharmony_ci                                          depth, &newPt)) {
750cb93a386Sopenharmony_ci            this->terminate(lastRing);
751cb93a386Sopenharmony_ci            return true;
752cb93a386Sopenharmony_ci        }
753cb93a386Sopenharmony_ci        if (!duplicate_pt(newPt, fCandidateVerts.lastPoint())) {
754cb93a386Sopenharmony_ci            dst[cur] = fCandidateVerts.addNewPt(newPt,
755cb93a386Sopenharmony_ci                                                lastRing.index(cur), lastRing.origEdgeID(cur),
756cb93a386Sopenharmony_ci                                                !this->movable(lastRing.index(cur)));
757cb93a386Sopenharmony_ci        } else {
758cb93a386Sopenharmony_ci            dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
759cb93a386Sopenharmony_ci        }
760cb93a386Sopenharmony_ci    }
761cb93a386Sopenharmony_ci
762cb93a386Sopenharmony_ci    // Check on the last point (handling the wrap around)
763cb93a386Sopenharmony_ci    int cur = lastRing.numPts()-1;
764cb93a386Sopenharmony_ci    if  (!this->computePtAlongBisector(lastRing.index(cur),
765cb93a386Sopenharmony_ci                                       lastRing.bisector(cur),
766cb93a386Sopenharmony_ci                                       lastRing.origEdgeID(cur),
767cb93a386Sopenharmony_ci                                       depth, &newPt)) {
768cb93a386Sopenharmony_ci        this->terminate(lastRing);
769cb93a386Sopenharmony_ci        return true;
770cb93a386Sopenharmony_ci    }
771cb93a386Sopenharmony_ci    bool dupPrev = duplicate_pt(newPt, fCandidateVerts.lastPoint());
772cb93a386Sopenharmony_ci    bool dupNext = duplicate_pt(newPt, fCandidateVerts.firstPoint());
773cb93a386Sopenharmony_ci
774cb93a386Sopenharmony_ci    if (!dupPrev && !dupNext) {
775cb93a386Sopenharmony_ci        dst[cur] = fCandidateVerts.addNewPt(newPt,
776cb93a386Sopenharmony_ci                                            lastRing.index(cur), lastRing.origEdgeID(cur),
777cb93a386Sopenharmony_ci                                            !this->movable(lastRing.index(cur)));
778cb93a386Sopenharmony_ci    } else if (dupPrev && !dupNext) {
779cb93a386Sopenharmony_ci        dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
780cb93a386Sopenharmony_ci    } else if (!dupPrev && dupNext) {
781cb93a386Sopenharmony_ci        dst[cur] = fCandidateVerts.fuseWithNext();
782cb93a386Sopenharmony_ci    } else {
783cb93a386Sopenharmony_ci        bool dupPrevVsNext = duplicate_pt(fCandidateVerts.firstPoint(), fCandidateVerts.lastPoint());
784cb93a386Sopenharmony_ci
785cb93a386Sopenharmony_ci        if (!dupPrevVsNext) {
786cb93a386Sopenharmony_ci            dst[cur] = fCandidateVerts.fuseWithPrior(lastRing.origEdgeID(cur));
787cb93a386Sopenharmony_ci        } else {
788cb93a386Sopenharmony_ci            const int fused = fCandidateVerts.fuseWithBoth();
789cb93a386Sopenharmony_ci            dst[cur] = fused;
790cb93a386Sopenharmony_ci            const int targetIdx = dst[cur - 1];
791cb93a386Sopenharmony_ci            for (int i = cur - 1; i >= 0 && dst[i] == targetIdx; i--) {
792cb93a386Sopenharmony_ci                dst[i] = fused;
793cb93a386Sopenharmony_ci            }
794cb93a386Sopenharmony_ci        }
795cb93a386Sopenharmony_ci    }
796cb93a386Sopenharmony_ci
797cb93a386Sopenharmony_ci    // Fold the new ring's points into the global pool
798cb93a386Sopenharmony_ci    for (int i = 0; i < fCandidateVerts.numPts(); ++i) {
799cb93a386Sopenharmony_ci        int newIdx;
800cb93a386Sopenharmony_ci        if (fCandidateVerts.needsToBeNew(i) || forceNew) {
801cb93a386Sopenharmony_ci            // if the originating index is still valid then this point wasn't
802cb93a386Sopenharmony_ci            // fused (and is thus movable)
803cb93a386Sopenharmony_ci            SkScalar coverage = compute_coverage(depth, initialDepth, initialCoverage,
804cb93a386Sopenharmony_ci                                                 targetDepth, targetCoverage);
805cb93a386Sopenharmony_ci            newIdx = this->addPt(fCandidateVerts.point(i), depth, coverage,
806cb93a386Sopenharmony_ci                                 fCandidateVerts.originatingIdx(i) != -1, kSharp_CurveState);
807cb93a386Sopenharmony_ci        } else {
808cb93a386Sopenharmony_ci            SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
809cb93a386Sopenharmony_ci            this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth,
810cb93a386Sopenharmony_ci                           targetCoverage);
811cb93a386Sopenharmony_ci            newIdx = fCandidateVerts.originatingIdx(i);
812cb93a386Sopenharmony_ci        }
813cb93a386Sopenharmony_ci
814cb93a386Sopenharmony_ci        nextRing->addIdx(newIdx, fCandidateVerts.origEdge(i));
815cb93a386Sopenharmony_ci    }
816cb93a386Sopenharmony_ci
817cb93a386Sopenharmony_ci    // 'dst' currently has indices into the ring. Remap these to be indices
818cb93a386Sopenharmony_ci    // into the global pool since the triangulation operates in that space.
