1cb93a386Sopenharmony_ci/*
2cb93a386Sopenharmony_ci * Copyright 2006 The Android Open Source Project
3cb93a386Sopenharmony_ci *
4cb93a386Sopenharmony_ci * Use of this source code is governed by a BSD-style license that can be
5cb93a386Sopenharmony_ci * found in the LICENSE file.
6cb93a386Sopenharmony_ci */
7cb93a386Sopenharmony_ci
8cb93a386Sopenharmony_ci#include "include/core/SkMatrix.h"
9cb93a386Sopenharmony_ci
10cb93a386Sopenharmony_ci#include "include/core/SkPaint.h"
11cb93a386Sopenharmony_ci#include "include/core/SkPoint3.h"
12cb93a386Sopenharmony_ci#include "include/core/SkRSXform.h"
13cb93a386Sopenharmony_ci#include "include/core/SkString.h"
14cb93a386Sopenharmony_ci#include "include/private/SkFloatBits.h"
15cb93a386Sopenharmony_ci#include "include/private/SkNx.h"
16cb93a386Sopenharmony_ci#include "include/private/SkTo.h"
17cb93a386Sopenharmony_ci#include "src/core/SkMathPriv.h"
18cb93a386Sopenharmony_ci#include "src/core/SkMatrixPriv.h"
19cb93a386Sopenharmony_ci#include "src/core/SkPathPriv.h"
20cb93a386Sopenharmony_ci
21cb93a386Sopenharmony_ci#include <cstddef>
22cb93a386Sopenharmony_ci#include <utility>
23cb93a386Sopenharmony_ci
24cb93a386Sopenharmony_civoid SkMatrix::doNormalizePerspective() {
25cb93a386Sopenharmony_ci    // If the bottom row of the matrix is [0, 0, not_one], we will treat the matrix as if it
26cb93a386Sopenharmony_ci    // is in perspective, even though it stills behaves like its affine. If we divide everything
27cb93a386Sopenharmony_ci    // by the not_one value, then it will behave the same, but will be treated as affine,
28cb93a386Sopenharmony_ci    // and therefore faster (e.g. clients can forward-difference calculations).
29cb93a386Sopenharmony_ci    //
30cb93a386Sopenharmony_ci    if (0 == fMat[SkMatrix::kMPersp0] && 0 == fMat[SkMatrix::kMPersp1]) {
31cb93a386Sopenharmony_ci        SkScalar p2 = fMat[SkMatrix::kMPersp2];
32cb93a386Sopenharmony_ci        if (p2 != 0 && p2 != 1) {
33cb93a386Sopenharmony_ci            double inv = 1.0 / p2;
34cb93a386Sopenharmony_ci            for (int i = 0; i < 6; ++i) {
35cb93a386Sopenharmony_ci                fMat[i] = SkDoubleToScalar(fMat[i] * inv);
36cb93a386Sopenharmony_ci            }
37cb93a386Sopenharmony_ci            fMat[SkMatrix::kMPersp2] = 1;
38cb93a386Sopenharmony_ci        }
39cb93a386Sopenharmony_ci        this->setTypeMask(kUnknown_Mask);
40cb93a386Sopenharmony_ci    }
41cb93a386Sopenharmony_ci}
42cb93a386Sopenharmony_ci
43cb93a386Sopenharmony_ci// In a few places, we performed the following
44cb93a386Sopenharmony_ci//      a * b + c * d + e
45cb93a386Sopenharmony_ci// as
46cb93a386Sopenharmony_ci//      a * b + (c * d + e)
47cb93a386Sopenharmony_ci//
48cb93a386Sopenharmony_ci// sdot and scross are indended to capture these compound operations into a
49cb93a386Sopenharmony_ci// function, with an eye toward considering upscaling the intermediates to
50cb93a386Sopenharmony_ci// doubles for more precision (as we do in concat and invert).
51cb93a386Sopenharmony_ci//
52cb93a386Sopenharmony_ci// However, these few lines that performed the last add before the "dot", cause
53cb93a386Sopenharmony_ci// tiny image differences, so we guard that change until we see the impact on
54cb93a386Sopenharmony_ci// chrome's layouttests.
55cb93a386Sopenharmony_ci//
56cb93a386Sopenharmony_ci#define SK_LEGACY_MATRIX_MATH_ORDER
57cb93a386Sopenharmony_ci
58cb93a386Sopenharmony_ci/*      [scale-x    skew-x      trans-x]   [X]   [X']
59cb93a386Sopenharmony_ci        [skew-y     scale-y     trans-y] * [Y] = [Y']
60cb93a386Sopenharmony_ci        [persp-0    persp-1     persp-2]   [1]   [1 ]
61cb93a386Sopenharmony_ci*/
62cb93a386Sopenharmony_ci
63cb93a386Sopenharmony_ciSkMatrix& SkMatrix::reset() { *this = SkMatrix(); return *this; }
64cb93a386Sopenharmony_ci
65cb93a386Sopenharmony_ciSkMatrix& SkMatrix::set9(const SkScalar buffer[]) {
66cb93a386Sopenharmony_ci    memcpy(fMat, buffer, 9 * sizeof(SkScalar));
67cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask);
68cb93a386Sopenharmony_ci    return *this;
69cb93a386Sopenharmony_ci}
70cb93a386Sopenharmony_ci
71cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setAffine(const SkScalar buffer[]) {
72cb93a386Sopenharmony_ci    fMat[kMScaleX] = buffer[kAScaleX];
73cb93a386Sopenharmony_ci    fMat[kMSkewX]  = buffer[kASkewX];
74cb93a386Sopenharmony_ci    fMat[kMTransX] = buffer[kATransX];
75cb93a386Sopenharmony_ci    fMat[kMSkewY]  = buffer[kASkewY];
76cb93a386Sopenharmony_ci    fMat[kMScaleY] = buffer[kAScaleY];
77cb93a386Sopenharmony_ci    fMat[kMTransY] = buffer[kATransY];
78cb93a386Sopenharmony_ci    fMat[kMPersp0] = 0;
79cb93a386Sopenharmony_ci    fMat[kMPersp1] = 0;
80cb93a386Sopenharmony_ci    fMat[kMPersp2] = 1;
81cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask);
82cb93a386Sopenharmony_ci    return *this;
83cb93a386Sopenharmony_ci}
84cb93a386Sopenharmony_ci
85cb93a386Sopenharmony_ci// this aligns with the masks, so we can compute a mask from a variable 0/1
86cb93a386Sopenharmony_cienum {
87cb93a386Sopenharmony_ci    kTranslate_Shift,
88cb93a386Sopenharmony_ci    kScale_Shift,
89cb93a386Sopenharmony_ci    kAffine_Shift,
90cb93a386Sopenharmony_ci    kPerspective_Shift,
91cb93a386Sopenharmony_ci    kRectStaysRect_Shift
92cb93a386Sopenharmony_ci};
93cb93a386Sopenharmony_ci
94cb93a386Sopenharmony_cistatic const int32_t kScalar1Int = 0x3f800000;
95cb93a386Sopenharmony_ci
96cb93a386Sopenharmony_ciuint8_t SkMatrix::computePerspectiveTypeMask() const {
97cb93a386Sopenharmony_ci    // Benchmarking suggests that replacing this set of SkScalarAs2sCompliment
98cb93a386Sopenharmony_ci    // is a win, but replacing those below is not. We don't yet understand
99cb93a386Sopenharmony_ci    // that result.
100cb93a386Sopenharmony_ci    if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) {
101cb93a386Sopenharmony_ci        // If this is a perspective transform, we return true for all other
102cb93a386Sopenharmony_ci        // transform flags - this does not disable any optimizations, respects
103cb93a386Sopenharmony_ci        // the rule that the type mask must be conservative, and speeds up
104cb93a386Sopenharmony_ci        // type mask computation.
105cb93a386Sopenharmony_ci        return SkToU8(kORableMasks);
106cb93a386Sopenharmony_ci    }
107cb93a386Sopenharmony_ci
108cb93a386Sopenharmony_ci    return SkToU8(kOnlyPerspectiveValid_Mask | kUnknown_Mask);
109cb93a386Sopenharmony_ci}
110cb93a386Sopenharmony_ci
111cb93a386Sopenharmony_ciuint8_t SkMatrix::computeTypeMask() const {
112cb93a386Sopenharmony_ci    unsigned mask = 0;
113cb93a386Sopenharmony_ci
114cb93a386Sopenharmony_ci    if (fMat[kMPersp0] != 0 || fMat[kMPersp1] != 0 || fMat[kMPersp2] != 1) {
115cb93a386Sopenharmony_ci        // Once it is determined that that this is a perspective transform,
116cb93a386Sopenharmony_ci        // all other flags are moot as far as optimizations are concerned.
117cb93a386Sopenharmony_ci        return SkToU8(kORableMasks);
118cb93a386Sopenharmony_ci    }
119cb93a386Sopenharmony_ci
120cb93a386Sopenharmony_ci    if (fMat[kMTransX] != 0 || fMat[kMTransY] != 0) {
121cb93a386Sopenharmony_ci        mask |= kTranslate_Mask;
122cb93a386Sopenharmony_ci    }
123cb93a386Sopenharmony_ci
124cb93a386Sopenharmony_ci    int m00 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleX]);
125cb93a386Sopenharmony_ci    int m01 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewX]);
126cb93a386Sopenharmony_ci    int m10 = SkScalarAs2sCompliment(fMat[SkMatrix::kMSkewY]);
127cb93a386Sopenharmony_ci    int m11 = SkScalarAs2sCompliment(fMat[SkMatrix::kMScaleY]);
128cb93a386Sopenharmony_ci
129cb93a386Sopenharmony_ci    if (m01 | m10) {
130cb93a386Sopenharmony_ci        // The skew components may be scale-inducing, unless we are dealing
131cb93a386Sopenharmony_ci        // with a pure rotation.  Testing for a pure rotation is expensive,
132cb93a386Sopenharmony_ci        // so we opt for being conservative by always setting the scale bit.
133cb93a386Sopenharmony_ci        // along with affine.
134cb93a386Sopenharmony_ci        // By doing this, we are also ensuring that matrices have the same
135cb93a386Sopenharmony_ci        // type masks as their inverses.
136cb93a386Sopenharmony_ci        mask |= kAffine_Mask | kScale_Mask;
137cb93a386Sopenharmony_ci
138cb93a386Sopenharmony_ci        // For rectStaysRect, in the affine case, we only need check that
139cb93a386Sopenharmony_ci        // the primary diagonal is all zeros and that the secondary diagonal
140cb93a386Sopenharmony_ci        // is all non-zero.
141cb93a386Sopenharmony_ci
142cb93a386Sopenharmony_ci        // map non-zero to 1
143cb93a386Sopenharmony_ci        m01 = m01 != 0;
144cb93a386Sopenharmony_ci        m10 = m10 != 0;
145cb93a386Sopenharmony_ci
146cb93a386Sopenharmony_ci        int dp0 = 0 == (m00 | m11) ;  // true if both are 0
147cb93a386Sopenharmony_ci        int ds1 = m01 & m10;        // true if both are 1
148cb93a386Sopenharmony_ci
149cb93a386Sopenharmony_ci        mask |= (dp0 & ds1) << kRectStaysRect_Shift;
150cb93a386Sopenharmony_ci    } else {
151cb93a386Sopenharmony_ci        // Only test for scale explicitly if not affine, since affine sets the
152cb93a386Sopenharmony_ci        // scale bit.
153cb93a386Sopenharmony_ci        if ((m00 ^ kScalar1Int) | (m11 ^ kScalar1Int)) {
154cb93a386Sopenharmony_ci            mask |= kScale_Mask;
155cb93a386Sopenharmony_ci        }
156cb93a386Sopenharmony_ci
157cb93a386Sopenharmony_ci        // Not affine, therefore we already know secondary diagonal is
158cb93a386Sopenharmony_ci        // all zeros, so we just need to check that primary diagonal is
159cb93a386Sopenharmony_ci        // all non-zero.
