1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "src/core/SkWriteBuffer.h" 9 10#include "include/core/SkBitmap.h" 11#include "include/core/SkData.h" 12#include "include/core/SkM44.h" 13#include "include/core/SkStream.h" 14#include "include/core/SkTypeface.h" 15#include "include/private/SkTo.h" 16#include "src/core/SkImagePriv.h" 17#include "src/core/SkMatrixPriv.h" 18#include "src/core/SkPaintPriv.h" 19#include "src/core/SkPtrRecorder.h" 20 21/////////////////////////////////////////////////////////////////////////////////////////////////// 22 23SkBinaryWriteBuffer::SkBinaryWriteBuffer() 24 : fFactorySet(nullptr) 25 , fTFSet(nullptr) { 26} 27 28SkBinaryWriteBuffer::SkBinaryWriteBuffer(void* storage, size_t storageSize) 29 : fFactorySet(nullptr) 30 , fTFSet(nullptr) 31 , fWriter(storage, storageSize) 32{} 33 34SkBinaryWriteBuffer::~SkBinaryWriteBuffer() {} 35 36bool SkBinaryWriteBuffer::usingInitialStorage() const { 37 return fWriter.usingInitialStorage(); 38} 39 40void SkBinaryWriteBuffer::writeByteArray(const void* data, size_t size) { 41 fWriter.write32(SkToU32(size)); 42 fWriter.writePad(data, size); 43} 44 45void SkBinaryWriteBuffer::writeBool(bool value) { 46 fWriter.writeBool(value); 47} 48 49void SkBinaryWriteBuffer::writeScalar(SkScalar value) { 50 fWriter.writeScalar(value); 51} 52 53void SkBinaryWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t count) { 54 fWriter.write32(count); 55 fWriter.write(value, count * sizeof(SkScalar)); 56} 57 58void SkBinaryWriteBuffer::writeInt(int32_t value) { 59 fWriter.write32(value); 60} 61 62void SkBinaryWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { 63 fWriter.write32(count); 64 fWriter.write(value, count * sizeof(int32_t)); 65} 66 67void SkBinaryWriteBuffer::writeUInt(uint32_t value) { 68 fWriter.write32(value); 69} 70 71void SkBinaryWriteBuffer::writeString(const char* value) { 72 fWriter.writeString(value); 73} 74 75void SkBinaryWriteBuffer::writeColor(SkColor color) { 76 fWriter.write32(color); 77} 78 79void SkBinaryWriteBuffer::writeColorArray(const SkColor* color, uint32_t count) { 80 fWriter.write32(count); 81 fWriter.write(color, count * sizeof(SkColor)); 82} 83 84void SkBinaryWriteBuffer::writeColor4f(const SkColor4f& color) { 85 fWriter.write(&color, sizeof(SkColor4f)); 86} 87 88void SkBinaryWriteBuffer::writeColor4fArray(const SkColor4f* color, uint32_t count) { 89 fWriter.write32(count); 90 fWriter.write(color, count * sizeof(SkColor4f)); 91} 92 93void SkBinaryWriteBuffer::writePoint(const SkPoint& point) { 94 fWriter.writeScalar(point.fX); 95 fWriter.writeScalar(point.fY); 96} 97 98void SkBinaryWriteBuffer::writePoint3(const SkPoint3& point) { 99 this->writePad32(&point, sizeof(SkPoint3)); 100} 101 102void SkBinaryWriteBuffer::writePointArray(const SkPoint* point, uint32_t count) { 103 fWriter.write32(count); 104 fWriter.write(point, count * sizeof(SkPoint)); 105} 106 107void SkBinaryWriteBuffer::write(const SkM44& matrix) { 108 fWriter.write(SkMatrixPriv::M44ColMajor(matrix), sizeof(float) * 16); 109} 110 111void SkBinaryWriteBuffer::writeMatrix(const SkMatrix& matrix) { 112 fWriter.writeMatrix(matrix); 113} 114 115void SkBinaryWriteBuffer::writeIRect(const SkIRect& rect) { 116 fWriter.write(&rect, sizeof(SkIRect)); 117} 118 119void SkBinaryWriteBuffer::writeRect(const SkRect& rect) { 120 fWriter.writeRect(rect); 121} 122 123void SkBinaryWriteBuffer::writeRegion(const SkRegion& region) { 124 fWriter.writeRegion(region); 125} 126 127void SkBinaryWriteBuffer::writePath(const SkPath& path) { 128 fWriter.writePath(path); 129} 130 131size_t SkBinaryWriteBuffer::writeStream(SkStream* stream, size_t length) { 132 fWriter.write32(SkToU32(length)); 133 size_t bytesWritten = fWriter.readFromStream(stream, length); 134 if (bytesWritten < length) { 135 fWriter.reservePad(length - bytesWritten); 136 } 137 return bytesWritten; 138} 139 140bool SkBinaryWriteBuffer::writeToStream(SkWStream* stream) const { 141 return fWriter.writeToStream(stream); 142} 143 