1/* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "include/effects/SkDashPathEffect.h" 9 10#include "include/core/SkStrokeRec.h" 11#include "include/private/SkTo.h" 12#include "src/core/SkReadBuffer.h" 13#include "src/core/SkWriteBuffer.h" 14#include "src/effects/SkDashImpl.h" 15#include "src/utils/SkDashPathPriv.h" 16 17#include <utility> 18 19SkDashImpl::SkDashImpl(const SkScalar intervals[], int count, SkScalar phase) 20 : fPhase(0) 21 , fInitialDashLength(-1) 22 , fInitialDashIndex(0) 23 , fIntervalLength(0) { 24 SkASSERT(intervals); 25 SkASSERT(count > 1 && SkIsAlign2(count)); 26 27 fIntervals = (SkScalar*)sk_malloc_throw(sizeof(SkScalar) * count); 28 fCount = count; 29 for (int i = 0; i < count; i++) { 30 fIntervals[i] = intervals[i]; 31 } 32 33 // set the internal data members 34 SkDashPath::CalcDashParameters(phase, fIntervals, fCount, 35 &fInitialDashLength, &fInitialDashIndex, &fIntervalLength, &fPhase); 36} 37 38SkDashImpl::~SkDashImpl() { 39 sk_free(fIntervals); 40} 41 42bool SkDashImpl::onFilterPath(SkPath* dst, const SkPath& src, SkStrokeRec* rec, 43 const SkRect* cullRect, const SkMatrix&) const { 44 return SkDashPath::InternalFilter(dst, src, rec, cullRect, fIntervals, fCount, 45 fInitialDashLength, fInitialDashIndex, fIntervalLength); 46} 47 48static void outset_for_stroke(SkRect* rect, const SkStrokeRec& rec) { 49 SkScalar radius = SkScalarHalf(rec.getWidth()); 50 if (0 == radius) { 51 radius = SK_Scalar1; // hairlines 52 } 53 if (SkPaint::kMiter_Join == rec.getJoin()) { 54 radius *= rec.getMiter(); 55 } 56 rect->outset(radius, radius); 57} 58 59// Attempt to trim the line to minimally cover the cull rect (currently 60// only works for horizontal and vertical lines). 61// Return true if processing should continue; false otherwise. 62static bool cull_line(SkPoint* pts, const SkStrokeRec& rec, 63 const SkMatrix& ctm, const SkRect* cullRect, 64 const SkScalar intervalLength) { 65 if (nullptr == cullRect) { 66 SkASSERT(false); // Shouldn't ever occur in practice 67 return false; 68 } 69 70 SkScalar dx = pts[1].x() - pts[0].x(); 71 SkScalar dy = pts[1].y() - pts[0].y(); 72 73 if ((dx && dy) || (!dx && !dy)) { 74 return false; 75 } 76 77 SkRect bounds = *cullRect; 78 outset_for_stroke(&bounds, rec); 79 80 // cullRect is in device space while pts are in the local coordinate system 81 // defined by the ctm. We want our answer in the local coordinate system. 82 83 SkASSERT(ctm.rectStaysRect()); 84 SkMatrix inv; 85 if (!ctm.invert(&inv)) { 86 return false; 87 } 88 89 inv.mapRect(&bounds); 90 91 if (dx) { 92 SkASSERT(dx && !dy); 93 SkScalar minX = pts[0].fX; 94 SkScalar maxX = pts[1].fX; 95 96 if (dx < 0) { 97 using std::swap; 98 swap(minX, maxX); 99 } 100 101 SkASSERT(minX < maxX); 102 if (maxX <= bounds.fLeft || minX >= bounds.fRight) { 103 return false; 104 } 105 106 // Now we actually perform the chop, removing the excess to the left and 107 // right of the bounds (keeping our new line "in phase" with the dash, 108 // hence the (mod intervalLength). 109 110 if (minX < bounds.fLeft) { 111 minX = bounds.fLeft - SkScalarMod(bounds.fLeft - minX, intervalLength); 112 } 113 if (maxX > bounds.fRight) { 114 maxX = bounds.fRight + SkScalarMod(maxX - bounds.fRight, intervalLength); 115 } 116 117 SkASSERT(maxX > minX); 118 if (dx < 0) { 119 using std::swap; 120 swap(minX, maxX); 121 } 122 pts[0].fX = minX; 123 pts[1].fX = maxX; 124 } else { 125 SkASSERT(dy && !dx); 126 SkScalar minY = pts[0].fY; 127 SkScalar maxY = pts[1].fY; 128 129 if (dy < 0) { 130 using std::swap; 131 swap(minY, maxY); 132 } 133 134 SkASSERT(minY < maxY); 135 if (maxY <= bounds.fTop || minY >= bounds.fBottom) { 136 return false; 137 } 138 139 // Now we actually perform the chop, removing the excess to the top and 140 // bottom of the bounds (keeping our new line "in phase" with the dash, 141 // hence the (mod intervalLength). 