160cb93a386Sopenharmony_ci
161cb93a386Sopenharmony_ci        // map non-zero to 1
162cb93a386Sopenharmony_ci        m00 = m00 != 0;
163cb93a386Sopenharmony_ci        m11 = m11 != 0;
164cb93a386Sopenharmony_ci
165cb93a386Sopenharmony_ci        // record if the (p)rimary diagonal is all non-zero
166cb93a386Sopenharmony_ci        mask |= (m00 & m11) << kRectStaysRect_Shift;
167cb93a386Sopenharmony_ci    }
168cb93a386Sopenharmony_ci
169cb93a386Sopenharmony_ci    return SkToU8(mask);
170cb93a386Sopenharmony_ci}
171cb93a386Sopenharmony_ci
172cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
173cb93a386Sopenharmony_ci
174cb93a386Sopenharmony_cibool operator==(const SkMatrix& a, const SkMatrix& b) {
175cb93a386Sopenharmony_ci    const SkScalar* SK_RESTRICT ma = a.fMat;
176cb93a386Sopenharmony_ci    const SkScalar* SK_RESTRICT mb = b.fMat;
177cb93a386Sopenharmony_ci
178cb93a386Sopenharmony_ci    return  ma[0] == mb[0] && ma[1] == mb[1] && ma[2] == mb[2] &&
179cb93a386Sopenharmony_ci            ma[3] == mb[3] && ma[4] == mb[4] && ma[5] == mb[5] &&
180cb93a386Sopenharmony_ci            ma[6] == mb[6] && ma[7] == mb[7] && ma[8] == mb[8];
181cb93a386Sopenharmony_ci}
182cb93a386Sopenharmony_ci
183cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
184cb93a386Sopenharmony_ci
185cb93a386Sopenharmony_ci// helper function to determine if upper-left 2x2 of matrix is degenerate
186cb93a386Sopenharmony_cistatic inline bool is_degenerate_2x2(SkScalar scaleX, SkScalar skewX,
187cb93a386Sopenharmony_ci                                     SkScalar skewY,  SkScalar scaleY) {
188cb93a386Sopenharmony_ci    SkScalar perp_dot = scaleX*scaleY - skewX*skewY;
189cb93a386Sopenharmony_ci    return SkScalarNearlyZero(perp_dot, SK_ScalarNearlyZero*SK_ScalarNearlyZero);
190cb93a386Sopenharmony_ci}
191cb93a386Sopenharmony_ci
192cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
193cb93a386Sopenharmony_ci
194cb93a386Sopenharmony_cibool SkMatrix::isSimilarity(SkScalar tol) const {
195cb93a386Sopenharmony_ci    // if identity or translate matrix
196cb93a386Sopenharmony_ci    TypeMask mask = this->getType();
197cb93a386Sopenharmony_ci    if (mask <= kTranslate_Mask) {
198cb93a386Sopenharmony_ci        return true;
199cb93a386Sopenharmony_ci    }
200cb93a386Sopenharmony_ci    if (mask & kPerspective_Mask) {
201cb93a386Sopenharmony_ci        return false;
202cb93a386Sopenharmony_ci    }
203cb93a386Sopenharmony_ci
204cb93a386Sopenharmony_ci    SkScalar mx = fMat[kMScaleX];
205cb93a386Sopenharmony_ci    SkScalar my = fMat[kMScaleY];
206cb93a386Sopenharmony_ci    // if no skew, can just compare scale factors
207cb93a386Sopenharmony_ci    if (!(mask & kAffine_Mask)) {
208cb93a386Sopenharmony_ci        return !SkScalarNearlyZero(mx) && SkScalarNearlyEqual(SkScalarAbs(mx), SkScalarAbs(my));
209cb93a386Sopenharmony_ci    }
210cb93a386Sopenharmony_ci    SkScalar sx = fMat[kMSkewX];
211cb93a386Sopenharmony_ci    SkScalar sy = fMat[kMSkewY];
212cb93a386Sopenharmony_ci
213cb93a386Sopenharmony_ci    if (is_degenerate_2x2(mx, sx, sy, my)) {
214cb93a386Sopenharmony_ci        return false;
215cb93a386Sopenharmony_ci    }
216cb93a386Sopenharmony_ci
217cb93a386Sopenharmony_ci    // upper 2x2 is rotation/reflection + uniform scale if basis vectors
218cb93a386Sopenharmony_ci    // are 90 degree rotations of each other
219cb93a386Sopenharmony_ci    return (SkScalarNearlyEqual(mx, my, tol) && SkScalarNearlyEqual(sx, -sy, tol))
220cb93a386Sopenharmony_ci        || (SkScalarNearlyEqual(mx, -my, tol) && SkScalarNearlyEqual(sx, sy, tol));
221cb93a386Sopenharmony_ci}
222cb93a386Sopenharmony_ci
223cb93a386Sopenharmony_cibool SkMatrix::preservesRightAngles(SkScalar tol) const {
224cb93a386Sopenharmony_ci    TypeMask mask = this->getType();
225cb93a386Sopenharmony_ci
226cb93a386Sopenharmony_ci    if (mask <= kTranslate_Mask) {
227cb93a386Sopenharmony_ci        // identity, translate and/or scale
228cb93a386Sopenharmony_ci        return true;
229cb93a386Sopenharmony_ci    }
230cb93a386Sopenharmony_ci    if (mask & kPerspective_Mask) {
231cb93a386Sopenharmony_ci        return false;
232cb93a386Sopenharmony_ci    }
233cb93a386Sopenharmony_ci
234cb93a386Sopenharmony_ci    SkASSERT(mask & (kAffine_Mask | kScale_Mask));
235cb93a386Sopenharmony_ci
236cb93a386Sopenharmony_ci    SkScalar mx = fMat[kMScaleX];
237cb93a386Sopenharmony_ci    SkScalar my = fMat[kMScaleY];
238cb93a386Sopenharmony_ci    SkScalar sx = fMat[kMSkewX];
239cb93a386Sopenharmony_ci    SkScalar sy = fMat[kMSkewY];
240cb93a386Sopenharmony_ci
241cb93a386Sopenharmony_ci    if (is_degenerate_2x2(mx, sx, sy, my)) {
242cb93a386Sopenharmony_ci        return false;
243cb93a386Sopenharmony_ci    }
244cb93a386Sopenharmony_ci
245cb93a386Sopenharmony_ci    // upper 2x2 is scale + rotation/reflection if basis vectors are orthogonal
246cb93a386Sopenharmony_ci    SkVector vec[2];
247cb93a386Sopenharmony_ci    vec[0].set(mx, sy);
248cb93a386Sopenharmony_ci    vec[1].set(sx, my);
249cb93a386Sopenharmony_ci
250cb93a386Sopenharmony_ci    return SkScalarNearlyZero(vec[0].dot(vec[1]), SkScalarSquare(tol));
251cb93a386Sopenharmony_ci}
252cb93a386Sopenharmony_ci
253cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
254cb93a386Sopenharmony_ci
255cb93a386Sopenharmony_cistatic inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
256cb93a386Sopenharmony_ci    return a * b + c * d;
257cb93a386Sopenharmony_ci}
258cb93a386Sopenharmony_ci
259cb93a386Sopenharmony_cistatic inline SkScalar sdot(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
260cb93a386Sopenharmony_ci                             SkScalar e, SkScalar f) {
261cb93a386Sopenharmony_ci    return a * b + c * d + e * f;
262cb93a386Sopenharmony_ci}
263cb93a386Sopenharmony_ci
264cb93a386Sopenharmony_cistatic inline SkScalar scross(SkScalar a, SkScalar b, SkScalar c, SkScalar d) {
265cb93a386Sopenharmony_ci    return a * b - c * d;
266cb93a386Sopenharmony_ci}
267cb93a386Sopenharmony_ci
268cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setTranslate(SkScalar dx, SkScalar dy) {
269cb93a386Sopenharmony_ci    *this = SkMatrix(1, 0, dx,
270cb93a386Sopenharmony_ci                     0, 1, dy,
271cb93a386Sopenharmony_ci                     0, 0, 1,
272cb93a386Sopenharmony_ci                     (dx != 0 || dy != 0) ? kTranslate_Mask | kRectStaysRect_Mask
273cb93a386Sopenharmony_ci                                          : kIdentity_Mask  | kRectStaysRect_Mask);
274cb93a386Sopenharmony_ci    return *this;
275cb93a386Sopenharmony_ci}
276cb93a386Sopenharmony_ci
277cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preTranslate(SkScalar dx, SkScalar dy) {
278cb93a386Sopenharmony_ci    const unsigned mask = this->getType();
279cb93a386Sopenharmony_ci
280cb93a386Sopenharmony_ci    if (mask <= kTranslate_Mask) {
281cb93a386Sopenharmony_ci        fMat[kMTransX] += dx;
282cb93a386Sopenharmony_ci        fMat[kMTransY] += dy;
283cb93a386Sopenharmony_ci    } else if (mask & kPerspective_Mask) {
284cb93a386Sopenharmony_ci        SkMatrix    m;
285cb93a386Sopenharmony_ci        m.setTranslate(dx, dy);
286cb93a386Sopenharmony_ci        return this->preConcat(m);
287cb93a386Sopenharmony_ci    } else {
288cb93a386Sopenharmony_ci        fMat[kMTransX] += sdot(fMat[kMScaleX], dx, fMat[kMSkewX], dy);
289cb93a386Sopenharmony_ci        fMat[kMTransY] += sdot(fMat[kMSkewY], dx, fMat[kMScaleY], dy);
290cb93a386Sopenharmony_ci    }
291cb93a386Sopenharmony_ci    this->updateTranslateMask();
292cb93a386Sopenharmony_ci    return *this;
293cb93a386Sopenharmony_ci}
294cb93a386Sopenharmony_ci
295cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postTranslate(SkScalar dx, SkScalar dy) {
296cb93a386Sopenharmony_ci    if (this->hasPerspective()) {
297cb93a386Sopenharmony_ci        SkMatrix    m;
298cb93a386Sopenharmony_ci        m.setTranslate(dx, dy);
299cb93a386Sopenharmony_ci        this->postConcat(m);
300cb93a386Sopenharmony_ci    } else {
301cb93a386Sopenharmony_ci        fMat[kMTransX] += dx;
302cb93a386Sopenharmony_ci        fMat[kMTransY] += dy;
303cb93a386Sopenharmony_ci        this->updateTranslateMask();
304cb93a386Sopenharmony_ci    }
305cb93a386Sopenharmony_ci    return *this;
306cb93a386Sopenharmony_ci}
307cb93a386Sopenharmony_ci
308cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
309cb93a386Sopenharmony_ci
310cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
311cb93a386Sopenharmony_ci    if (1 == sx && 1 == sy) {
312cb93a386Sopenharmony_ci        this->reset();
313cb93a386Sopenharmony_ci    } else {
314cb93a386Sopenharmony_ci        this->setScaleTranslate(sx, sy, px - sx * px, py - sy * py);
315cb93a386Sopenharmony_ci    }
316cb93a386Sopenharmony_ci    return *this;
317cb93a386Sopenharmony_ci}
318cb93a386Sopenharmony_ci
319cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setScale(SkScalar sx, SkScalar sy) {
320cb93a386Sopenharmony_ci    *this = SkMatrix(sx, 0,  0,
321cb93a386Sopenharmony_ci                     0,  sy, 0,
322cb93a386Sopenharmony_ci                     0,  0,  1,
323cb93a386Sopenharmony_ci                     (sx == 1 && sy == 1) ? kIdentity_Mask | kRectStaysRect_Mask
324cb93a386Sopenharmony_ci                                          : kScale_Mask    | kRectStaysRect_Mask);
325cb93a386Sopenharmony_ci    return *this;
326cb93a386Sopenharmony_ci}
327cb93a386Sopenharmony_ci
328cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
329cb93a386Sopenharmony_ci    if (1 == sx && 1 == sy) {
330cb93a386Sopenharmony_ci        return *this;
331cb93a386Sopenharmony_ci    }
332cb93a386Sopenharmony_ci
333cb93a386Sopenharmony_ci    SkMatrix    m;
334cb93a386Sopenharmony_ci    m.setScale(sx, sy, px, py);
335cb93a386Sopenharmony_ci    return this->preConcat(m);
336cb93a386Sopenharmony_ci}
337cb93a386Sopenharmony_ci
338cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preScale(SkScalar sx, SkScalar sy) {
339cb93a386Sopenharmony_ci    if (1 == sx && 1 == sy) {
340cb93a386Sopenharmony_ci        return *this;
341cb93a386Sopenharmony_ci    }
342cb93a386Sopenharmony_ci
343cb93a386Sopenharmony_ci    // the assumption is that these multiplies are very cheap, and that
344cb93a386Sopenharmony_ci    // a full concat and/or just computing the matrix type is more expensive.
345cb93a386Sopenharmony_ci    // Also, the fixed-point case checks for overflow, but the float doesn't,
346cb93a386Sopenharmony_ci    // so we can get away with these blind multiplies.
347cb93a386Sopenharmony_ci
348cb93a386Sopenharmony_ci    fMat[kMScaleX] *= sx;
349cb93a386Sopenharmony_ci    fMat[kMSkewY]  *= sx;
350cb93a386Sopenharmony_ci    fMat[kMPersp0] *= sx;
351cb93a386Sopenharmony_ci
352cb93a386Sopenharmony_ci    fMat[kMSkewX]  *= sy;
353cb93a386Sopenharmony_ci    fMat[kMScaleY] *= sy;
354cb93a386Sopenharmony_ci    fMat[kMPersp1] *= sy;
355cb93a386Sopenharmony_ci
356cb93a386Sopenharmony_ci    // Attempt to simplify our type when applying an inverse scale.
357cb93a386Sopenharmony_ci    // TODO: The persp/affine preconditions are in place to keep the mask consistent with
358cb93a386Sopenharmony_ci    //       what computeTypeMask() would produce (persp/skew always implies kScale).
359cb93a386Sopenharmony_ci    //       We should investigate whether these flag dependencies are truly needed.
