xref: /third_party/skia/src/core/SkPoint.cpp (revision cb93a386)
1/*
2 * Copyright 2008 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/core/SkMathPriv.h"
9#include "src/core/SkPointPriv.h"
10
11///////////////////////////////////////////////////////////////////////////////
12void SkPoint::dump(std::string& desc, int depth) const {
13    std::string split(depth, '\t');
14    desc += split + "\n SkPoint:{ \n";
15    desc += split + "\t fX: " + std::to_string(fX) + "\n";
16    desc += split + "\t fY: " + std::to_string(fY) + "\n";
17    desc += split + "}\n";
18}
19
20void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
21    SkASSERT(dst);
22    dst->set(fX * scale, fY * scale);
23}
24
25bool SkPoint::normalize() {
26    return this->setLength(fX, fY, SK_Scalar1);
27}
28
29bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
30    return this->setLength(x, y, SK_Scalar1);
31}
32
33bool SkPoint::setLength(SkScalar length) {
34    return this->setLength(fX, fY, length);
35}
36
37/*
38 *  We have to worry about 2 tricky conditions:
39 *  1. underflow of mag2 (compared against nearlyzero^2)
40 *  2. overflow of mag2 (compared w/ isfinite)
41 *
42 *  If we underflow, we return false. If we overflow, we compute again using
43 *  doubles, which is much slower (3x in a desktop test) but will not overflow.
44 */
45template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
46                                                float* orig_length = nullptr) {
47    SkASSERT(!use_rsqrt || (orig_length == nullptr));
48
49    // our mag2 step overflowed to infinity, so use doubles instead.
50    // much slower, but needed when x or y are very large, other wise we
51    // divide by inf. and return (0,0) vector.
52    double xx = x;
53    double yy = y;
54    double dmag = sqrt(xx * xx + yy * yy);
55    double dscale = sk_ieee_double_divide(length, dmag);
56    x *= dscale;
57    y *= dscale;
58    // check if we're not finite, or we're zero-length
59    if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) {
60        pt->set(0, 0);
61        return false;
62    }
63    float mag = 0;
64    if (orig_length) {
65        mag = sk_double_to_float(dmag);
66    }
67    pt->set(x, y);
68    if (orig_length) {
69        *orig_length = mag;
70    }
71    return true;
72}
73
74SkScalar SkPoint::Normalize(SkPoint* pt) {
75    float mag;
76    if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
77        return mag;
78    }
79    return 0;
80}
81
82SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
83    float mag2 = dx * dx + dy * dy;
84    if (SkScalarIsFinite(mag2)) {
85        return sk_float_sqrt(mag2);
86    } else {
87        double xx = dx;
88        double yy = dy;
89        return sk_double_to_float(sqrt(xx * xx + yy * yy));
90    }
91}
92
93bool SkPoint::setLength(float x, float y, float length) {
94    return set_point_length<false>(this, x, y, length);
95}
96
97bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
98    return set_point_length<true>(pt, pt->fX, pt->fY, length);
99}
100
101
102///////////////////////////////////////////////////////////////////////////////
103
104SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
105                                               const SkPoint& b,
106                                               Side* side) {
107
108    SkVector u = b - a;
109    SkVector v = pt - a;
110
111    SkScalar uLengthSqd = LengthSqd(u);
112    SkScalar det = u.cross(v);
113    if (side) {
114        SkASSERT(-1 == kLeft_Side &&
115                  0 == kOn_Side &&
116                  1 == kRight_Side);
117        *side = (Side) SkScalarSignAsInt(det);
118    }
119    SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
120    temp *= det;
121    // It's possible we have a degenerate line vector, or we're so far away it looks degenerate
122    // In this case, return squared distance to point A.
123    if (!SkScalarIsFinite(temp)) {
124        return LengthSqd(v);
125    }
126    return temp;
127}
128
129SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
130                                                      const SkPoint& b) {
131    // See comments to distanceToLineBetweenSqd. If the projection of c onto
132    // u is between a and b then this returns the same result as that
133    // function. Otherwise, it returns the distance to the closer of a and
134    // b. Let the projection of v onto u be v'.  There are three cases:
135    //    1. v' points opposite to u. c is not between a and b and is closer
136    //       to a than b.
137    //    2. v' points along u and has magnitude less than y. c is between
138    //       a and b and the distance to the segment is the same as distance
139    //       to the line ab.
140    //    3. v' points along u and has greater magnitude than u. c is not
141    //       not between a and b and is closer to b than a.
142    // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
143    // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
144    // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
145    // avoid a sqrt to compute |u|.
146
147    SkVector u = b - a;
148    SkVector v = pt - a;
149
150    SkScalar uLengthSqd = LengthSqd(u);
151    SkScalar uDotV = SkPoint::DotProduct(u, v);
152
153    // closest point is point A
154    if (uDotV <= 0) {
155        return LengthSqd(v);
156    // closest point is point B
157    } else if (uDotV > uLengthSqd) {
158        return DistanceToSqd(b, pt);
159    // closest point is inside segment
160    } else {
161        SkScalar det = u.cross(v);
162        SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
163        temp *= det;
164        // It's possible we have a degenerate segment, or we're so far away it looks degenerate
165        // In this case, return squared distance to point A.
166        if (!SkScalarIsFinite(temp)) {
167            return LengthSqd(v);
168        }
169        return temp;
170    }
171}
172