819cb93a386Sopenharmony_ci    for (int i = 0; i < dst.count(); ++i) {
820cb93a386Sopenharmony_ci        dst[i] = nextRing->index(dst[i]);
821cb93a386Sopenharmony_ci    }
822cb93a386Sopenharmony_ci
823cb93a386Sopenharmony_ci    for (int i = 0; i < lastRing.numPts(); ++i) {
824cb93a386Sopenharmony_ci        int next = (i + 1) % lastRing.numPts();
825cb93a386Sopenharmony_ci
826cb93a386Sopenharmony_ci        this->addTri(lastRing.index(i), lastRing.index(next), dst[next]);
827cb93a386Sopenharmony_ci        this->addTri(lastRing.index(i), dst[next], dst[i]);
828cb93a386Sopenharmony_ci    }
829cb93a386Sopenharmony_ci
830cb93a386Sopenharmony_ci    if (done && fStyle != SkStrokeRec::kStroke_Style) {
831cb93a386Sopenharmony_ci        // fill or stroke-and-fill
832cb93a386Sopenharmony_ci        this->fanRing(*nextRing);
833cb93a386Sopenharmony_ci    }
834cb93a386Sopenharmony_ci
835cb93a386Sopenharmony_ci    if (nextRing->numPts() < 3) {
836cb93a386Sopenharmony_ci        done = true;
837cb93a386Sopenharmony_ci    }
838cb93a386Sopenharmony_ci    return done;
839cb93a386Sopenharmony_ci}
840cb93a386Sopenharmony_ci
841cb93a386Sopenharmony_civoid GrAAConvexTessellator::validate() const {
842cb93a386Sopenharmony_ci    SkASSERT(fPts.count() == fMovable.count());
843cb93a386Sopenharmony_ci    SkASSERT(fPts.count() == fCoverages.count());
844cb93a386Sopenharmony_ci    SkASSERT(fPts.count() == fCurveState.count());
845cb93a386Sopenharmony_ci    SkASSERT(0 == (fIndices.count() % 3));
846cb93a386Sopenharmony_ci    SkASSERT(!fBisectors.count() || fBisectors.count() == fNorms.count());
847cb93a386Sopenharmony_ci}
848cb93a386Sopenharmony_ci
849cb93a386Sopenharmony_ci//////////////////////////////////////////////////////////////////////////////
850cb93a386Sopenharmony_civoid GrAAConvexTessellator::Ring::init(const GrAAConvexTessellator& tess) {
851cb93a386Sopenharmony_ci    this->computeNormals(tess);
852cb93a386Sopenharmony_ci    this->computeBisectors(tess);
853cb93a386Sopenharmony_ci}
854cb93a386Sopenharmony_ci
855cb93a386Sopenharmony_civoid GrAAConvexTessellator::Ring::init(const SkTDArray<SkVector>& norms,
856cb93a386Sopenharmony_ci                                       const SkTDArray<SkVector>& bisectors) {
857cb93a386Sopenharmony_ci    for (int i = 0; i < fPts.count(); ++i) {
858cb93a386Sopenharmony_ci        fPts[i].fNorm = norms[i];
859cb93a386Sopenharmony_ci        fPts[i].fBisector = bisectors[i];
860cb93a386Sopenharmony_ci    }
861cb93a386Sopenharmony_ci}
862cb93a386Sopenharmony_ci
863cb93a386Sopenharmony_ci// Compute the outward facing normal at each vertex.