360cb93a386Sopenharmony_ci    if (fMat[kMScaleX] == 1 && fMat[kMScaleY] == 1
361cb93a386Sopenharmony_ci        && !(fTypeMask & (kPerspective_Mask | kAffine_Mask))) {
362cb93a386Sopenharmony_ci        this->clearTypeMask(kScale_Mask);
363cb93a386Sopenharmony_ci    } else {
364cb93a386Sopenharmony_ci        this->orTypeMask(kScale_Mask);
365cb93a386Sopenharmony_ci    }
366cb93a386Sopenharmony_ci    return *this;
367cb93a386Sopenharmony_ci}
368cb93a386Sopenharmony_ci
369cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
370cb93a386Sopenharmony_ci    if (1 == sx && 1 == sy) {
371cb93a386Sopenharmony_ci        return *this;
372cb93a386Sopenharmony_ci    }
373cb93a386Sopenharmony_ci    SkMatrix    m;
374cb93a386Sopenharmony_ci    m.setScale(sx, sy, px, py);
375cb93a386Sopenharmony_ci    return this->postConcat(m);
376cb93a386Sopenharmony_ci}
377cb93a386Sopenharmony_ci
378cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postScale(SkScalar sx, SkScalar sy) {
379cb93a386Sopenharmony_ci    if (1 == sx && 1 == sy) {
380cb93a386Sopenharmony_ci        return *this;
381cb93a386Sopenharmony_ci    }
382cb93a386Sopenharmony_ci    SkMatrix    m;
383cb93a386Sopenharmony_ci    m.setScale(sx, sy);
384cb93a386Sopenharmony_ci    return this->postConcat(m);
385cb93a386Sopenharmony_ci}
386cb93a386Sopenharmony_ci
387cb93a386Sopenharmony_ci// this perhaps can go away, if we have a fract/high-precision way to
388cb93a386Sopenharmony_ci// scale matrices
389cb93a386Sopenharmony_cibool SkMatrix::postIDiv(int divx, int divy) {
390cb93a386Sopenharmony_ci    if (divx == 0 || divy == 0) {
391cb93a386Sopenharmony_ci        return false;
392cb93a386Sopenharmony_ci    }
393cb93a386Sopenharmony_ci
394cb93a386Sopenharmony_ci    const float invX = 1.f / divx;
395cb93a386Sopenharmony_ci    const float invY = 1.f / divy;
396cb93a386Sopenharmony_ci
397cb93a386Sopenharmony_ci    fMat[kMScaleX] *= invX;
398cb93a386Sopenharmony_ci    fMat[kMSkewX]  *= invX;
399cb93a386Sopenharmony_ci    fMat[kMTransX] *= invX;
400cb93a386Sopenharmony_ci
401cb93a386Sopenharmony_ci    fMat[kMScaleY] *= invY;
402cb93a386Sopenharmony_ci    fMat[kMSkewY]  *= invY;
403cb93a386Sopenharmony_ci    fMat[kMTransY] *= invY;
404cb93a386Sopenharmony_ci
405cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask);
406cb93a386Sopenharmony_ci    return true;
407cb93a386Sopenharmony_ci}
408cb93a386Sopenharmony_ci
409cb93a386Sopenharmony_ci////////////////////////////////////////////////////////////////////////////////////
410cb93a386Sopenharmony_ci
411cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV, SkScalar px, SkScalar py) {
412cb93a386Sopenharmony_ci    const SkScalar oneMinusCosV = 1 - cosV;
413cb93a386Sopenharmony_ci
414cb93a386Sopenharmony_ci    fMat[kMScaleX]  = cosV;
415cb93a386Sopenharmony_ci    fMat[kMSkewX]   = -sinV;
416cb93a386Sopenharmony_ci    fMat[kMTransX]  = sdot(sinV, py, oneMinusCosV, px);
417cb93a386Sopenharmony_ci
418cb93a386Sopenharmony_ci    fMat[kMSkewY]   = sinV;
419cb93a386Sopenharmony_ci    fMat[kMScaleY]  = cosV;
420cb93a386Sopenharmony_ci    fMat[kMTransY]  = sdot(-sinV, px, oneMinusCosV, py);
421cb93a386Sopenharmony_ci
422cb93a386Sopenharmony_ci    fMat[kMPersp0] = fMat[kMPersp1] = 0;
423cb93a386Sopenharmony_ci    fMat[kMPersp2] = 1;
424cb93a386Sopenharmony_ci
425cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
426cb93a386Sopenharmony_ci    return *this;
427cb93a386Sopenharmony_ci}
428cb93a386Sopenharmony_ci
429cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setRSXform(const SkRSXform& xform) {
430cb93a386Sopenharmony_ci    fMat[kMScaleX]  = xform.fSCos;
431cb93a386Sopenharmony_ci    fMat[kMSkewX]   = -xform.fSSin;
432cb93a386Sopenharmony_ci    fMat[kMTransX]  = xform.fTx;
433cb93a386Sopenharmony_ci
434cb93a386Sopenharmony_ci    fMat[kMSkewY]   = xform.fSSin;
435cb93a386Sopenharmony_ci    fMat[kMScaleY]  = xform.fSCos;
436cb93a386Sopenharmony_ci    fMat[kMTransY]  = xform.fTy;
437cb93a386Sopenharmony_ci
438cb93a386Sopenharmony_ci    fMat[kMPersp0] = fMat[kMPersp1] = 0;
439cb93a386Sopenharmony_ci    fMat[kMPersp2] = 1;
440cb93a386Sopenharmony_ci
441cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
442cb93a386Sopenharmony_ci    return *this;
443cb93a386Sopenharmony_ci}
444cb93a386Sopenharmony_ci
445cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setSinCos(SkScalar sinV, SkScalar cosV) {
446cb93a386Sopenharmony_ci    fMat[kMScaleX]  = cosV;
447cb93a386Sopenharmony_ci    fMat[kMSkewX]   = -sinV;
448cb93a386Sopenharmony_ci    fMat[kMTransX]  = 0;
449cb93a386Sopenharmony_ci
450cb93a386Sopenharmony_ci    fMat[kMSkewY]   = sinV;
451cb93a386Sopenharmony_ci    fMat[kMScaleY]  = cosV;
452cb93a386Sopenharmony_ci    fMat[kMTransY]  = 0;
453cb93a386Sopenharmony_ci
454cb93a386Sopenharmony_ci    fMat[kMPersp0] = fMat[kMPersp1] = 0;
455cb93a386Sopenharmony_ci    fMat[kMPersp2] = 1;
456cb93a386Sopenharmony_ci
457cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
458cb93a386Sopenharmony_ci    return *this;
459cb93a386Sopenharmony_ci}
460cb93a386Sopenharmony_ci
461cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setRotate(SkScalar degrees, SkScalar px, SkScalar py) {
462cb93a386Sopenharmony_ci    SkScalar rad = SkDegreesToRadians(degrees);
463cb93a386Sopenharmony_ci    return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad), px, py);
464cb93a386Sopenharmony_ci}
465cb93a386Sopenharmony_ci
466cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setRotate(SkScalar degrees) {
467cb93a386Sopenharmony_ci    SkScalar rad = SkDegreesToRadians(degrees);
468cb93a386Sopenharmony_ci    return this->setSinCos(SkScalarSinSnapToZero(rad), SkScalarCosSnapToZero(rad));
469cb93a386Sopenharmony_ci}
470cb93a386Sopenharmony_ci
471cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preRotate(SkScalar degrees, SkScalar px, SkScalar py) {
472cb93a386Sopenharmony_ci    SkMatrix    m;
473cb93a386Sopenharmony_ci    m.setRotate(degrees, px, py);
474cb93a386Sopenharmony_ci    return this->preConcat(m);
475cb93a386Sopenharmony_ci}
476cb93a386Sopenharmony_ci
477cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preRotate(SkScalar degrees) {
478cb93a386Sopenharmony_ci    SkMatrix    m;
479cb93a386Sopenharmony_ci    m.setRotate(degrees);
480cb93a386Sopenharmony_ci    return this->preConcat(m);
481cb93a386Sopenharmony_ci}
482cb93a386Sopenharmony_ci
483cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postRotate(SkScalar degrees, SkScalar px, SkScalar py) {
484cb93a386Sopenharmony_ci    SkMatrix    m;
485cb93a386Sopenharmony_ci    m.setRotate(degrees, px, py);
486cb93a386Sopenharmony_ci    return this->postConcat(m);
487cb93a386Sopenharmony_ci}
488cb93a386Sopenharmony_ci
489cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postRotate(SkScalar degrees) {
490cb93a386Sopenharmony_ci    SkMatrix    m;
491cb93a386Sopenharmony_ci    m.setRotate(degrees);
492cb93a386Sopenharmony_ci    return this->postConcat(m);
493cb93a386Sopenharmony_ci}
494cb93a386Sopenharmony_ci
495cb93a386Sopenharmony_ci////////////////////////////////////////////////////////////////////////////////////
496cb93a386Sopenharmony_ci
497cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
498cb93a386Sopenharmony_ci    *this = SkMatrix(1,  sx, -sx * py,
499cb93a386Sopenharmony_ci                     sy, 1,  -sy * px,
500cb93a386Sopenharmony_ci                     0,  0,  1,
501cb93a386Sopenharmony_ci                     kUnknown_Mask | kOnlyPerspectiveValid_Mask);
502cb93a386Sopenharmony_ci    return *this;
503cb93a386Sopenharmony_ci}
504cb93a386Sopenharmony_ci
505cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setSkew(SkScalar sx, SkScalar sy) {
506cb93a386Sopenharmony_ci    fMat[kMScaleX]  = 1;
507cb93a386Sopenharmony_ci    fMat[kMSkewX]   = sx;
508cb93a386Sopenharmony_ci    fMat[kMTransX]  = 0;
509cb93a386Sopenharmony_ci
510cb93a386Sopenharmony_ci    fMat[kMSkewY]   = sy;
511cb93a386Sopenharmony_ci    fMat[kMScaleY]  = 1;
512cb93a386Sopenharmony_ci    fMat[kMTransY]  = 0;
513cb93a386Sopenharmony_ci
514cb93a386Sopenharmony_ci    fMat[kMPersp0] = fMat[kMPersp1] = 0;
515cb93a386Sopenharmony_ci    fMat[kMPersp2] = 1;
516cb93a386Sopenharmony_ci
517cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
518cb93a386Sopenharmony_ci    return *this;
519cb93a386Sopenharmony_ci}
520cb93a386Sopenharmony_ci
521cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
522cb93a386Sopenharmony_ci    SkMatrix    m;
523cb93a386Sopenharmony_ci    m.setSkew(sx, sy, px, py);
524cb93a386Sopenharmony_ci    return this->preConcat(m);
525cb93a386Sopenharmony_ci}
526cb93a386Sopenharmony_ci
527cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preSkew(SkScalar sx, SkScalar sy) {
528cb93a386Sopenharmony_ci    SkMatrix    m;
529cb93a386Sopenharmony_ci    m.setSkew(sx, sy);
530cb93a386Sopenharmony_ci    return this->preConcat(m);
531cb93a386Sopenharmony_ci}
532cb93a386Sopenharmony_ci
533cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py) {
534cb93a386Sopenharmony_ci    SkMatrix    m;
535cb93a386Sopenharmony_ci    m.setSkew(sx, sy, px, py);
536cb93a386Sopenharmony_ci    return this->postConcat(m);
537cb93a386Sopenharmony_ci}
538cb93a386Sopenharmony_ci
539cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postSkew(SkScalar sx, SkScalar sy) {
540cb93a386Sopenharmony_ci    SkMatrix    m;
541cb93a386Sopenharmony_ci    m.setSkew(sx, sy);
542cb93a386Sopenharmony_ci    return this->postConcat(m);
543cb93a386Sopenharmony_ci}
544cb93a386Sopenharmony_ci
545cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
546cb93a386Sopenharmony_ci
547cb93a386Sopenharmony_cibool SkMatrix::setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit align) {
548cb93a386Sopenharmony_ci    if (src.isEmpty()) {
549cb93a386Sopenharmony_ci        this->reset();
550cb93a386Sopenharmony_ci        return false;
551cb93a386Sopenharmony_ci    }
552cb93a386Sopenharmony_ci
553cb93a386Sopenharmony_ci    if (dst.isEmpty()) {
554cb93a386Sopenharmony_ci        sk_bzero(fMat, 8 * sizeof(SkScalar));
555cb93a386Sopenharmony_ci        fMat[kMPersp2] = 1;
556cb93a386Sopenharmony_ci        this->setTypeMask(kScale_Mask | kRectStaysRect_Mask);
557cb93a386Sopenharmony_ci    } else {
558cb93a386Sopenharmony_ci        SkScalar    tx, sx = dst.width() / src.width();
559cb93a386Sopenharmony_ci        SkScalar    ty, sy = dst.height() / src.height();
560cb93a386Sopenharmony_ci        bool        xLarger = false;
561cb93a386Sopenharmony_ci
562cb93a386Sopenharmony_ci        if (align != kFill_ScaleToFit) {
563cb93a386Sopenharmony_ci            if (sx > sy) {
564cb93a386Sopenharmony_ci                xLarger = true;
565cb93a386Sopenharmony_ci                sx = sy;
566cb93a386Sopenharmony_ci            } else {
567cb93a386Sopenharmony_ci                sy = sx;
568cb93a386Sopenharmony_ci            }
569cb93a386Sopenharmony_ci        }
570cb93a386Sopenharmony_ci
571cb93a386Sopenharmony_ci        tx = dst.fLeft - src.fLeft * sx;
572cb93a386Sopenharmony_ci        ty = dst.fTop - src.fTop * sy;
573cb93a386Sopenharmony_ci        if (align == kCenter_ScaleToFit || align == kEnd_ScaleToFit) {
574cb93a386Sopenharmony_ci            SkScalar diff;
575cb93a386Sopenharmony_ci
576cb93a386Sopenharmony_ci            if (xLarger) {