144#include "src/image/SkImage_Base.h" 145 146/* Format: 147 * flags: U32 148 * encoded : size_32 + data[] 149 * [subset: IRect] 150 * [mips] : size_32 + data[] 151 */ 152void SkBinaryWriteBuffer::writeImage(const SkImage* image) { 153 uint32_t flags = 0; 154 const SkMipmap* mips = as_IB(image)->onPeekMips(); 155 if (mips) { 156 flags |= SkWriteBufferImageFlags::kHasMipmap; 157 } 158 159 this->write32(flags); 160 161 sk_sp<SkData> data; 162 if (fProcs.fImageProc) { 163 data = fProcs.fImageProc(const_cast<SkImage*>(image), fProcs.fImageCtx); 164 } 165 if (!data) { 166 data = image->encodeToData(); 167 } 168 this->writeDataAsByteArray(data.get()); 169 170 if (flags & SkWriteBufferImageFlags::kHasMipmap) { 171 this->writeDataAsByteArray(mips->serialize().get()); 172 } 173} 174 175void SkBinaryWriteBuffer::writeTypeface(SkTypeface* obj) { 176 // Write 32 bits (signed) 177 // 0 -- default font 178 // >0 -- index 179 // <0 -- custom (serial procs) 180 181 if (obj == nullptr) { 182 fWriter.write32(0); 183 } else if (fProcs.fTypefaceProc) { 184 auto data = fProcs.fTypefaceProc(obj, fProcs.fTypefaceCtx); 185 if (data) { 186 size_t size = data->size(); 187 if (!SkTFitsIn<int32_t>(size)) { 188 size = 0; // fall back to default font 189 } 190 int32_t ssize = SkToS32(size); 191 fWriter.write32(-ssize); // negative to signal custom 192 if (size) { 193 this->writePad32(data->data(), size); 194 } 195 return; 196 } 197 // no data means fall through for std behavior 198 } 199 fWriter.write32(fTFSet ? fTFSet->add(obj) : 0); 200} 201 202void SkBinaryWriteBuffer::writePaint(const SkPaint& paint) { 203 SkPaintPriv::Flatten(paint, *this); 204} 205 206void SkBinaryWriteBuffer::setFactoryRecorder(sk_sp<SkFactorySet> rec) { 207 fFactorySet = std::move(rec); 208} 209 210void SkBinaryWriteBuffer::setTypefaceRecorder(sk_sp<SkRefCntSet> rec) { 211 fTFSet = std::move(rec); 212} 213 214void SkBinaryWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { 215 if (nullptr == flattenable) { 216 this->write32(0); 217 return; 218 } 219 220 /* 221 * We can write 1 of 2 versions of the flattenable: 222 * 223 * 1. index into fFactorySet: This assumes the writer will later resolve the function-ptrs 224 * into strings for its reader. SkPicture does exactly this, by writing a table of names 225 * (matching the indices) up front in its serialized form. 226 * 227 * 2. string name of the flattenable or index into fFlattenableDict: We store the string to 228 * allow the reader to specify its own factories after write time. In order to improve 229 * compression, if we have already written the string, we write its index instead. 230 */ 231 232 if (SkFlattenable::Factory factory = flattenable->getFactory(); factory && fFactorySet) { 233 this->write32(fFactorySet->add(factory)); 234 } else { 235 const char* name = flattenable->getTypeName(); 236 SkASSERT(name); 237 SkASSERT(0 != strcmp("", name)); 238 239 if (uint32_t* indexPtr = fFlattenableDict.find(name)) { 240 // We will write the index as a 32-bit int. We want the first byte 241 // that we send to be zero - this will act as a sentinel that we 242 // have an index (not a string). This means that we will send the 243 // the index shifted left by 8. The remaining 24-bits should be 244 // plenty to store the index. Note that this strategy depends on 245 // being little endian, and type names being non-empty. 246 SkASSERT(0 == *indexPtr >> 24); 247 this->write32(*indexPtr << 8); 248 } else { 249 this->writeString(name); 250 fFlattenableDict.set(name, fFlattenableDict.count() + 1); 251 } 252 } 253 254 // make room for the size of the flattened object 255 (void)fWriter.reserve(sizeof(uint32_t)); 256 // record the current size, so we can subtract after the object writes. 257 size_t offset = fWriter.bytesWritten(); 258 // now flatten the object 259 flattenable->flatten(*this); 260 size_t objSize = fWriter.bytesWritten() - offset; 261 // record the obj's size 262 fWriter.overwriteTAt(offset - sizeof(uint32_t), SkToU32(objSize)); 263} 264