864cb93a386Sopenharmony_civoid GrAAConvexTessellator::Ring::computeNormals(const GrAAConvexTessellator& tess) {
865cb93a386Sopenharmony_ci    for (int cur = 0; cur < fPts.count(); ++cur) {
866cb93a386Sopenharmony_ci        int next = (cur + 1) % fPts.count();
867cb93a386Sopenharmony_ci
868cb93a386Sopenharmony_ci        fPts[cur].fNorm = tess.point(fPts[next].fIndex) - tess.point(fPts[cur].fIndex);
869cb93a386Sopenharmony_ci        SkPoint::Normalize(&fPts[cur].fNorm);
870cb93a386Sopenharmony_ci        fPts[cur].fNorm = SkPointPriv::MakeOrthog(fPts[cur].fNorm, tess.side());
871cb93a386Sopenharmony_ci    }
872cb93a386Sopenharmony_ci}
873cb93a386Sopenharmony_ci
874cb93a386Sopenharmony_civoid GrAAConvexTessellator::Ring::computeBisectors(const GrAAConvexTessellator& tess) {
875cb93a386Sopenharmony_ci    int prev = fPts.count() - 1;
876cb93a386Sopenharmony_ci    for (int cur = 0; cur < fPts.count(); prev = cur, ++cur) {
877cb93a386Sopenharmony_ci        fPts[cur].fBisector = fPts[cur].fNorm + fPts[prev].fNorm;
878cb93a386Sopenharmony_ci        if (!fPts[cur].fBisector.normalize()) {
879cb93a386Sopenharmony_ci            fPts[cur].fBisector =
880cb93a386Sopenharmony_ci                    SkPointPriv::MakeOrthog(fPts[cur].fNorm, (SkPointPriv::Side)-tess.side()) +
881cb93a386Sopenharmony_ci                    SkPointPriv::MakeOrthog(fPts[prev].fNorm, tess.side());
882cb93a386Sopenharmony_ci            SkAssertResult(fPts[cur].fBisector.normalize());
883cb93a386Sopenharmony_ci        } else {
884cb93a386Sopenharmony_ci            fPts[cur].fBisector.negate();      // make the bisector face in
885cb93a386Sopenharmony_ci        }
886cb93a386Sopenharmony_ci    }
887cb93a386Sopenharmony_ci}
888cb93a386Sopenharmony_ci
889cb93a386Sopenharmony_ci//////////////////////////////////////////////////////////////////////////////
890cb93a386Sopenharmony_ci#ifdef SK_DEBUG
891cb93a386Sopenharmony_ci// Is this ring convex?
892cb93a386Sopenharmony_cibool GrAAConvexTessellator::Ring::isConvex(const GrAAConvexTessellator& tess) const {
893cb93a386Sopenharmony_ci    if (fPts.count() < 3) {
894cb93a386Sopenharmony_ci        return true;
895cb93a386Sopenharmony_ci    }
896cb93a386Sopenharmony_ci
897cb93a386Sopenharmony_ci    SkPoint prev = tess.point(fPts[0].fIndex) - tess.point(fPts.top().fIndex);
898cb93a386Sopenharmony_ci    SkPoint cur  = tess.point(fPts[1].fIndex) - tess.point(fPts[0].fIndex);
899cb93a386Sopenharmony_ci    SkScalar minDot = prev.fX * cur.fY - prev.fY * cur.fX;
900cb93a386Sopenharmony_ci    SkScalar maxDot = minDot;
901cb93a386Sopenharmony_ci
902cb93a386Sopenharmony_ci    prev = cur;
903cb93a386Sopenharmony_ci    for (int i = 1; i < fPts.count(); ++i) {
904cb93a386Sopenharmony_ci        int next = (i + 1) % fPts.count();
905cb93a386Sopenharmony_ci
906cb93a386Sopenharmony_ci        cur  = tess.point(fPts[next].fIndex) - tess.point(fPts[i].fIndex);
907cb93a386Sopenharmony_ci        SkScalar dot = prev.fX * cur.fY - prev.fY * cur.fX;
908cb93a386Sopenharmony_ci
909cb93a386Sopenharmony_ci        minDot = std::min(minDot, dot);
910cb93a386Sopenharmony_ci        maxDot = std::max(maxDot, dot);
911cb93a386Sopenharmony_ci
912cb93a386Sopenharmony_ci        prev = cur;
913cb93a386Sopenharmony_ci    }
914cb93a386Sopenharmony_ci