577cb93a386Sopenharmony_ci                diff = dst.width() - src.width() * sy;
578cb93a386Sopenharmony_ci            } else {
579cb93a386Sopenharmony_ci                diff = dst.height() - src.height() * sy;
580cb93a386Sopenharmony_ci            }
581cb93a386Sopenharmony_ci
582cb93a386Sopenharmony_ci            if (align == kCenter_ScaleToFit) {
583cb93a386Sopenharmony_ci                diff = SkScalarHalf(diff);
584cb93a386Sopenharmony_ci            }
585cb93a386Sopenharmony_ci
586cb93a386Sopenharmony_ci            if (xLarger) {
587cb93a386Sopenharmony_ci                tx += diff;
588cb93a386Sopenharmony_ci            } else {
589cb93a386Sopenharmony_ci                ty += diff;
590cb93a386Sopenharmony_ci            }
591cb93a386Sopenharmony_ci        }
592cb93a386Sopenharmony_ci
593cb93a386Sopenharmony_ci        this->setScaleTranslate(sx, sy, tx, ty);
594cb93a386Sopenharmony_ci    }
595cb93a386Sopenharmony_ci    return true;
596cb93a386Sopenharmony_ci}
597cb93a386Sopenharmony_ci
598cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
599cb93a386Sopenharmony_ci
600cb93a386Sopenharmony_cistatic inline float muladdmul(float a, float b, float c, float d) {
601cb93a386Sopenharmony_ci    return sk_double_to_float((double)a * b + (double)c * d);
602cb93a386Sopenharmony_ci}
603cb93a386Sopenharmony_ci
604cb93a386Sopenharmony_cistatic inline float rowcol3(const float row[], const float col[]) {
605cb93a386Sopenharmony_ci    return row[0] * col[0] + row[1] * col[3] + row[2] * col[6];
606cb93a386Sopenharmony_ci}
607cb93a386Sopenharmony_ci
608cb93a386Sopenharmony_cistatic bool only_scale_and_translate(unsigned mask) {
609cb93a386Sopenharmony_ci    return 0 == (mask & (SkMatrix::kAffine_Mask | SkMatrix::kPerspective_Mask));
610cb93a386Sopenharmony_ci}
611cb93a386Sopenharmony_ci
612cb93a386Sopenharmony_ciSkMatrix& SkMatrix::setConcat(const SkMatrix& a, const SkMatrix& b) {
613cb93a386Sopenharmony_ci    TypeMask aType = a.getType();
614cb93a386Sopenharmony_ci    TypeMask bType = b.getType();
615cb93a386Sopenharmony_ci
616cb93a386Sopenharmony_ci    if (a.isTriviallyIdentity()) {
617cb93a386Sopenharmony_ci        *this = b;
618cb93a386Sopenharmony_ci    } else if (b.isTriviallyIdentity()) {
619cb93a386Sopenharmony_ci        *this = a;
620cb93a386Sopenharmony_ci    } else if (only_scale_and_translate(aType | bType)) {
621cb93a386Sopenharmony_ci        this->setScaleTranslate(a.fMat[kMScaleX] * b.fMat[kMScaleX],
622cb93a386Sopenharmony_ci                                a.fMat[kMScaleY] * b.fMat[kMScaleY],
623cb93a386Sopenharmony_ci                                a.fMat[kMScaleX] * b.fMat[kMTransX] + a.fMat[kMTransX],
624cb93a386Sopenharmony_ci                                a.fMat[kMScaleY] * b.fMat[kMTransY] + a.fMat[kMTransY]);
625cb93a386Sopenharmony_ci    } else {
626cb93a386Sopenharmony_ci        SkMatrix tmp;
627cb93a386Sopenharmony_ci
628cb93a386Sopenharmony_ci        if ((aType | bType) & kPerspective_Mask) {
629cb93a386Sopenharmony_ci            tmp.fMat[kMScaleX] = rowcol3(&a.fMat[0], &b.fMat[0]);
630cb93a386Sopenharmony_ci            tmp.fMat[kMSkewX]  = rowcol3(&a.fMat[0], &b.fMat[1]);
631cb93a386Sopenharmony_ci            tmp.fMat[kMTransX] = rowcol3(&a.fMat[0], &b.fMat[2]);
632cb93a386Sopenharmony_ci            tmp.fMat[kMSkewY]  = rowcol3(&a.fMat[3], &b.fMat[0]);
633cb93a386Sopenharmony_ci            tmp.fMat[kMScaleY] = rowcol3(&a.fMat[3], &b.fMat[1]);
634cb93a386Sopenharmony_ci            tmp.fMat[kMTransY] = rowcol3(&a.fMat[3], &b.fMat[2]);
635cb93a386Sopenharmony_ci            tmp.fMat[kMPersp0] = rowcol3(&a.fMat[6], &b.fMat[0]);
636cb93a386Sopenharmony_ci            tmp.fMat[kMPersp1] = rowcol3(&a.fMat[6], &b.fMat[1]);
637cb93a386Sopenharmony_ci            tmp.fMat[kMPersp2] = rowcol3(&a.fMat[6], &b.fMat[2]);
638cb93a386Sopenharmony_ci
639cb93a386Sopenharmony_ci            tmp.setTypeMask(kUnknown_Mask);
640cb93a386Sopenharmony_ci        } else {
641cb93a386Sopenharmony_ci            tmp.fMat[kMScaleX] = muladdmul(a.fMat[kMScaleX],
642cb93a386Sopenharmony_ci                                           b.fMat[kMScaleX],
643cb93a386Sopenharmony_ci                                           a.fMat[kMSkewX],
644cb93a386Sopenharmony_ci                                           b.fMat[kMSkewY]);
645cb93a386Sopenharmony_ci
646cb93a386Sopenharmony_ci            tmp.fMat[kMSkewX]  = muladdmul(a.fMat[kMScaleX],
647cb93a386Sopenharmony_ci                                           b.fMat[kMSkewX],
648cb93a386Sopenharmony_ci                                           a.fMat[kMSkewX],
649cb93a386Sopenharmony_ci                                           b.fMat[kMScaleY]);
650cb93a386Sopenharmony_ci
651cb93a386Sopenharmony_ci            tmp.fMat[kMTransX] = muladdmul(a.fMat[kMScaleX],
652cb93a386Sopenharmony_ci                                           b.fMat[kMTransX],
653cb93a386Sopenharmony_ci                                           a.fMat[kMSkewX],
654cb93a386Sopenharmony_ci                                           b.fMat[kMTransY]) + a.fMat[kMTransX];
655cb93a386Sopenharmony_ci
656cb93a386Sopenharmony_ci            tmp.fMat[kMSkewY]  = muladdmul(a.fMat[kMSkewY],
657cb93a386Sopenharmony_ci                                           b.fMat[kMScaleX],
658cb93a386Sopenharmony_ci                                           a.fMat[kMScaleY],
659cb93a386Sopenharmony_ci                                           b.fMat[kMSkewY]);
660cb93a386Sopenharmony_ci
661cb93a386Sopenharmony_ci            tmp.fMat[kMScaleY] = muladdmul(a.fMat[kMSkewY],
662cb93a386Sopenharmony_ci                                           b.fMat[kMSkewX],
663cb93a386Sopenharmony_ci                                           a.fMat[kMScaleY],
664cb93a386Sopenharmony_ci                                           b.fMat[kMScaleY]);
665cb93a386Sopenharmony_ci
666cb93a386Sopenharmony_ci            tmp.fMat[kMTransY] = muladdmul(a.fMat[kMSkewY],
667cb93a386Sopenharmony_ci                                           b.fMat[kMTransX],
668cb93a386Sopenharmony_ci                                           a.fMat[kMScaleY],
669cb93a386Sopenharmony_ci                                           b.fMat[kMTransY]) + a.fMat[kMTransY];
670cb93a386Sopenharmony_ci
671cb93a386Sopenharmony_ci            tmp.fMat[kMPersp0] = 0;
672cb93a386Sopenharmony_ci            tmp.fMat[kMPersp1] = 0;
673cb93a386Sopenharmony_ci            tmp.fMat[kMPersp2] = 1;
674cb93a386Sopenharmony_ci            //SkDebugf("Concat mat non-persp type: %d\n", tmp.getType());
675cb93a386Sopenharmony_ci            //SkASSERT(!(tmp.getType() & kPerspective_Mask));
676cb93a386Sopenharmony_ci            tmp.setTypeMask(kUnknown_Mask | kOnlyPerspectiveValid_Mask);
677cb93a386Sopenharmony_ci        }
678cb93a386Sopenharmony_ci        *this = tmp;
679cb93a386Sopenharmony_ci    }
680cb93a386Sopenharmony_ci    return *this;
681cb93a386Sopenharmony_ci}
682cb93a386Sopenharmony_ci
683cb93a386Sopenharmony_ciSkMatrix& SkMatrix::preConcat(const SkMatrix& mat) {
684cb93a386Sopenharmony_ci    // check for identity first, so we don't do a needless copy of ourselves
685cb93a386Sopenharmony_ci    // to ourselves inside setConcat()
686cb93a386Sopenharmony_ci    if(!mat.isIdentity()) {
687cb93a386Sopenharmony_ci        this->setConcat(*this, mat);
688cb93a386Sopenharmony_ci    }
689cb93a386Sopenharmony_ci    return *this;
690cb93a386Sopenharmony_ci}
691cb93a386Sopenharmony_ci
692cb93a386Sopenharmony_ciSkMatrix& SkMatrix::postConcat(const SkMatrix& mat) {
693cb93a386Sopenharmony_ci    // check for identity first, so we don't do a needless copy of ourselves
694cb93a386Sopenharmony_ci    // to ourselves inside setConcat()
695cb93a386Sopenharmony_ci    if (!mat.isIdentity()) {
696cb93a386Sopenharmony_ci        this->setConcat(mat, *this);
697cb93a386Sopenharmony_ci    }
698cb93a386Sopenharmony_ci    return *this;
699cb93a386Sopenharmony_ci}
700cb93a386Sopenharmony_ci
701cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
702cb93a386Sopenharmony_ci
703cb93a386Sopenharmony_ci/*  Matrix inversion is very expensive, but also the place where keeping
704cb93a386Sopenharmony_ci    precision may be most important (here and matrix concat). Hence to avoid
705cb93a386Sopenharmony_ci    bitmap blitting artifacts when walking the inverse, we use doubles for
706cb93a386Sopenharmony_ci    the intermediate math, even though we know that is more expensive.
707cb93a386Sopenharmony_ci */
708cb93a386Sopenharmony_ci
709cb93a386Sopenharmony_cistatic inline SkScalar scross_dscale(SkScalar a, SkScalar b,
710cb93a386Sopenharmony_ci                                     SkScalar c, SkScalar d, double scale) {
711cb93a386Sopenharmony_ci    return SkDoubleToScalar(scross(a, b, c, d) * scale);
712cb93a386Sopenharmony_ci}
713cb93a386Sopenharmony_ci
714cb93a386Sopenharmony_cistatic inline double dcross(double a, double b, double c, double d) {
715cb93a386Sopenharmony_ci    return a * b - c * d;
716cb93a386Sopenharmony_ci}
717cb93a386Sopenharmony_ci
718cb93a386Sopenharmony_cistatic inline SkScalar dcross_dscale(double a, double b,
719cb93a386Sopenharmony_ci                                     double c, double d, double scale) {
720cb93a386Sopenharmony_ci    return SkDoubleToScalar(dcross(a, b, c, d) * scale);
721cb93a386Sopenharmony_ci}
722cb93a386Sopenharmony_ci
723cb93a386Sopenharmony_cistatic double sk_determinant(const float mat[9], int isPerspective) {
724cb93a386Sopenharmony_ci    if (isPerspective) {
725cb93a386Sopenharmony_ci        return mat[SkMatrix::kMScaleX] *
726cb93a386Sopenharmony_ci                    dcross(mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp2],
727cb93a386Sopenharmony_ci                           mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp1])
728cb93a386Sopenharmony_ci                    +
729cb93a386Sopenharmony_ci                    mat[SkMatrix::kMSkewX]  *
730cb93a386Sopenharmony_ci                    dcross(mat[SkMatrix::kMTransY], mat[SkMatrix::kMPersp0],
731cb93a386Sopenharmony_ci                           mat[SkMatrix::kMSkewY],  mat[SkMatrix::kMPersp2])
732cb93a386Sopenharmony_ci                    +
733cb93a386Sopenharmony_ci                    mat[SkMatrix::kMTransX] *
734cb93a386Sopenharmony_ci                    dcross(mat[SkMatrix::kMSkewY],  mat[SkMatrix::kMPersp1],
735cb93a386Sopenharmony_ci                           mat[SkMatrix::kMScaleY], mat[SkMatrix::kMPersp0]);
736cb93a386Sopenharmony_ci    } else {
737cb93a386Sopenharmony_ci        return dcross(mat[SkMatrix::kMScaleX], mat[SkMatrix::kMScaleY],
738cb93a386Sopenharmony_ci                      mat[SkMatrix::kMSkewX], mat[SkMatrix::kMSkewY]);
739cb93a386Sopenharmony_ci    }
740cb93a386Sopenharmony_ci}
741cb93a386Sopenharmony_ci
742cb93a386Sopenharmony_cistatic double sk_inv_determinant(const float mat[9], int isPerspective) {
743cb93a386Sopenharmony_ci    double det = sk_determinant(mat, isPerspective);
744cb93a386Sopenharmony_ci
745cb93a386Sopenharmony_ci    // Since the determinant is on the order of the cube of the matrix members,
746cb93a386Sopenharmony_ci    // compare to the cube of the default nearly-zero constant (although an
747cb93a386Sopenharmony_ci    // estimate of the condition number would be better if it wasn't so expensive).