142 143 if (minY < bounds.fTop) { 144 minY = bounds.fTop - SkScalarMod(bounds.fTop - minY, intervalLength); 145 } 146 if (maxY > bounds.fBottom) { 147 maxY = bounds.fBottom + SkScalarMod(maxY - bounds.fBottom, intervalLength); 148 } 149 150 SkASSERT(maxY > minY); 151 if (dy < 0) { 152 using std::swap; 153 swap(minY, maxY); 154 } 155 pts[0].fY = minY; 156 pts[1].fY = maxY; 157 } 158 159 return true; 160} 161 162// Currently asPoints is more restrictive then it needs to be. In the future 163// we need to: 164// allow kRound_Cap capping (could allow rotations in the matrix with this) 165// allow paths to be returned 166bool SkDashImpl::onAsPoints(PointData* results, const SkPath& src, const SkStrokeRec& rec, 167 const SkMatrix& matrix, const SkRect* cullRect) const { 168 // width < 0 -> fill && width == 0 -> hairline so requiring width > 0 rules both out 169 if (0 >= rec.getWidth()) { 170 return false; 171 } 172 173 // TODO: this next test could be eased up. We could allow any number of 174 // intervals as long as all the ons match and all the offs match. 175 // Additionally, they do not necessarily need to be integers. 176 // We cannot allow arbitrary intervals since we want the returned points 177 // to be uniformly sized. 178 if (fCount != 2 || 179 !SkScalarNearlyEqual(fIntervals[0], fIntervals[1]) || 180 !SkScalarIsInt(fIntervals[0]) || 181 !SkScalarIsInt(fIntervals[1])) { 182 return false; 183 } 184 185 SkPoint pts[2]; 186 187 if (!src.isLine(pts)) { 188 return false; 189 } 190 191 // TODO: this test could be eased up to allow circles 192 if (SkPaint::kButt_Cap != rec.getCap()) { 193 return false; 194 } 195 196 // TODO: this test could be eased up for circles. Rotations could be allowed. 197 if (!matrix.rectStaysRect()) { 198 return false; 199 } 200 201 // See if the line can be limited to something plausible. 202 if (!cull_line(pts, rec, matrix, cullRect, fIntervalLength)) { 203 return false; 204 } 205 206 SkScalar length = SkPoint::Distance(pts[1], pts[0]); 207 208 SkVector tangent = pts[1] - pts[0]; 209 if (tangent.isZero()) { 210 return false; 211 } 212 213 tangent.scale(SkScalarInvert(length)); 214 215 // TODO: make this test for horizontal & vertical lines more robust 216 bool isXAxis = true; 217 if (SkScalarNearlyEqual(SK_Scalar1, tangent.fX) || 218 SkScalarNearlyEqual(-SK_Scalar1, tangent.fX)) { 219 results->fSize.set(SkScalarHalf(fIntervals[0]), SkScalarHalf(rec.getWidth())); 220 } else if (SkScalarNearlyEqual(SK_Scalar1, tangent.fY) || 221 SkScalarNearlyEqual(-SK_Scalar1, tangent.fY)) { 222 results->fSize.set(SkScalarHalf(rec.getWidth()), SkScalarHalf(fIntervals[0])); 223 isXAxis = false; 224 } else if (SkPaint::kRound_Cap != rec.getCap()) { 225 // Angled lines don't have axis-aligned boxes. 226 return false; 227 } 228 229 if (results) { 230 results->fFlags = 0; 231 SkScalar clampedInitialDashLength = std::min(length, fInitialDashLength); 232 233 if (SkPaint::kRound_Cap == rec.getCap()) { 234 results->fFlags |= PointData::kCircles_PointFlag; 235 } 236 237 results->fNumPoints = 0; 238 SkScalar len2 = length; 239 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { 240 SkASSERT(len2 >= clampedInitialDashLength); 241 if (0 == fInitialDashIndex) { 242 if (clampedInitialDashLength > 0) { 243 if (clampedInitialDashLength >= fIntervals[0]) { 244 ++results->fNumPoints; // partial first dash 245 } 246 len2 -= clampedInitialDashLength; 247 } 248 len2 -= fIntervals[1]; // also skip first space 249 if (len2 < 0) { 250 len2 = 0; 251 } 252 } else { 253 len2 -= clampedInitialDashLength; // skip initial partial empty 254 } 255 } 256 // Too many midpoints can cause results->fNumPoints to overflow or 257 // otherwise cause the results->fPoints allocation below to OOM. 258 // Cap it to a sane value. 