915cb93a386Sopenharmony_ci    if (SkScalarNearlyEqual(maxDot, 0.0f, 0.005f)) {
916cb93a386Sopenharmony_ci        maxDot = 0;
917cb93a386Sopenharmony_ci    }
918cb93a386Sopenharmony_ci    if (SkScalarNearlyEqual(minDot, 0.0f, 0.005f)) {
919cb93a386Sopenharmony_ci        minDot = 0;
920cb93a386Sopenharmony_ci    }
921cb93a386Sopenharmony_ci    return (maxDot >= 0.0f) == (minDot >= 0.0f);
922cb93a386Sopenharmony_ci}
923cb93a386Sopenharmony_ci
924cb93a386Sopenharmony_ci#endif
925cb93a386Sopenharmony_ci
926cb93a386Sopenharmony_civoid GrAAConvexTessellator::lineTo(const SkPoint& p, CurveState curve) {
927cb93a386Sopenharmony_ci    if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
928cb93a386Sopenharmony_ci        return;
929cb93a386Sopenharmony_ci    }
930cb93a386Sopenharmony_ci
931cb93a386Sopenharmony_ci    if (this->numPts() >= 2 &&
932cb93a386Sopenharmony_ci        points_are_colinear_and_b_is_middle(fPts[fPts.count() - 2], fPts.top(), p,
933cb93a386Sopenharmony_ci                                            &fAccumLinearError)) {
934cb93a386Sopenharmony_ci        // The old last point is on the line from the second to last to the new point
935cb93a386Sopenharmony_ci        this->popLastPt();
936cb93a386Sopenharmony_ci        // double-check that the new last point is not a duplicate of the new point. In an ideal
937cb93a386Sopenharmony_ci        // world this wouldn't be necessary (since it's only possible for non-convex paths), but
938cb93a386Sopenharmony_ci        // floating point precision issues mean it can actually happen on paths that were
939cb93a386Sopenharmony_ci        // determined to be convex.
940cb93a386Sopenharmony_ci        if (duplicate_pt(p, this->lastPoint())) {
941cb93a386Sopenharmony_ci            return;
942cb93a386Sopenharmony_ci        }
943cb93a386Sopenharmony_ci    } else {
944cb93a386Sopenharmony_ci        fAccumLinearError = 0.f;
945cb93a386Sopenharmony_ci    }
946cb93a386Sopenharmony_ci    SkScalar initialRingCoverage = (SkStrokeRec::kFill_Style == fStyle) ? 0.5f : 1.0f;
947cb93a386Sopenharmony_ci    this->addPt(p, 0.0f, initialRingCoverage, false, curve);
948cb93a386Sopenharmony_ci}
949cb93a386Sopenharmony_ci
950cb93a386Sopenharmony_civoid GrAAConvexTessellator::lineTo(const SkMatrix& m, const SkPoint& p, CurveState curve) {
951cb93a386Sopenharmony_ci    this->lineTo(m.mapXY(p.fX, p.fY), curve);
952cb93a386Sopenharmony_ci}
953cb93a386Sopenharmony_ci
954cb93a386Sopenharmony_civoid GrAAConvexTessellator::quadTo(const SkPoint pts[3]) {
955cb93a386Sopenharmony_ci    int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
956cb93a386Sopenharmony_ci    fPointBuffer.setCount(maxCount);
957cb93a386Sopenharmony_ci    SkPoint* target = fPointBuffer.begin();
958cb93a386Sopenharmony_ci    int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
959cb93a386Sopenharmony_ci                                                     kQuadTolerance, &target, maxCount);
960cb93a386Sopenharmony_ci    fPointBuffer.setCount(count);
961cb93a386Sopenharmony_ci    for (int i = 0; i < count - 1; i++) {
962cb93a386Sopenharmony_ci        this->lineTo(fPointBuffer[i], kCurve_CurveState);
963cb93a386Sopenharmony_ci    }
964cb93a386Sopenharmony_ci    this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