748cb93a386Sopenharmony_ci    if (SkScalarNearlyZero(sk_double_to_float(det),
749cb93a386Sopenharmony_ci                           SK_ScalarNearlyZero * SK_ScalarNearlyZero * SK_ScalarNearlyZero)) {
750cb93a386Sopenharmony_ci        return 0;
751cb93a386Sopenharmony_ci    }
752cb93a386Sopenharmony_ci    return 1.0 / det;
753cb93a386Sopenharmony_ci}
754cb93a386Sopenharmony_ci
755cb93a386Sopenharmony_civoid SkMatrix::SetAffineIdentity(SkScalar affine[6]) {
756cb93a386Sopenharmony_ci    affine[kAScaleX] = 1;
757cb93a386Sopenharmony_ci    affine[kASkewY] = 0;
758cb93a386Sopenharmony_ci    affine[kASkewX] = 0;
759cb93a386Sopenharmony_ci    affine[kAScaleY] = 1;
760cb93a386Sopenharmony_ci    affine[kATransX] = 0;
761cb93a386Sopenharmony_ci    affine[kATransY] = 0;
762cb93a386Sopenharmony_ci}
763cb93a386Sopenharmony_ci
764cb93a386Sopenharmony_cibool SkMatrix::asAffine(SkScalar affine[6]) const {
765cb93a386Sopenharmony_ci    if (this->hasPerspective()) {
766cb93a386Sopenharmony_ci        return false;
767cb93a386Sopenharmony_ci    }
768cb93a386Sopenharmony_ci    if (affine) {
769cb93a386Sopenharmony_ci        affine[kAScaleX] = this->fMat[kMScaleX];
770cb93a386Sopenharmony_ci        affine[kASkewY] = this->fMat[kMSkewY];
771cb93a386Sopenharmony_ci        affine[kASkewX] = this->fMat[kMSkewX];
772cb93a386Sopenharmony_ci        affine[kAScaleY] = this->fMat[kMScaleY];
773cb93a386Sopenharmony_ci        affine[kATransX] = this->fMat[kMTransX];
774cb93a386Sopenharmony_ci        affine[kATransY] = this->fMat[kMTransY];
775cb93a386Sopenharmony_ci    }
776cb93a386Sopenharmony_ci    return true;
777cb93a386Sopenharmony_ci}
778cb93a386Sopenharmony_ci
779cb93a386Sopenharmony_civoid SkMatrix::mapPoints(SkPoint dst[], const SkPoint src[], int count) const {
780cb93a386Sopenharmony_ci    SkASSERT((dst && src && count > 0) || 0 == count);
781cb93a386Sopenharmony_ci    // no partial overlap
782cb93a386Sopenharmony_ci    SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
783cb93a386Sopenharmony_ci    this->getMapPtsProc()(*this, dst, src, count);
784cb93a386Sopenharmony_ci}
785cb93a386Sopenharmony_ci
786cb93a386Sopenharmony_civoid SkMatrix::mapXY(SkScalar x, SkScalar y, SkPoint* result) const {
787cb93a386Sopenharmony_ci    SkASSERT(result);
788cb93a386Sopenharmony_ci    this->getMapXYProc()(*this, x, y, result);
789cb93a386Sopenharmony_ci}
790cb93a386Sopenharmony_ci
791cb93a386Sopenharmony_civoid SkMatrix::ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp) {
792cb93a386Sopenharmony_ci    SkASSERT(src != dst);
793cb93a386Sopenharmony_ci    SkASSERT(src && dst);
794cb93a386Sopenharmony_ci
795cb93a386Sopenharmony_ci    if (isPersp) {
796cb93a386Sopenharmony_ci        dst[kMScaleX] = scross_dscale(src[kMScaleY], src[kMPersp2], src[kMTransY], src[kMPersp1], invDet);
797cb93a386Sopenharmony_ci        dst[kMSkewX]  = scross_dscale(src[kMTransX], src[kMPersp1], src[kMSkewX],  src[kMPersp2], invDet);
798cb93a386Sopenharmony_ci        dst[kMTransX] = scross_dscale(src[kMSkewX],  src[kMTransY], src[kMTransX], src[kMScaleY], invDet);
799cb93a386Sopenharmony_ci
800cb93a386Sopenharmony_ci        dst[kMSkewY]  = scross_dscale(src[kMTransY], src[kMPersp0], src[kMSkewY],  src[kMPersp2], invDet);
801cb93a386Sopenharmony_ci        dst[kMScaleY] = scross_dscale(src[kMScaleX], src[kMPersp2], src[kMTransX], src[kMPersp0], invDet);
802cb93a386Sopenharmony_ci        dst[kMTransY] = scross_dscale(src[kMTransX], src[kMSkewY],  src[kMScaleX], src[kMTransY], invDet);
803cb93a386Sopenharmony_ci
804cb93a386Sopenharmony_ci        dst[kMPersp0] = scross_dscale(src[kMSkewY],  src[kMPersp1], src[kMScaleY], src[kMPersp0], invDet);
805cb93a386Sopenharmony_ci        dst[kMPersp1] = scross_dscale(src[kMSkewX],  src[kMPersp0], src[kMScaleX], src[kMPersp1], invDet);
806cb93a386Sopenharmony_ci        dst[kMPersp2] = scross_dscale(src[kMScaleX], src[kMScaleY], src[kMSkewX],  src[kMSkewY],  invDet);
807cb93a386Sopenharmony_ci    } else {   // not perspective
808cb93a386Sopenharmony_ci        dst[kMScaleX] = SkDoubleToScalar(src[kMScaleY] * invDet);
809cb93a386Sopenharmony_ci        dst[kMSkewX]  = SkDoubleToScalar(-src[kMSkewX] * invDet);
810cb93a386Sopenharmony_ci        dst[kMTransX] = dcross_dscale(src[kMSkewX], src[kMTransY], src[kMScaleY], src[kMTransX], invDet);
811cb93a386Sopenharmony_ci
812cb93a386Sopenharmony_ci        dst[kMSkewY]  = SkDoubleToScalar(-src[kMSkewY] * invDet);
813cb93a386Sopenharmony_ci        dst[kMScaleY] = SkDoubleToScalar(src[kMScaleX] * invDet);
814cb93a386Sopenharmony_ci        dst[kMTransY] = dcross_dscale(src[kMSkewY], src[kMTransX], src[kMScaleX], src[kMTransY], invDet);
815cb93a386Sopenharmony_ci
816cb93a386Sopenharmony_ci        dst[kMPersp0] = 0;
817cb93a386Sopenharmony_ci        dst[kMPersp1] = 0;
818cb93a386Sopenharmony_ci        dst[kMPersp2] = 1;
819cb93a386Sopenharmony_ci    }
820cb93a386Sopenharmony_ci}
821cb93a386Sopenharmony_ci
822cb93a386Sopenharmony_cibool SkMatrix::invertNonIdentity(SkMatrix* inv) const {
823cb93a386Sopenharmony_ci    SkASSERT(!this->isIdentity());
824cb93a386Sopenharmony_ci
825cb93a386Sopenharmony_ci    TypeMask mask = this->getType();
826cb93a386Sopenharmony_ci
827cb93a386Sopenharmony_ci    if (0 == (mask & ~(kScale_Mask | kTranslate_Mask))) {
828cb93a386Sopenharmony_ci        bool invertible = true;
829cb93a386Sopenharmony_ci        if (inv) {
830cb93a386Sopenharmony_ci            if (mask & kScale_Mask) {
831cb93a386Sopenharmony_ci                SkScalar invX = fMat[kMScaleX];
832cb93a386Sopenharmony_ci                SkScalar invY = fMat[kMScaleY];
833cb93a386Sopenharmony_ci                if (0 == invX || 0 == invY) {
834cb93a386Sopenharmony_ci                    return false;
835cb93a386Sopenharmony_ci                }
836cb93a386Sopenharmony_ci                invX = SkScalarInvert(invX);
837cb93a386Sopenharmony_ci                invY = SkScalarInvert(invY);
838cb93a386Sopenharmony_ci
839cb93a386Sopenharmony_ci                // Must be careful when writing to inv, since it may be the
840cb93a386Sopenharmony_ci                // same memory as this.
841cb93a386Sopenharmony_ci
842cb93a386Sopenharmony_ci                inv->fMat[kMSkewX] = inv->fMat[kMSkewY] =
843cb93a386Sopenharmony_ci                inv->fMat[kMPersp0] = inv->fMat[kMPersp1] = 0;
844cb93a386Sopenharmony_ci
845cb93a386Sopenharmony_ci                inv->fMat[kMScaleX] = invX;
846cb93a386Sopenharmony_ci                inv->fMat[kMScaleY] = invY;
847cb93a386Sopenharmony_ci                inv->fMat[kMPersp2] = 1;
848cb93a386Sopenharmony_ci                inv->fMat[kMTransX] = -fMat[kMTransX] * invX;
849cb93a386Sopenharmony_ci                inv->fMat[kMTransY] = -fMat[kMTransY] * invY;
850cb93a386Sopenharmony_ci
851cb93a386Sopenharmony_ci                inv->setTypeMask(mask | kRectStaysRect_Mask);
852cb93a386Sopenharmony_ci            } else {
853cb93a386Sopenharmony_ci                // translate only
854cb93a386Sopenharmony_ci                inv->setTranslate(-fMat[kMTransX], -fMat[kMTransY]);
855cb93a386Sopenharmony_ci            }
856cb93a386Sopenharmony_ci        } else {    // inv is nullptr, just check if we're invertible
857cb93a386Sopenharmony_ci            if (!fMat[kMScaleX] || !fMat[kMScaleY]) {
858cb93a386Sopenharmony_ci                invertible = false;
859cb93a386Sopenharmony_ci            }
860cb93a386Sopenharmony_ci        }
861cb93a386Sopenharmony_ci        return invertible;
862cb93a386Sopenharmony_ci    }
863cb93a386Sopenharmony_ci
864cb93a386Sopenharmony_ci    int    isPersp = mask & kPerspective_Mask;
865cb93a386Sopenharmony_ci    double invDet = sk_inv_determinant(fMat, isPersp);
866cb93a386Sopenharmony_ci
867cb93a386Sopenharmony_ci    if (invDet == 0) { // underflow
868cb93a386Sopenharmony_ci        return false;
869cb93a386Sopenharmony_ci    }
870cb93a386Sopenharmony_ci
871cb93a386Sopenharmony_ci    bool applyingInPlace = (inv == this);
872cb93a386Sopenharmony_ci
873cb93a386Sopenharmony_ci    SkMatrix* tmp = inv;
874cb93a386Sopenharmony_ci
875cb93a386Sopenharmony_ci    SkMatrix storage;
876cb93a386Sopenharmony_ci    if (applyingInPlace || nullptr == tmp) {
877cb93a386Sopenharmony_ci        tmp = &storage;     // we either need to avoid trampling memory or have no memory
878cb93a386Sopenharmony_ci    }
879cb93a386Sopenharmony_ci
880cb93a386Sopenharmony_ci    ComputeInv(tmp->fMat, fMat, invDet, isPersp);
881cb93a386Sopenharmony_ci    if (!tmp->isFinite()) {
882cb93a386Sopenharmony_ci        return false;
883cb93a386Sopenharmony_ci    }
884cb93a386Sopenharmony_ci
885cb93a386Sopenharmony_ci    tmp->setTypeMask(fTypeMask);
886cb93a386Sopenharmony_ci
887cb93a386Sopenharmony_ci    if (applyingInPlace) {
888cb93a386Sopenharmony_ci        *inv = storage; // need to copy answer back
889cb93a386Sopenharmony_ci    }
890cb93a386Sopenharmony_ci
891cb93a386Sopenharmony_ci    return true;
892cb93a386Sopenharmony_ci}
893cb93a386Sopenharmony_ci
894cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
895cb93a386Sopenharmony_ci
896cb93a386Sopenharmony_civoid SkMatrix::Identity_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) {
897cb93a386Sopenharmony_ci    SkASSERT(m.getType() == 0);
898cb93a386Sopenharmony_ci
899cb93a386Sopenharmony_ci    if (dst != src && count > 0) {
900cb93a386Sopenharmony_ci        memcpy(dst, src, count * sizeof(SkPoint));
901cb93a386Sopenharmony_ci    }
902cb93a386Sopenharmony_ci}
903cb93a386Sopenharmony_ci
904cb93a386Sopenharmony_civoid SkMatrix::Trans_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) {
905cb93a386Sopenharmony_ci    SkASSERT(m.getType() <= SkMatrix::kTranslate_Mask);
906cb93a386Sopenharmony_ci    if (count > 0) {
907cb93a386Sopenharmony_ci        SkScalar tx = m.getTranslateX();
908cb93a386Sopenharmony_ci        SkScalar ty = m.getTranslateY();
909cb93a386Sopenharmony_ci        if (count & 1) {
910cb93a386Sopenharmony_ci            dst->fX = src->fX + tx;
911cb93a386Sopenharmony_ci            dst->fY = src->fY + ty;
912cb93a386Sopenharmony_ci            src += 1;
913cb93a386Sopenharmony_ci            dst += 1;
914cb93a386Sopenharmony_ci        }
915cb93a386Sopenharmony_ci        Sk4s trans4(tx, ty, tx, ty);
916cb93a386Sopenharmony_ci        count >>= 1;
917cb93a386Sopenharmony_ci        if (count & 1) {
918cb93a386Sopenharmony_ci            (Sk4s::Load(src) + trans4).store(dst);
919cb93a386Sopenharmony_ci            src += 2;
920cb93a386Sopenharmony_ci            dst += 2;
921cb93a386Sopenharmony_ci        }
922cb93a386Sopenharmony_ci        count >>= 1;
923cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
924cb93a386Sopenharmony_ci            (Sk4s::Load(src+0) + trans4).store(dst+0);
925cb93a386Sopenharmony_ci            (Sk4s::Load(src+2) + trans4).store(dst+2);
926cb93a386Sopenharmony_ci            src += 4;
927cb93a386Sopenharmony_ci            dst += 4;
928cb93a386Sopenharmony_ci        }
929cb93a386Sopenharmony_ci    }
930cb93a386Sopenharmony_ci}
931cb93a386Sopenharmony_ci
932cb93a386Sopenharmony_civoid SkMatrix::Scale_pts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) {
933cb93a386Sopenharmony_ci    SkASSERT(m.getType() <= (SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask));
934cb93a386Sopenharmony_ci    if (count > 0) {
935cb93a386Sopenharmony_ci        SkScalar tx = m.getTranslateX();
936cb93a386Sopenharmony_ci        SkScalar ty = m.getTranslateY();
937cb93a386Sopenharmony_ci        SkScalar sx = m.getScaleX();
938cb93a386Sopenharmony_ci        SkScalar sy = m.getScaleY();
939cb93a386Sopenharmony_ci        if (count & 1) {
940cb93a386Sopenharmony_ci            dst->fX = src->fX * sx + tx;
941cb93a386Sopenharmony_ci            dst->fY = src->fY * sy + ty;
942cb93a386Sopenharmony_ci            src += 1;
943cb93a386Sopenharmony_ci            dst += 1;
944cb93a386Sopenharmony_ci        }
945cb93a386Sopenharmony_ci        Sk4s trans4(tx, ty, tx, ty);
946cb93a386Sopenharmony_ci        Sk4s scale4(sx, sy, sx, sy);
947cb93a386Sopenharmony_ci        count >>= 1;
948cb93a386Sopenharmony_ci        if (count & 1) {
949cb93a386Sopenharmony_ci            (Sk4s::Load(src) * scale4 + trans4).store(dst);
950cb93a386Sopenharmony_ci            src += 2;
951cb93a386Sopenharmony_ci            dst += 2;
952cb93a386Sopenharmony_ci        }
953cb93a386Sopenharmony_ci        count >>= 1;
954cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
955cb93a386Sopenharmony_ci            (Sk4s::Load(src+0) * scale4 + trans4).store(dst+0);
956cb93a386Sopenharmony_ci            (Sk4s::Load(src+2) * scale4 + trans4).store(dst+2);
957cb93a386Sopenharmony_ci            src += 4;
958cb93a386Sopenharmony_ci            dst += 4;
959cb93a386Sopenharmony_ci        }
960cb93a386Sopenharmony_ci    }
961cb93a386Sopenharmony_ci}
962cb93a386Sopenharmony_ci
963cb93a386Sopenharmony_civoid SkMatrix::Persp_pts(const SkMatrix& m, SkPoint dst[],
964cb93a386Sopenharmony_ci                         const SkPoint src[], int count) {
965cb93a386Sopenharmony_ci    SkASSERT(m.hasPerspective());
966cb93a386Sopenharmony_ci
967cb93a386Sopenharmony_ci    if (count > 0) {
