1/* 2 * Copyright 2008 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "src/core/SkMathPriv.h" 9#include "src/core/SkPointPriv.h" 10 11/////////////////////////////////////////////////////////////////////////////// 12void SkPoint::dump(std::string& desc, int depth) const { 13 std::string split(depth, '\t'); 14 desc += split + "\n SkPoint:{ \n"; 15 desc += split + "\t fX: " + std::to_string(fX) + "\n"; 16 desc += split + "\t fY: " + std::to_string(fY) + "\n"; 17 desc += split + "}\n"; 18} 19 20void SkPoint::scale(SkScalar scale, SkPoint* dst) const { 21 SkASSERT(dst); 22 dst->set(fX * scale, fY * scale); 23} 24 25bool SkPoint::normalize() { 26 return this->setLength(fX, fY, SK_Scalar1); 27} 28 29bool SkPoint::setNormalize(SkScalar x, SkScalar y) { 30 return this->setLength(x, y, SK_Scalar1); 31} 32 33bool SkPoint::setLength(SkScalar length) { 34 return this->setLength(fX, fY, length); 35} 36 37/* 38 * We have to worry about 2 tricky conditions: 39 * 1. underflow of mag2 (compared against nearlyzero^2) 40 * 2. overflow of mag2 (compared w/ isfinite) 41 * 42 * If we underflow, we return false. If we overflow, we compute again using 43 * doubles, which is much slower (3x in a desktop test) but will not overflow. 44 */ 45template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length, 46 float* orig_length = nullptr) { 47 SkASSERT(!use_rsqrt || (orig_length == nullptr)); 48 49 // our mag2 step overflowed to infinity, so use doubles instead. 50 // much slower, but needed when x or y are very large, other wise we 51 // divide by inf. and return (0,0) vector. 52 double xx = x; 53 double yy = y; 54 double dmag = sqrt(xx * xx + yy * yy); 55 double dscale = sk_ieee_double_divide(length, dmag); 56 x *= dscale; 57 y *= dscale; 58 // check if we're not finite, or we're zero-length 59 if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) { 60 pt->set(0, 0); 61 return false; 62 } 63 float mag = 0; 64 if (orig_length) { 65 mag = sk_double_to_float(dmag); 66 } 67 pt->set(x, y); 68 if (orig_length) { 69 *orig_length = mag; 70 } 71 return true; 72} 73 74SkScalar SkPoint::Normalize(SkPoint* pt) { 75 float mag; 76 if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) { 77 return mag; 78 } 79 return 0; 80} 81 82SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) { 83 float mag2 = dx * dx + dy * dy; 84 if (SkScalarIsFinite(mag2)) { 85 return sk_float_sqrt(mag2); 86 } else { 87 double xx = dx; 88 double yy = dy; 89 return sk_double_to_float(sqrt(xx * xx + yy * yy)); 90 } 91} 92 93bool SkPoint::setLength(float x, float y, float length) { 94 return set_point_length<false>(this, x, y, length); 95} 96 97bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) { 98 return set_point_length<true>(pt, pt->fX, pt->fY, length); 99} 100 101 102/////////////////////////////////////////////////////////////////////////////// 103 104SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a, 105 const SkPoint& b, 106 Side* side) { 107 108 SkVector u = b - a; 109 SkVector v = pt - a; 110 111 SkScalar uLengthSqd = LengthSqd(u); 112 SkScalar det = u.cross(v); 113 if (side) { 114 SkASSERT(-1 == kLeft_Side && 115 0 == kOn_Side && 116 1 == kRight_Side); 117 *side = (Side) SkScalarSignAsInt(det); 118 } 119 SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); 120 temp *= det; 121 // It's possible we have a degenerate line vector, or we're so far away it looks degenerate 122 // In this case, return squared distance to point A. 123 if (!SkScalarIsFinite(temp)) { 124 return LengthSqd(v); 125 } 126 return temp; 127} 128 129SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a, 130 const SkPoint& b) { 131 // See comments to distanceToLineBetweenSqd. If the projection of c onto 132 // u is between a and b then this returns the same result as that 133 // function. Otherwise, it returns the distance to the closer of a and 134 // b. Let the projection of v onto u be v'. There are three cases: 135 // 1. v' points opposite to u. c is not between a and b and is closer 136 // to a than b. 137 // 2. v' points along u and has magnitude less than y. c is between 138 // a and b and the distance to the segment is the same as distance 139 // to the line ab. 140 // 3. v' points along u and has greater magnitude than u. c is not 141 // not between a and b and is closer to b than a. 142 // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're 143 // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise 144 // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to 145 // avoid a sqrt to compute |u|. 146 147 SkVector u = b - a; 148 SkVector v = pt - a; 149 150 SkScalar uLengthSqd = LengthSqd(u); 151 SkScalar uDotV = SkPoint::DotProduct(u, v); 152 153 // closest point is point A 154 if (uDotV <= 0) { 155 return LengthSqd(v); 156 // closest point is point B 157 } else if (uDotV > uLengthSqd) { 158 return DistanceToSqd(b, pt); 159 // closest point is inside segment 160 } else { 161 SkScalar det = u.cross(v); 162 SkScalar temp = sk_ieee_float_divide(det, uLengthSqd); 163 temp *= det; 164 // It's possible we have a degenerate segment, or we're so far away it looks degenerate 165 // In this case, return squared distance to point A. 166 if (!SkScalarIsFinite(temp)) { 167 return LengthSqd(v); 168 } 169 return temp; 170 } 171} 172