965cb93a386Sopenharmony_ci}
966cb93a386Sopenharmony_ci
967cb93a386Sopenharmony_civoid GrAAConvexTessellator::quadTo(const SkMatrix& m, const SkPoint srcPts[3]) {
968cb93a386Sopenharmony_ci    SkPoint pts[3];
969cb93a386Sopenharmony_ci    m.mapPoints(pts, srcPts, 3);
970cb93a386Sopenharmony_ci    this->quadTo(pts);
971cb93a386Sopenharmony_ci}
972cb93a386Sopenharmony_ci
973cb93a386Sopenharmony_civoid GrAAConvexTessellator::cubicTo(const SkMatrix& m, const SkPoint srcPts[4]) {
974cb93a386Sopenharmony_ci    SkPoint pts[4];
975cb93a386Sopenharmony_ci    m.mapPoints(pts, srcPts, 4);
976cb93a386Sopenharmony_ci    int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
977cb93a386Sopenharmony_ci    fPointBuffer.setCount(maxCount);
978cb93a386Sopenharmony_ci    SkPoint* target = fPointBuffer.begin();
979cb93a386Sopenharmony_ci    int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
980cb93a386Sopenharmony_ci            kCubicTolerance, &target, maxCount);
981cb93a386Sopenharmony_ci    fPointBuffer.setCount(count);
982cb93a386Sopenharmony_ci    for (int i = 0; i < count - 1; i++) {
983cb93a386Sopenharmony_ci        this->lineTo(fPointBuffer[i], kCurve_CurveState);
984cb93a386Sopenharmony_ci    }
985cb93a386Sopenharmony_ci    this->lineTo(fPointBuffer[count - 1], kIndeterminate_CurveState);
986cb93a386Sopenharmony_ci}
987cb93a386Sopenharmony_ci
988cb93a386Sopenharmony_ci// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
989cb93a386Sopenharmony_ci#include "src/core/SkGeometry.h"
990cb93a386Sopenharmony_ci
991cb93a386Sopenharmony_civoid GrAAConvexTessellator::conicTo(const SkMatrix& m, const SkPoint srcPts[3], SkScalar w) {
992cb93a386Sopenharmony_ci    SkPoint pts[3];
993cb93a386Sopenharmony_ci    m.mapPoints(pts, srcPts, 3);
994cb93a386Sopenharmony_ci    SkAutoConicToQuads quadder;
995cb93a386Sopenharmony_ci    const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
996cb93a386Sopenharmony_ci    SkPoint lastPoint = *(quads++);
997cb93a386Sopenharmony_ci    int count = quadder.countQuads();
998cb93a386Sopenharmony_ci    for (int i = 0; i < count; ++i) {
999cb93a386Sopenharmony_ci        SkPoint quadPts[3];
1000cb93a386Sopenharmony_ci        quadPts[0] = lastPoint;
1001cb93a386Sopenharmony_ci        quadPts[1] = quads[0];
1002cb93a386Sopenharmony_ci        quadPts[2] = i == count - 1 ? pts[2] : quads[1];
1003cb93a386Sopenharmony_ci        this->quadTo(quadPts);
1004cb93a386Sopenharmony_ci        lastPoint = quadPts[2];
1005cb93a386Sopenharmony_ci        quads += 2;
1006cb93a386Sopenharmony_ci    }
1007cb93a386Sopenharmony_ci}
1008cb93a386Sopenharmony_ci
1009cb93a386Sopenharmony_ci//////////////////////////////////////////////////////////////////////////////
1010cb93a386Sopenharmony_ci#if GR_AA_CONVEX_TESSELLATOR_VIZ
1011cb93a386Sopenharmony_cistatic const SkScalar kPointRadius = 0.02f;
1012cb93a386Sopenharmony_cistatic const SkScalar kArrowStrokeWidth = 0.0f;
1013cb93a386Sopenharmony_cistatic const SkScalar kArrowLength = 0.2f;
1014cb93a386Sopenharmony_cistatic const SkScalar kEdgeTextSize = 0.1f;
1015cb93a386Sopenharmony_cistatic const SkScalar kPointTextSize = 0.02f;
1016cb93a386Sopenharmony_ci
1017cb93a386Sopenharmony_cistatic void draw_point(SkCanvas* canvas, const SkPoint& p, SkScalar paramValue, bool stroke) {