968cb93a386Sopenharmony_ci        do {
969cb93a386Sopenharmony_ci            SkScalar sy = src->fY;
970cb93a386Sopenharmony_ci            SkScalar sx = src->fX;
971cb93a386Sopenharmony_ci            src += 1;
972cb93a386Sopenharmony_ci
973cb93a386Sopenharmony_ci            SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX];
974cb93a386Sopenharmony_ci            SkScalar y = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
975cb93a386Sopenharmony_ci#ifdef SK_LEGACY_MATRIX_MATH_ORDER
976cb93a386Sopenharmony_ci            SkScalar z = sx * m.fMat[kMPersp0] + (sy * m.fMat[kMPersp1] + m.fMat[kMPersp2]);
977cb93a386Sopenharmony_ci#else
978cb93a386Sopenharmony_ci            SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
979cb93a386Sopenharmony_ci#endif
980cb93a386Sopenharmony_ci            if (z) {
981cb93a386Sopenharmony_ci                z = 1 / z;
982cb93a386Sopenharmony_ci            }
983cb93a386Sopenharmony_ci
984cb93a386Sopenharmony_ci            dst->fY = y * z;
985cb93a386Sopenharmony_ci            dst->fX = x * z;
986cb93a386Sopenharmony_ci            dst += 1;
987cb93a386Sopenharmony_ci        } while (--count);
988cb93a386Sopenharmony_ci    }
989cb93a386Sopenharmony_ci}
990cb93a386Sopenharmony_ci
991cb93a386Sopenharmony_civoid SkMatrix::Affine_vpts(const SkMatrix& m, SkPoint dst[], const SkPoint src[], int count) {
992cb93a386Sopenharmony_ci    SkASSERT(m.getType() != SkMatrix::kPerspective_Mask);
993cb93a386Sopenharmony_ci    if (count > 0) {
994cb93a386Sopenharmony_ci        SkScalar tx = m.getTranslateX();
995cb93a386Sopenharmony_ci        SkScalar ty = m.getTranslateY();
996cb93a386Sopenharmony_ci        SkScalar sx = m.getScaleX();
997cb93a386Sopenharmony_ci        SkScalar sy = m.getScaleY();
998cb93a386Sopenharmony_ci        SkScalar kx = m.getSkewX();
999cb93a386Sopenharmony_ci        SkScalar ky = m.getSkewY();
1000cb93a386Sopenharmony_ci        if (count & 1) {
1001cb93a386Sopenharmony_ci            dst->set(src->fX * sx + src->fY * kx + tx,
1002cb93a386Sopenharmony_ci                     src->fX * ky + src->fY * sy + ty);
1003cb93a386Sopenharmony_ci            src += 1;
1004cb93a386Sopenharmony_ci            dst += 1;
1005cb93a386Sopenharmony_ci        }
1006cb93a386Sopenharmony_ci        Sk4s trans4(tx, ty, tx, ty);
1007cb93a386Sopenharmony_ci        Sk4s scale4(sx, sy, sx, sy);
1008cb93a386Sopenharmony_ci        Sk4s  skew4(kx, ky, kx, ky);    // applied to swizzle of src4
1009cb93a386Sopenharmony_ci        count >>= 1;
1010cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
1011cb93a386Sopenharmony_ci            Sk4s src4 = Sk4s::Load(src);
1012cb93a386Sopenharmony_ci            Sk4s swz4 = SkNx_shuffle<1,0,3,2>(src4);  // y0 x0, y1 x1
1013cb93a386Sopenharmony_ci            (src4 * scale4 + swz4 * skew4 + trans4).store(dst);
1014cb93a386Sopenharmony_ci            src += 2;
1015cb93a386Sopenharmony_ci            dst += 2;
1016cb93a386Sopenharmony_ci        }
1017cb93a386Sopenharmony_ci    }
1018cb93a386Sopenharmony_ci}
1019cb93a386Sopenharmony_ci
1020cb93a386Sopenharmony_ciconst SkMatrix::MapPtsProc SkMatrix::gMapPtsProcs[] = {
1021cb93a386Sopenharmony_ci    SkMatrix::Identity_pts, SkMatrix::Trans_pts,
1022cb93a386Sopenharmony_ci    SkMatrix::Scale_pts,    SkMatrix::Scale_pts,
1023cb93a386Sopenharmony_ci    SkMatrix::Affine_vpts,  SkMatrix::Affine_vpts,
1024cb93a386Sopenharmony_ci    SkMatrix::Affine_vpts,  SkMatrix::Affine_vpts,
1025cb93a386Sopenharmony_ci    // repeat the persp proc 8 times
1026cb93a386Sopenharmony_ci    SkMatrix::Persp_pts,    SkMatrix::Persp_pts,
1027cb93a386Sopenharmony_ci    SkMatrix::Persp_pts,    SkMatrix::Persp_pts,
1028cb93a386Sopenharmony_ci    SkMatrix::Persp_pts,    SkMatrix::Persp_pts,
1029cb93a386Sopenharmony_ci    SkMatrix::Persp_pts,    SkMatrix::Persp_pts
1030cb93a386Sopenharmony_ci};
1031cb93a386Sopenharmony_ci
1032cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1033cb93a386Sopenharmony_ci
1034cb93a386Sopenharmony_civoid SkMatrixPriv::MapHomogeneousPointsWithStride(const SkMatrix& mx, SkPoint3 dst[],
1035cb93a386Sopenharmony_ci                                                  size_t dstStride, const SkPoint3 src[],
1036cb93a386Sopenharmony_ci                                                  size_t srcStride, int count) {
1037cb93a386Sopenharmony_ci    SkASSERT((dst && src && count > 0) || 0 == count);
1038cb93a386Sopenharmony_ci    // no partial overlap
1039cb93a386Sopenharmony_ci    SkASSERT(src == dst || &dst[count] <= &src[0] || &src[count] <= &dst[0]);
1040cb93a386Sopenharmony_ci
1041cb93a386Sopenharmony_ci    if (count > 0) {
1042cb93a386Sopenharmony_ci        if (mx.isIdentity()) {
1043cb93a386Sopenharmony_ci            if (src != dst) {
1044cb93a386Sopenharmony_ci                if (srcStride == sizeof(SkPoint3) && dstStride == sizeof(SkPoint3)) {
1045cb93a386Sopenharmony_ci                    memcpy(dst, src, count * sizeof(SkPoint3));
1046cb93a386Sopenharmony_ci                } else {
1047cb93a386Sopenharmony_ci                    for (int i = 0; i < count; ++i) {
1048cb93a386Sopenharmony_ci                        *dst = *src;
1049cb93a386Sopenharmony_ci                        dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride);
1050cb93a386Sopenharmony_ci                        src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) +
1051cb93a386Sopenharmony_ci                                                                srcStride);
1052cb93a386Sopenharmony_ci                    }
1053cb93a386Sopenharmony_ci                }
1054cb93a386Sopenharmony_ci            }
1055cb93a386Sopenharmony_ci            return;
1056cb93a386Sopenharmony_ci        }
1057cb93a386Sopenharmony_ci        do {
1058cb93a386Sopenharmony_ci            SkScalar sx = src->fX;
1059cb93a386Sopenharmony_ci            SkScalar sy = src->fY;
1060cb93a386Sopenharmony_ci            SkScalar sw = src->fZ;
1061cb93a386Sopenharmony_ci            src = reinterpret_cast<const SkPoint3*>(reinterpret_cast<const char*>(src) + srcStride);
1062cb93a386Sopenharmony_ci            const SkScalar* mat = mx.fMat;
1063cb93a386Sopenharmony_ci            typedef SkMatrix M;
1064cb93a386Sopenharmony_ci            SkScalar x = sdot(sx, mat[M::kMScaleX], sy, mat[M::kMSkewX],  sw, mat[M::kMTransX]);
1065cb93a386Sopenharmony_ci            SkScalar y = sdot(sx, mat[M::kMSkewY],  sy, mat[M::kMScaleY], sw, mat[M::kMTransY]);
1066cb93a386Sopenharmony_ci            SkScalar w = sdot(sx, mat[M::kMPersp0], sy, mat[M::kMPersp1], sw, mat[M::kMPersp2]);
1067cb93a386Sopenharmony_ci
1068cb93a386Sopenharmony_ci            dst->set(x, y, w);
1069cb93a386Sopenharmony_ci            dst = reinterpret_cast<SkPoint3*>(reinterpret_cast<char*>(dst) + dstStride);
1070cb93a386Sopenharmony_ci        } while (--count);
1071cb93a386Sopenharmony_ci    }
1072cb93a386Sopenharmony_ci}
1073cb93a386Sopenharmony_ci
1074cb93a386Sopenharmony_civoid SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const {
1075cb93a386Sopenharmony_ci    SkMatrixPriv::MapHomogeneousPointsWithStride(*this, dst, sizeof(SkPoint3), src,
1076cb93a386Sopenharmony_ci                                                 sizeof(SkPoint3), count);
1077cb93a386Sopenharmony_ci}
1078cb93a386Sopenharmony_ci
1079cb93a386Sopenharmony_civoid SkMatrix::mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const {
1080cb93a386Sopenharmony_ci    if (this->isIdentity()) {
1081cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
1082cb93a386Sopenharmony_ci            dst[i] = { src[i].fX, src[i].fY, 1 };
1083cb93a386Sopenharmony_ci        }
1084cb93a386Sopenharmony_ci    } else if (this->hasPerspective()) {
1085cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
1086cb93a386Sopenharmony_ci            dst[i] = {
1087cb93a386Sopenharmony_ci                fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2],
1088cb93a386Sopenharmony_ci                fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5],
1089cb93a386Sopenharmony_ci                fMat[6] * src[i].fX + fMat[7] * src[i].fY + fMat[8],
1090cb93a386Sopenharmony_ci            };
1091cb93a386Sopenharmony_ci        }
1092cb93a386Sopenharmony_ci    } else {    // affine
1093cb93a386Sopenharmony_ci        for (int i = 0; i < count; ++i) {
1094cb93a386Sopenharmony_ci            dst[i] = {
1095cb93a386Sopenharmony_ci                fMat[0] * src[i].fX + fMat[1] * src[i].fY + fMat[2],
1096cb93a386Sopenharmony_ci                fMat[3] * src[i].fX + fMat[4] * src[i].fY + fMat[5],
1097cb93a386Sopenharmony_ci                1,
1098cb93a386Sopenharmony_ci            };
1099cb93a386Sopenharmony_ci        }
1100cb93a386Sopenharmony_ci    }
1101cb93a386Sopenharmony_ci}
1102cb93a386Sopenharmony_ci
1103cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1104cb93a386Sopenharmony_ci
1105cb93a386Sopenharmony_civoid SkMatrix::mapVectors(SkPoint dst[], const SkPoint src[], int count) const {
1106cb93a386Sopenharmony_ci    if (this->hasPerspective()) {
1107cb93a386Sopenharmony_ci        SkPoint origin;
1108cb93a386Sopenharmony_ci
1109cb93a386Sopenharmony_ci        MapXYProc proc = this->getMapXYProc();
1110cb93a386Sopenharmony_ci        proc(*this, 0, 0, &origin);
1111cb93a386Sopenharmony_ci
1112cb93a386Sopenharmony_ci        for (int i = count - 1; i >= 0; --i) {
1113cb93a386Sopenharmony_ci            SkPoint tmp;
1114cb93a386Sopenharmony_ci
1115cb93a386Sopenharmony_ci            proc(*this, src[i].fX, src[i].fY, &tmp);
1116cb93a386Sopenharmony_ci            dst[i].set(tmp.fX - origin.fX, tmp.fY - origin.fY);
1117cb93a386Sopenharmony_ci        }
1118cb93a386Sopenharmony_ci    } else {
1119cb93a386Sopenharmony_ci        SkMatrix tmp = *this;
1120cb93a386Sopenharmony_ci
1121cb93a386Sopenharmony_ci        tmp.fMat[kMTransX] = tmp.fMat[kMTransY] = 0;
1122cb93a386Sopenharmony_ci        tmp.clearTypeMask(kTranslate_Mask);
1123cb93a386Sopenharmony_ci        tmp.mapPoints(dst, src, count);
1124cb93a386Sopenharmony_ci    }
1125cb93a386Sopenharmony_ci}
1126cb93a386Sopenharmony_ci
1127cb93a386Sopenharmony_cistatic Sk4f sort_as_rect(const Sk4f& ltrb) {
1128cb93a386Sopenharmony_ci    Sk4f rblt(ltrb[2], ltrb[3], ltrb[0], ltrb[1]);
1129cb93a386Sopenharmony_ci    Sk4f min = Sk4f::Min(ltrb, rblt);
1130cb93a386Sopenharmony_ci    Sk4f max = Sk4f::Max(ltrb, rblt);
1131cb93a386Sopenharmony_ci    // We can extract either pair [0,1] or [2,3] from min and max and be correct, but on
1132cb93a386Sopenharmony_ci    // ARM this sequence generates the fastest (a single instruction).
1133cb93a386Sopenharmony_ci    return Sk4f(min[2], min[3], max[0], max[1]);
1134cb93a386Sopenharmony_ci}
1135cb93a386Sopenharmony_ci
1136cb93a386Sopenharmony_civoid SkMatrix::mapRectScaleTranslate(SkRect* dst, const SkRect& src) const {
1137cb93a386Sopenharmony_ci    SkASSERT(dst);
1138cb93a386Sopenharmony_ci    SkASSERT(this->isScaleTranslate());
1139cb93a386Sopenharmony_ci
1140cb93a386Sopenharmony_ci    SkScalar sx = fMat[kMScaleX];
1141cb93a386Sopenharmony_ci    SkScalar sy = fMat[kMScaleY];
1142cb93a386Sopenharmony_ci    SkScalar tx = fMat[kMTransX];
1143cb93a386Sopenharmony_ci    SkScalar ty = fMat[kMTransY];
1144cb93a386Sopenharmony_ci    Sk4f scale(sx, sy, sx, sy);
1145cb93a386Sopenharmony_ci    Sk4f trans(tx, ty, tx, ty);
1146cb93a386Sopenharmony_ci    sort_as_rect(Sk4f::Load(&src.fLeft) * scale + trans).store(&dst->fLeft);
1147cb93a386Sopenharmony_ci}
1148cb93a386Sopenharmony_ci
1149cb93a386Sopenharmony_cibool SkMatrix::mapRect(SkRect* dst, const SkRect& src, SkApplyPerspectiveClip pc) const {
1150cb93a386Sopenharmony_ci    SkASSERT(dst);
1151cb93a386Sopenharmony_ci
1152cb93a386Sopenharmony_ci    if (this->getType() <= kTranslate_Mask) {
1153cb93a386Sopenharmony_ci        SkScalar tx = fMat[kMTransX];
1154cb93a386Sopenharmony_ci        SkScalar ty = fMat[kMTransY];
1155cb93a386Sopenharmony_ci        Sk4f trans(tx, ty, tx, ty);
1156cb93a386Sopenharmony_ci        sort_as_rect(Sk4f::Load(&src.fLeft) + trans).store(&dst->fLeft);
1157cb93a386Sopenharmony_ci        return true;
1158cb93a386Sopenharmony_ci    }
1159cb93a386Sopenharmony_ci    if (this->isScaleTranslate()) {
1160cb93a386Sopenharmony_ci        this->mapRectScaleTranslate(dst, src);
1161cb93a386Sopenharmony_ci        return true;
1162cb93a386Sopenharmony_ci    } else if (pc == SkApplyPerspectiveClip::kYes && this->hasPerspective()) {
1163cb93a386Sopenharmony_ci        SkPath path;
1164cb93a386Sopenharmony_ci        path.addRect(src);
1165cb93a386Sopenharmony_ci        path.transform(*this);
1166cb93a386Sopenharmony_ci        *dst = path.getBounds();
1167cb93a386Sopenharmony_ci        return false;
1168cb93a386Sopenharmony_ci    } else {
1169cb93a386Sopenharmony_ci        SkPoint quad[4];
1170cb93a386Sopenharmony_ci
1171cb93a386Sopenharmony_ci        src.toQuad(quad);
1172cb93a386Sopenharmony_ci        this->mapPoints(quad, quad, 4);
1173cb93a386Sopenharmony_ci        dst->setBoundsNoCheck(quad, 4);
1174cb93a386Sopenharmony_ci        return this->rectStaysRect();   // might still return true if rotated by 90, etc.