259 SkScalar numIntervals = len2 / fIntervalLength; 260 if (!SkScalarIsFinite(numIntervals) || numIntervals > SkDashPath::kMaxDashCount) { 261 return false; 262 } 263 int numMidPoints = SkScalarFloorToInt(numIntervals); 264 results->fNumPoints += numMidPoints; 265 len2 -= numMidPoints * fIntervalLength; 266 bool partialLast = false; 267 if (len2 > 0) { 268 if (len2 < fIntervals[0]) { 269 partialLast = true; 270 } else { 271 ++numMidPoints; 272 ++results->fNumPoints; 273 } 274 } 275 276 results->fPoints = new SkPoint[results->fNumPoints]; 277 278 SkScalar distance = 0; 279 int curPt = 0; 280 281 if (clampedInitialDashLength > 0 || 0 == fInitialDashIndex) { 282 SkASSERT(clampedInitialDashLength <= length); 283 284 if (0 == fInitialDashIndex) { 285 if (clampedInitialDashLength > 0) { 286 // partial first block 287 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles 288 SkScalar x = pts[0].fX + tangent.fX * SkScalarHalf(clampedInitialDashLength); 289 SkScalar y = pts[0].fY + tangent.fY * SkScalarHalf(clampedInitialDashLength); 290 SkScalar halfWidth, halfHeight; 291 if (isXAxis) { 292 halfWidth = SkScalarHalf(clampedInitialDashLength); 293 halfHeight = SkScalarHalf(rec.getWidth()); 294 } else { 295 halfWidth = SkScalarHalf(rec.getWidth()); 296 halfHeight = SkScalarHalf(clampedInitialDashLength); 297 } 298 if (clampedInitialDashLength < fIntervals[0]) { 299 // This one will not be like the others 300 results->fFirst.addRect(x - halfWidth, y - halfHeight, 301 x + halfWidth, y + halfHeight); 302 } else { 303 SkASSERT(curPt < results->fNumPoints); 304 results->fPoints[curPt].set(x, y); 305 ++curPt; 306 } 307 308 distance += clampedInitialDashLength; 309 } 310 311 distance += fIntervals[1]; // skip over the next blank block too 312 } else { 313 distance += clampedInitialDashLength; 314 } 315 } 316 317 if (0 != numMidPoints) { 318 distance += SkScalarHalf(fIntervals[0]); 319 320 for (int i = 0; i < numMidPoints; ++i) { 321 SkScalar x = pts[0].fX + tangent.fX * distance; 322 SkScalar y = pts[0].fY + tangent.fY * distance; 323 324 SkASSERT(curPt < results->fNumPoints); 325 results->fPoints[curPt].set(x, y); 326 ++curPt; 327 328 distance += fIntervalLength; 329 } 330 331 distance -= SkScalarHalf(fIntervals[0]); 332 } 333 334 if (partialLast) { 335 // partial final block 336 SkASSERT(SkPaint::kRound_Cap != rec.getCap()); // can't handle partial circles 337 SkScalar temp = length - distance; 338 SkASSERT(temp < fIntervals[0]); 339 SkScalar x = pts[0].fX + tangent.fX * (distance + SkScalarHalf(temp)); 340 SkScalar y = pts[0].fY + tangent.fY * (distance + SkScalarHalf(temp)); 341 SkScalar halfWidth, halfHeight; 342 if (isXAxis) { 343 halfWidth = SkScalarHalf(temp); 344 halfHeight = SkScalarHalf(rec.getWidth()); 345 } else { 346 halfWidth = SkScalarHalf(rec.getWidth()); 347 halfHeight = SkScalarHalf(temp); 348 } 349 results->fLast.addRect(x - halfWidth, y - halfHeight, 350 x + halfWidth, y + halfHeight); 351 } 352 353 SkASSERT(curPt == results->fNumPoints); 354 } 355 356 return true; 357} 358 359SkPathEffect::DashType SkDashImpl::onAsADash(DashInfo* info) const { 360 if (info) { 361 if (info->fCount >= fCount && info->fIntervals) { 362 memcpy(info->fIntervals, fIntervals, fCount * sizeof(SkScalar)); 363 } 364 info->fCount = fCount; 365 info->fPhase = fPhase; 366 } 367 return kDash_DashType; 368} 369 370void SkDashImpl::flatten(SkWriteBuffer& buffer) const { 371 buffer.writeScalar(fPhase); 372 buffer.writeScalarArray(fIntervals, fCount); 373} 374 375sk_sp<SkFlattenable> SkDashImpl::CreateProc(SkReadBuffer& buffer) { 376 const SkScalar phase = buffer.readScalar(); 377 uint32_t count = buffer.getArrayCount(); 378 379 // Don't allocate gigantic buffers if there's not data for them. 380 if (!buffer.validateCanReadN<SkScalar>(count)) { 381 return nullptr; 382 } 383 384 SkAutoSTArray<32, SkScalar> intervals(count); 385 if (buffer.readScalarArray(intervals.get(), count)) { 386 return SkDashPathEffect::Make(intervals.get(), SkToInt(count), phase); 387 } 388 return nullptr; 389} 390 391////////////////////////////////////////////////////////////////////////////////////////////////// 392 393sk_sp<SkPathEffect> SkDashPathEffect::Make(const SkScalar intervals[], int count, SkScalar phase) { 394 if (!SkDashPath::ValidDashPath(phase, intervals, count)) { 395 return nullptr; 396 } 397 return sk_sp<SkPathEffect>(new SkDashImpl(intervals, count, phase)); 398} 399