1018cb93a386Sopenharmony_ci    SkPaint paint;
1019cb93a386Sopenharmony_ci    SkASSERT(paramValue <= 1.0f);
1020cb93a386Sopenharmony_ci    int gs = int(255*paramValue);
1021cb93a386Sopenharmony_ci    paint.setARGB(255, gs, gs, gs);
1022cb93a386Sopenharmony_ci
1023cb93a386Sopenharmony_ci    canvas->drawCircle(p.fX, p.fY, kPointRadius, paint);
1024cb93a386Sopenharmony_ci
1025cb93a386Sopenharmony_ci    if (stroke) {
1026cb93a386Sopenharmony_ci        SkPaint stroke;
1027cb93a386Sopenharmony_ci        stroke.setColor(SK_ColorYELLOW);
1028cb93a386Sopenharmony_ci        stroke.setStyle(SkPaint::kStroke_Style);
1029cb93a386Sopenharmony_ci        stroke.setStrokeWidth(kPointRadius/3.0f);
1030cb93a386Sopenharmony_ci        canvas->drawCircle(p.fX, p.fY, kPointRadius, stroke);
1031cb93a386Sopenharmony_ci    }
1032cb93a386Sopenharmony_ci}
1033cb93a386Sopenharmony_ci
1034cb93a386Sopenharmony_cistatic void draw_line(SkCanvas* canvas, const SkPoint& p0, const SkPoint& p1, SkColor color) {
1035cb93a386Sopenharmony_ci    SkPaint p;
1036cb93a386Sopenharmony_ci    p.setColor(color);
1037cb93a386Sopenharmony_ci
1038cb93a386Sopenharmony_ci    canvas->drawLine(p0.fX, p0.fY, p1.fX, p1.fY, p);
1039cb93a386Sopenharmony_ci}
1040cb93a386Sopenharmony_ci
1041cb93a386Sopenharmony_cistatic void draw_arrow(SkCanvas*canvas, const SkPoint& p, const SkPoint &n,
1042cb93a386Sopenharmony_ci                       SkScalar len, SkColor color) {
1043cb93a386Sopenharmony_ci    SkPaint paint;
1044cb93a386Sopenharmony_ci    paint.setColor(color);
1045cb93a386Sopenharmony_ci    paint.setStrokeWidth(kArrowStrokeWidth);
1046cb93a386Sopenharmony_ci    paint.setStyle(SkPaint::kStroke_Style);
1047cb93a386Sopenharmony_ci
1048cb93a386Sopenharmony_ci    canvas->drawLine(p.fX, p.fY,
1049cb93a386Sopenharmony_ci                     p.fX + len * n.fX, p.fY + len * n.fY,
1050cb93a386Sopenharmony_ci                     paint);
1051cb93a386Sopenharmony_ci}
1052cb93a386Sopenharmony_ci
1053cb93a386Sopenharmony_civoid GrAAConvexTessellator::Ring::draw(SkCanvas* canvas, const GrAAConvexTessellator& tess) const {
1054cb93a386Sopenharmony_ci    SkPaint paint;
1055cb93a386Sopenharmony_ci    paint.setTextSize(kEdgeTextSize);
1056cb93a386Sopenharmony_ci
1057cb93a386Sopenharmony_ci    for (int cur = 0; cur < fPts.count(); ++cur) {
1058cb93a386Sopenharmony_ci        int next = (cur + 1) % fPts.count();
1059cb93a386Sopenharmony_ci
1060cb93a386Sopenharmony_ci        draw_line(canvas,
1061cb93a386Sopenharmony_ci                  tess.point(fPts[cur].fIndex),
1062cb93a386Sopenharmony_ci                  tess.point(fPts[next].fIndex),
1063cb93a386Sopenharmony_ci                  SK_ColorGREEN);
1064cb93a386Sopenharmony_ci
1065cb93a386Sopenharmony_ci        SkPoint mid = tess.point(fPts[cur].fIndex) + tess.point(fPts[next].fIndex);
1066cb93a386Sopenharmony_ci        mid.scale(0.5f);
1067cb93a386Sopenharmony_ci
1068cb93a386Sopenharmony_ci        if (fPts.count()) {
1069cb93a386Sopenharmony_ci            draw_arrow(canvas, mid, fPts[cur].fNorm, kArrowLength, SK_ColorRED);
1070cb93a386Sopenharmony_ci            mid.fX += (kArrowLength/2) * fPts[cur].fNorm.fX;
1071cb93a386Sopenharmony_ci            mid.fY += (kArrowLength/2) * fPts[cur].fNorm.fY;