1175cb93a386Sopenharmony_ci    }
1176cb93a386Sopenharmony_ci}
1177cb93a386Sopenharmony_ci
1178cb93a386Sopenharmony_ciSkScalar SkMatrix::mapRadius(SkScalar radius) const {
1179cb93a386Sopenharmony_ci    SkVector    vec[2];
1180cb93a386Sopenharmony_ci
1181cb93a386Sopenharmony_ci    vec[0].set(radius, 0);
1182cb93a386Sopenharmony_ci    vec[1].set(0, radius);
1183cb93a386Sopenharmony_ci    this->mapVectors(vec, 2);
1184cb93a386Sopenharmony_ci
1185cb93a386Sopenharmony_ci    SkScalar d0 = vec[0].length();
1186cb93a386Sopenharmony_ci    SkScalar d1 = vec[1].length();
1187cb93a386Sopenharmony_ci
1188cb93a386Sopenharmony_ci    // return geometric mean
1189cb93a386Sopenharmony_ci    return SkScalarSqrt(d0 * d1);
1190cb93a386Sopenharmony_ci}
1191cb93a386Sopenharmony_ci
1192cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1193cb93a386Sopenharmony_ci
1194cb93a386Sopenharmony_civoid SkMatrix::Persp_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1195cb93a386Sopenharmony_ci                        SkPoint* pt) {
1196cb93a386Sopenharmony_ci    SkASSERT(m.hasPerspective());
1197cb93a386Sopenharmony_ci
1198cb93a386Sopenharmony_ci    SkScalar x = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX];
1199cb93a386Sopenharmony_ci    SkScalar y = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
1200cb93a386Sopenharmony_ci    SkScalar z = sdot(sx, m.fMat[kMPersp0], sy, m.fMat[kMPersp1]) + m.fMat[kMPersp2];
1201cb93a386Sopenharmony_ci    if (z) {
1202cb93a386Sopenharmony_ci        z = 1 / z;
1203cb93a386Sopenharmony_ci    }
1204cb93a386Sopenharmony_ci    pt->fX = x * z;
1205cb93a386Sopenharmony_ci    pt->fY = y * z;
1206cb93a386Sopenharmony_ci}
1207cb93a386Sopenharmony_ci
1208cb93a386Sopenharmony_civoid SkMatrix::RotTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1209cb93a386Sopenharmony_ci                           SkPoint* pt) {
1210cb93a386Sopenharmony_ci    SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask)) == kAffine_Mask);
1211cb93a386Sopenharmony_ci
1212cb93a386Sopenharmony_ci#ifdef SK_LEGACY_MATRIX_MATH_ORDER
1213cb93a386Sopenharmony_ci    pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX]  +  m.fMat[kMTransX]);
1214cb93a386Sopenharmony_ci    pt->fY = sx * m.fMat[kMSkewY]  + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]);
1215cb93a386Sopenharmony_ci#else
1216cb93a386Sopenharmony_ci    pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX];
1217cb93a386Sopenharmony_ci    pt->fY = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
1218cb93a386Sopenharmony_ci#endif
1219cb93a386Sopenharmony_ci}
1220cb93a386Sopenharmony_ci
1221cb93a386Sopenharmony_civoid SkMatrix::Rot_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1222cb93a386Sopenharmony_ci                      SkPoint* pt) {
1223cb93a386Sopenharmony_ci    SkASSERT((m.getType() & (kAffine_Mask | kPerspective_Mask))== kAffine_Mask);
1224cb93a386Sopenharmony_ci    SkASSERT(0 == m.fMat[kMTransX]);
1225cb93a386Sopenharmony_ci    SkASSERT(0 == m.fMat[kMTransY]);
1226cb93a386Sopenharmony_ci
1227cb93a386Sopenharmony_ci#ifdef SK_LEGACY_MATRIX_MATH_ORDER
1228cb93a386Sopenharmony_ci    pt->fX = sx * m.fMat[kMScaleX] + (sy * m.fMat[kMSkewX]  + m.fMat[kMTransX]);
1229cb93a386Sopenharmony_ci    pt->fY = sx * m.fMat[kMSkewY]  + (sy * m.fMat[kMScaleY] + m.fMat[kMTransY]);
1230cb93a386Sopenharmony_ci#else
1231cb93a386Sopenharmony_ci    pt->fX = sdot(sx, m.fMat[kMScaleX], sy, m.fMat[kMSkewX])  + m.fMat[kMTransX];
1232cb93a386Sopenharmony_ci    pt->fY = sdot(sx, m.fMat[kMSkewY],  sy, m.fMat[kMScaleY]) + m.fMat[kMTransY];
1233cb93a386Sopenharmony_ci#endif
1234cb93a386Sopenharmony_ci}
1235cb93a386Sopenharmony_ci
1236cb93a386Sopenharmony_civoid SkMatrix::ScaleTrans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1237cb93a386Sopenharmony_ci                             SkPoint* pt) {
1238cb93a386Sopenharmony_ci    SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
1239cb93a386Sopenharmony_ci             == kScale_Mask);
1240cb93a386Sopenharmony_ci
1241cb93a386Sopenharmony_ci    pt->fX = sx * m.fMat[kMScaleX] + m.fMat[kMTransX];
1242cb93a386Sopenharmony_ci    pt->fY = sy * m.fMat[kMScaleY] + m.fMat[kMTransY];
1243cb93a386Sopenharmony_ci}
1244cb93a386Sopenharmony_ci
1245cb93a386Sopenharmony_civoid SkMatrix::Scale_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1246cb93a386Sopenharmony_ci                        SkPoint* pt) {
1247cb93a386Sopenharmony_ci    SkASSERT((m.getType() & (kScale_Mask | kAffine_Mask | kPerspective_Mask))
1248cb93a386Sopenharmony_ci             == kScale_Mask);
1249cb93a386Sopenharmony_ci    SkASSERT(0 == m.fMat[kMTransX]);
1250cb93a386Sopenharmony_ci    SkASSERT(0 == m.fMat[kMTransY]);
1251cb93a386Sopenharmony_ci
1252cb93a386Sopenharmony_ci    pt->fX = sx * m.fMat[kMScaleX];
1253cb93a386Sopenharmony_ci    pt->fY = sy * m.fMat[kMScaleY];
1254cb93a386Sopenharmony_ci}
1255cb93a386Sopenharmony_ci
1256cb93a386Sopenharmony_civoid SkMatrix::Trans_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1257cb93a386Sopenharmony_ci                        SkPoint* pt) {
1258cb93a386Sopenharmony_ci    SkASSERT(m.getType() == kTranslate_Mask);
1259cb93a386Sopenharmony_ci
1260cb93a386Sopenharmony_ci    pt->fX = sx + m.fMat[kMTransX];
1261cb93a386Sopenharmony_ci    pt->fY = sy + m.fMat[kMTransY];
1262cb93a386Sopenharmony_ci}
1263cb93a386Sopenharmony_ci
1264cb93a386Sopenharmony_civoid SkMatrix::Identity_xy(const SkMatrix& m, SkScalar sx, SkScalar sy,
1265cb93a386Sopenharmony_ci                           SkPoint* pt) {
1266cb93a386Sopenharmony_ci    SkASSERT(0 == m.getType());
1267cb93a386Sopenharmony_ci
1268cb93a386Sopenharmony_ci    pt->fX = sx;
1269cb93a386Sopenharmony_ci    pt->fY = sy;
1270cb93a386Sopenharmony_ci}
1271cb93a386Sopenharmony_ci
1272cb93a386Sopenharmony_ciconst SkMatrix::MapXYProc SkMatrix::gMapXYProcs[] = {
1273cb93a386Sopenharmony_ci    SkMatrix::Identity_xy, SkMatrix::Trans_xy,
1274cb93a386Sopenharmony_ci    SkMatrix::Scale_xy,    SkMatrix::ScaleTrans_xy,
1275cb93a386Sopenharmony_ci    SkMatrix::Rot_xy,      SkMatrix::RotTrans_xy,
1276cb93a386Sopenharmony_ci    SkMatrix::Rot_xy,      SkMatrix::RotTrans_xy,
1277cb93a386Sopenharmony_ci    // repeat the persp proc 8 times
1278cb93a386Sopenharmony_ci    SkMatrix::Persp_xy,    SkMatrix::Persp_xy,
1279cb93a386Sopenharmony_ci    SkMatrix::Persp_xy,    SkMatrix::Persp_xy,
1280cb93a386Sopenharmony_ci    SkMatrix::Persp_xy,    SkMatrix::Persp_xy,
1281cb93a386Sopenharmony_ci    SkMatrix::Persp_xy,    SkMatrix::Persp_xy
1282cb93a386Sopenharmony_ci};
1283cb93a386Sopenharmony_ci
1284cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1285cb93a386Sopenharmony_ci#if 0
1286cb93a386Sopenharmony_ci// if its nearly zero (just made up 26, perhaps it should be bigger or smaller)
1287cb93a386Sopenharmony_ci#define PerspNearlyZero(x)  SkScalarNearlyZero(x, (1.0f / (1 << 26)))
1288cb93a386Sopenharmony_ci
1289cb93a386Sopenharmony_cibool SkMatrix::isFixedStepInX() const {
1290cb93a386Sopenharmony_ci  return PerspNearlyZero(fMat[kMPersp0]);
1291cb93a386Sopenharmony_ci}
1292cb93a386Sopenharmony_ci
1293cb93a386Sopenharmony_ciSkVector SkMatrix::fixedStepInX(SkScalar y) const {
1294cb93a386Sopenharmony_ci    SkASSERT(PerspNearlyZero(fMat[kMPersp0]));
1295cb93a386Sopenharmony_ci    if (PerspNearlyZero(fMat[kMPersp1]) &&
1296cb93a386Sopenharmony_ci        PerspNearlyZero(fMat[kMPersp2] - 1)) {
1297cb93a386Sopenharmony_ci        return SkVector::Make(fMat[kMScaleX], fMat[kMSkewY]);
1298cb93a386Sopenharmony_ci    } else {
1299cb93a386Sopenharmony_ci        SkScalar z = y * fMat[kMPersp1] + fMat[kMPersp2];
1300cb93a386Sopenharmony_ci        return SkVector::Make(fMat[kMScaleX] / z, fMat[kMSkewY] / z);
1301cb93a386Sopenharmony_ci    }
1302cb93a386Sopenharmony_ci}
1303cb93a386Sopenharmony_ci#endif
1304cb93a386Sopenharmony_ci
1305cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1306cb93a386Sopenharmony_ci
1307cb93a386Sopenharmony_cistatic inline bool checkForZero(float x) {
1308cb93a386Sopenharmony_ci    return x*x == 0;
1309cb93a386Sopenharmony_ci}
1310cb93a386Sopenharmony_ci
1311cb93a386Sopenharmony_cibool SkMatrix::Poly2Proc(const SkPoint srcPt[], SkMatrix* dst) {
1312cb93a386Sopenharmony_ci    dst->fMat[kMScaleX] = srcPt[1].fY - srcPt[0].fY;
1313cb93a386Sopenharmony_ci    dst->fMat[kMSkewY]  = srcPt[0].fX - srcPt[1].fX;
1314cb93a386Sopenharmony_ci    dst->fMat[kMPersp0] = 0;
1315cb93a386Sopenharmony_ci
1316cb93a386Sopenharmony_ci    dst->fMat[kMSkewX]  = srcPt[1].fX - srcPt[0].fX;
1317cb93a386Sopenharmony_ci    dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY;
1318cb93a386Sopenharmony_ci    dst->fMat[kMPersp1] = 0;
1319cb93a386Sopenharmony_ci
1320cb93a386Sopenharmony_ci    dst->fMat[kMTransX] = srcPt[0].fX;
1321cb93a386Sopenharmony_ci    dst->fMat[kMTransY] = srcPt[0].fY;
1322cb93a386Sopenharmony_ci    dst->fMat[kMPersp2] = 1;
1323cb93a386Sopenharmony_ci    dst->setTypeMask(kUnknown_Mask);
1324cb93a386Sopenharmony_ci    return true;
1325cb93a386Sopenharmony_ci}
1326cb93a386Sopenharmony_ci
1327cb93a386Sopenharmony_cibool SkMatrix::Poly3Proc(const SkPoint srcPt[], SkMatrix* dst) {
1328cb93a386Sopenharmony_ci    dst->fMat[kMScaleX] = srcPt[2].fX - srcPt[0].fX;
1329cb93a386Sopenharmony_ci    dst->fMat[kMSkewY]  = srcPt[2].fY - srcPt[0].fY;
1330cb93a386Sopenharmony_ci    dst->fMat[kMPersp0] = 0;
1331cb93a386Sopenharmony_ci
1332cb93a386Sopenharmony_ci    dst->fMat[kMSkewX]  = srcPt[1].fX - srcPt[0].fX;
1333cb93a386Sopenharmony_ci    dst->fMat[kMScaleY] = srcPt[1].fY - srcPt[0].fY;
1334cb93a386Sopenharmony_ci    dst->fMat[kMPersp1] = 0;
1335cb93a386Sopenharmony_ci
1336cb93a386Sopenharmony_ci    dst->fMat[kMTransX] = srcPt[0].fX;
1337cb93a386Sopenharmony_ci    dst->fMat[kMTransY] = srcPt[0].fY;
1338cb93a386Sopenharmony_ci    dst->fMat[kMPersp2] = 1;
1339cb93a386Sopenharmony_ci    dst->setTypeMask(kUnknown_Mask);
1340cb93a386Sopenharmony_ci    return true;
1341cb93a386Sopenharmony_ci}
1342cb93a386Sopenharmony_ci
1343cb93a386Sopenharmony_cibool SkMatrix::Poly4Proc(const SkPoint srcPt[], SkMatrix* dst) {
1344cb93a386Sopenharmony_ci    float   a1, a2;
1345cb93a386Sopenharmony_ci    float   x0, y0, x1, y1, x2, y2;
1346cb93a386Sopenharmony_ci
1347cb93a386Sopenharmony_ci    x0 = srcPt[2].fX - srcPt[0].fX;
1348cb93a386Sopenharmony_ci    y0 = srcPt[2].fY - srcPt[0].fY;
1349cb93a386Sopenharmony_ci    x1 = srcPt[2].fX - srcPt[1].fX;
1350cb93a386Sopenharmony_ci    y1 = srcPt[2].fY - srcPt[1].fY;
1351cb93a386Sopenharmony_ci    x2 = srcPt[2].fX - srcPt[3].fX;
1352cb93a386Sopenharmony_ci    y2 = srcPt[2].fY - srcPt[3].fY;