1072cb93a386Sopenharmony_ci        }
1073cb93a386Sopenharmony_ci
1074cb93a386Sopenharmony_ci        SkString num;
1075cb93a386Sopenharmony_ci        num.printf("%d", this->origEdgeID(cur));
1076cb93a386Sopenharmony_ci        canvas->drawString(num, mid.fX, mid.fY, paint);
1077cb93a386Sopenharmony_ci
1078cb93a386Sopenharmony_ci        if (fPts.count()) {
1079cb93a386Sopenharmony_ci            draw_arrow(canvas, tess.point(fPts[cur].fIndex), fPts[cur].fBisector,
1080cb93a386Sopenharmony_ci                       kArrowLength, SK_ColorBLUE);
1081cb93a386Sopenharmony_ci        }
1082cb93a386Sopenharmony_ci    }
1083cb93a386Sopenharmony_ci}
1084cb93a386Sopenharmony_ci
1085cb93a386Sopenharmony_civoid GrAAConvexTessellator::draw(SkCanvas* canvas) const {
1086cb93a386Sopenharmony_ci    for (int i = 0; i < fIndices.count(); i += 3) {
1087cb93a386Sopenharmony_ci        SkASSERT(fIndices[i] < this->numPts()) ;
1088cb93a386Sopenharmony_ci        SkASSERT(fIndices[i+1] < this->numPts()) ;
1089cb93a386Sopenharmony_ci        SkASSERT(fIndices[i+2] < this->numPts()) ;
1090cb93a386Sopenharmony_ci
1091cb93a386Sopenharmony_ci        draw_line(canvas,
1092cb93a386Sopenharmony_ci                  this->point(this->fIndices[i]), this->point(this->fIndices[i+1]),
1093cb93a386Sopenharmony_ci                  SK_ColorBLACK);
1094cb93a386Sopenharmony_ci        draw_line(canvas,
1095cb93a386Sopenharmony_ci                  this->point(this->fIndices[i+1]), this->point(this->fIndices[i+2]),
1096cb93a386Sopenharmony_ci                  SK_ColorBLACK);
1097cb93a386Sopenharmony_ci        draw_line(canvas,
1098cb93a386Sopenharmony_ci                  this->point(this->fIndices[i+2]), this->point(this->fIndices[i]),
1099cb93a386Sopenharmony_ci                  SK_ColorBLACK);
1100cb93a386Sopenharmony_ci    }
1101cb93a386Sopenharmony_ci
1102cb93a386Sopenharmony_ci    fInitialRing.draw(canvas, *this);
1103cb93a386Sopenharmony_ci    for (int i = 0; i < fRings.count(); ++i) {
1104cb93a386Sopenharmony_ci        fRings[i]->draw(canvas, *this);
1105cb93a386Sopenharmony_ci    }
1106cb93a386Sopenharmony_ci
1107cb93a386Sopenharmony_ci    for (int i = 0; i < this->numPts(); ++i) {
1108cb93a386Sopenharmony_ci        draw_point(canvas,
1109cb93a386Sopenharmony_ci                   this->point(i), 0.5f + (this->depth(i)/(2 * kAntialiasingRadius)),
1110cb93a386Sopenharmony_ci                   !this->movable(i));
1111cb93a386Sopenharmony_ci
1112cb93a386Sopenharmony_ci        SkPaint paint;
1113cb93a386Sopenharmony_ci        paint.setTextSize(kPointTextSize);
1114cb93a386Sopenharmony_ci        if (this->depth(i) <= -kAntialiasingRadius) {
1115cb93a386Sopenharmony_ci            paint.setColor(SK_ColorWHITE);
1116cb93a386Sopenharmony_ci        }
1117cb93a386Sopenharmony_ci
1118cb93a386Sopenharmony_ci        SkString num;
1119cb93a386Sopenharmony_ci        num.printf("%d", i);
1120cb93a386Sopenharmony_ci        canvas->drawString(num,
1121cb93a386Sopenharmony_ci                         this->point(i).fX, this->point(i).fY+(kPointRadius/2.0f),
1122cb93a386Sopenharmony_ci                         paint);
1123cb93a386Sopenharmony_ci    }
1124cb93a386Sopenharmony_ci}
1125cb93a386Sopenharmony_ci
1126cb93a386Sopenharmony_ci#endif
1127