1353cb93a386Sopenharmony_ci
1354cb93a386Sopenharmony_ci    /* check if abs(x2) > abs(y2) */
1355cb93a386Sopenharmony_ci    if ( x2 > 0 ? y2 > 0 ? x2 > y2 : x2 > -y2 : y2 > 0 ? -x2 > y2 : x2 < y2) {
1356cb93a386Sopenharmony_ci        float denom = sk_ieee_float_divide(x1 * y2, x2) - y1;
1357cb93a386Sopenharmony_ci        if (checkForZero(denom)) {
1358cb93a386Sopenharmony_ci            return false;
1359cb93a386Sopenharmony_ci        }
1360cb93a386Sopenharmony_ci        a1 = (((x0 - x1) * y2 / x2) - y0 + y1) / denom;
1361cb93a386Sopenharmony_ci    } else {
1362cb93a386Sopenharmony_ci        float denom = x1 - sk_ieee_float_divide(y1 * x2, y2);
1363cb93a386Sopenharmony_ci        if (checkForZero(denom)) {
1364cb93a386Sopenharmony_ci            return false;
1365cb93a386Sopenharmony_ci        }
1366cb93a386Sopenharmony_ci        a1 = (x0 - x1 - sk_ieee_float_divide((y0 - y1) * x2, y2)) / denom;
1367cb93a386Sopenharmony_ci    }
1368cb93a386Sopenharmony_ci
1369cb93a386Sopenharmony_ci    /* check if abs(x1) > abs(y1) */
1370cb93a386Sopenharmony_ci    if ( x1 > 0 ? y1 > 0 ? x1 > y1 : x1 > -y1 : y1 > 0 ? -x1 > y1 : x1 < y1) {
1371cb93a386Sopenharmony_ci        float denom = y2 - sk_ieee_float_divide(x2 * y1, x1);
1372cb93a386Sopenharmony_ci        if (checkForZero(denom)) {
1373cb93a386Sopenharmony_ci            return false;
1374cb93a386Sopenharmony_ci        }
1375cb93a386Sopenharmony_ci        a2 = (y0 - y2 - sk_ieee_float_divide((x0 - x2) * y1, x1)) / denom;
1376cb93a386Sopenharmony_ci    } else {
1377cb93a386Sopenharmony_ci        float denom = sk_ieee_float_divide(y2 * x1, y1) - x2;
1378cb93a386Sopenharmony_ci        if (checkForZero(denom)) {
1379cb93a386Sopenharmony_ci            return false;
1380cb93a386Sopenharmony_ci        }
1381cb93a386Sopenharmony_ci        a2 = (sk_ieee_float_divide((y0 - y2) * x1, y1) - x0 + x2) / denom;
1382cb93a386Sopenharmony_ci    }
1383cb93a386Sopenharmony_ci
1384cb93a386Sopenharmony_ci    dst->fMat[kMScaleX] = a2 * srcPt[3].fX + srcPt[3].fX - srcPt[0].fX;
1385cb93a386Sopenharmony_ci    dst->fMat[kMSkewY]  = a2 * srcPt[3].fY + srcPt[3].fY - srcPt[0].fY;
1386cb93a386Sopenharmony_ci    dst->fMat[kMPersp0] = a2;
1387cb93a386Sopenharmony_ci
1388cb93a386Sopenharmony_ci    dst->fMat[kMSkewX]  = a1 * srcPt[1].fX + srcPt[1].fX - srcPt[0].fX;
1389cb93a386Sopenharmony_ci    dst->fMat[kMScaleY] = a1 * srcPt[1].fY + srcPt[1].fY - srcPt[0].fY;
1390cb93a386Sopenharmony_ci    dst->fMat[kMPersp1] = a1;
1391cb93a386Sopenharmony_ci
1392cb93a386Sopenharmony_ci    dst->fMat[kMTransX] = srcPt[0].fX;
1393cb93a386Sopenharmony_ci    dst->fMat[kMTransY] = srcPt[0].fY;
1394cb93a386Sopenharmony_ci    dst->fMat[kMPersp2] = 1;
1395cb93a386Sopenharmony_ci    dst->setTypeMask(kUnknown_Mask);
1396cb93a386Sopenharmony_ci    return true;
1397cb93a386Sopenharmony_ci}
1398cb93a386Sopenharmony_ci
1399cb93a386Sopenharmony_citypedef bool (*PolyMapProc)(const SkPoint[], SkMatrix*);
1400cb93a386Sopenharmony_ci
1401cb93a386Sopenharmony_ci/*  Adapted from Rob Johnson's original sample code in QuickDraw GX
1402cb93a386Sopenharmony_ci*/
1403cb93a386Sopenharmony_cibool SkMatrix::setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count) {
1404cb93a386Sopenharmony_ci    if ((unsigned)count > 4) {
1405cb93a386Sopenharmony_ci        SkDebugf("--- SkMatrix::setPolyToPoly count out of range %d\n", count);
1406cb93a386Sopenharmony_ci        return false;
1407cb93a386Sopenharmony_ci    }
1408cb93a386Sopenharmony_ci
1409cb93a386Sopenharmony_ci    if (0 == count) {
1410cb93a386Sopenharmony_ci        this->reset();
1411cb93a386Sopenharmony_ci        return true;
1412cb93a386Sopenharmony_ci    }
1413cb93a386Sopenharmony_ci    if (1 == count) {
1414cb93a386Sopenharmony_ci        this->setTranslate(dst[0].fX - src[0].fX, dst[0].fY - src[0].fY);
1415cb93a386Sopenharmony_ci        return true;
1416cb93a386Sopenharmony_ci    }
1417cb93a386Sopenharmony_ci
1418cb93a386Sopenharmony_ci    const PolyMapProc gPolyMapProcs[] = {
1419cb93a386Sopenharmony_ci        SkMatrix::Poly2Proc, SkMatrix::Poly3Proc, SkMatrix::Poly4Proc
1420cb93a386Sopenharmony_ci    };
1421cb93a386Sopenharmony_ci    PolyMapProc proc = gPolyMapProcs[count - 2];
1422cb93a386Sopenharmony_ci
1423cb93a386Sopenharmony_ci    SkMatrix tempMap, result;
1424cb93a386Sopenharmony_ci
1425cb93a386Sopenharmony_ci    if (!proc(src, &tempMap)) {
1426cb93a386Sopenharmony_ci        return false;
1427cb93a386Sopenharmony_ci    }
1428cb93a386Sopenharmony_ci    if (!tempMap.invert(&result)) {
1429cb93a386Sopenharmony_ci        return false;
1430cb93a386Sopenharmony_ci    }
1431cb93a386Sopenharmony_ci    if (!proc(dst, &tempMap)) {
1432cb93a386Sopenharmony_ci        return false;
1433cb93a386Sopenharmony_ci    }
1434cb93a386Sopenharmony_ci    this->setConcat(tempMap, result);
1435cb93a386Sopenharmony_ci    return true;
1436cb93a386Sopenharmony_ci}
1437cb93a386Sopenharmony_ci
1438cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1439cb93a386Sopenharmony_ci
1440cb93a386Sopenharmony_cienum MinMaxOrBoth {
1441cb93a386Sopenharmony_ci    kMin_MinMaxOrBoth,
1442cb93a386Sopenharmony_ci    kMax_MinMaxOrBoth,
1443cb93a386Sopenharmony_ci    kBoth_MinMaxOrBoth
1444cb93a386Sopenharmony_ci};
1445cb93a386Sopenharmony_ci
1446cb93a386Sopenharmony_citemplate <MinMaxOrBoth MIN_MAX_OR_BOTH> bool get_scale_factor(SkMatrix::TypeMask typeMask,
1447cb93a386Sopenharmony_ci                                                              const SkScalar m[9],
1448cb93a386Sopenharmony_ci                                                              SkScalar results[/*1 or 2*/]) {
1449cb93a386Sopenharmony_ci    if (typeMask & SkMatrix::kPerspective_Mask) {
1450cb93a386Sopenharmony_ci        return false;
1451cb93a386Sopenharmony_ci    }
1452cb93a386Sopenharmony_ci    if (SkMatrix::kIdentity_Mask == typeMask) {
1453cb93a386Sopenharmony_ci        results[0] = SK_Scalar1;
1454cb93a386Sopenharmony_ci        if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1455cb93a386Sopenharmony_ci            results[1] = SK_Scalar1;
1456cb93a386Sopenharmony_ci        }
1457cb93a386Sopenharmony_ci        return true;
1458cb93a386Sopenharmony_ci    }
1459cb93a386Sopenharmony_ci    if (!(typeMask & SkMatrix::kAffine_Mask)) {
1460cb93a386Sopenharmony_ci        if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1461cb93a386Sopenharmony_ci             results[0] = std::min(SkScalarAbs(m[SkMatrix::kMScaleX]),
1462cb93a386Sopenharmony_ci                                   SkScalarAbs(m[SkMatrix::kMScaleY]));
1463cb93a386Sopenharmony_ci        } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1464cb93a386Sopenharmony_ci             results[0] = std::max(SkScalarAbs(m[SkMatrix::kMScaleX]),
1465cb93a386Sopenharmony_ci                                   SkScalarAbs(m[SkMatrix::kMScaleY]));
1466cb93a386Sopenharmony_ci        } else {
1467cb93a386Sopenharmony_ci            results[0] = SkScalarAbs(m[SkMatrix::kMScaleX]);
1468cb93a386Sopenharmony_ci            results[1] = SkScalarAbs(m[SkMatrix::kMScaleY]);
1469cb93a386Sopenharmony_ci             if (results[0] > results[1]) {
1470cb93a386Sopenharmony_ci                 using std::swap;
1471cb93a386Sopenharmony_ci                 swap(results[0], results[1]);
1472cb93a386Sopenharmony_ci             }
1473cb93a386Sopenharmony_ci        }
1474cb93a386Sopenharmony_ci        return true;
1475cb93a386Sopenharmony_ci    }
1476cb93a386Sopenharmony_ci    // ignore the translation part of the matrix, just look at 2x2 portion.
1477cb93a386Sopenharmony_ci    // compute singular values, take largest or smallest abs value.
1478cb93a386Sopenharmony_ci    // [a b; b c] = A^T*A
1479cb93a386Sopenharmony_ci    SkScalar a = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMScaleX],
1480cb93a386Sopenharmony_ci                      m[SkMatrix::kMSkewY],  m[SkMatrix::kMSkewY]);
1481cb93a386Sopenharmony_ci    SkScalar b = sdot(m[SkMatrix::kMScaleX], m[SkMatrix::kMSkewX],
1482cb93a386Sopenharmony_ci                      m[SkMatrix::kMScaleY], m[SkMatrix::kMSkewY]);
1483cb93a386Sopenharmony_ci    SkScalar c = sdot(m[SkMatrix::kMSkewX],  m[SkMatrix::kMSkewX],
1484cb93a386Sopenharmony_ci                      m[SkMatrix::kMScaleY], m[SkMatrix::kMScaleY]);
1485cb93a386Sopenharmony_ci    // eigenvalues of A^T*A are the squared singular values of A.
1486cb93a386Sopenharmony_ci    // characteristic equation is det((A^T*A) - l*I) = 0
1487cb93a386Sopenharmony_ci    // l^2 - (a + c)l + (ac-b^2)
1488cb93a386Sopenharmony_ci    // solve using quadratic equation (divisor is non-zero since l^2 has 1 coeff
1489cb93a386Sopenharmony_ci    // and roots are guaranteed to be pos and real).
1490cb93a386Sopenharmony_ci    SkScalar bSqd = b * b;
1491cb93a386Sopenharmony_ci    // if upper left 2x2 is orthogonal save some math
1492cb93a386Sopenharmony_ci    if (bSqd <= SK_ScalarNearlyZero*SK_ScalarNearlyZero) {
1493cb93a386Sopenharmony_ci        if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1494cb93a386Sopenharmony_ci            results[0] = std::min(a, c);
1495cb93a386Sopenharmony_ci        } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1496cb93a386Sopenharmony_ci            results[0] = std::max(a, c);
1497cb93a386Sopenharmony_ci        } else {
1498cb93a386Sopenharmony_ci            results[0] = a;
1499cb93a386Sopenharmony_ci            results[1] = c;
1500cb93a386Sopenharmony_ci            if (results[0] > results[1]) {
1501cb93a386Sopenharmony_ci                using std::swap;
1502cb93a386Sopenharmony_ci                swap(results[0], results[1]);
1503cb93a386Sopenharmony_ci            }
1504cb93a386Sopenharmony_ci        }
1505cb93a386Sopenharmony_ci    } else {
1506cb93a386Sopenharmony_ci        SkScalar aminusc = a - c;
1507cb93a386Sopenharmony_ci        SkScalar apluscdiv2 = SkScalarHalf(a + c);
1508cb93a386Sopenharmony_ci        SkScalar x = SkScalarHalf(SkScalarSqrt(aminusc * aminusc + 4 * bSqd));
1509cb93a386Sopenharmony_ci        if (kMin_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1510cb93a386Sopenharmony_ci            results[0] = apluscdiv2 - x;
1511cb93a386Sopenharmony_ci        } else if (kMax_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1512cb93a386Sopenharmony_ci            results[0] = apluscdiv2 + x;
1513cb93a386Sopenharmony_ci        } else {
1514cb93a386Sopenharmony_ci            results[0] = apluscdiv2 - x;
1515cb93a386Sopenharmony_ci            results[1] = apluscdiv2 + x;
1516cb93a386Sopenharmony_ci        }
1517cb93a386Sopenharmony_ci    }
1518cb93a386Sopenharmony_ci    if (!SkScalarIsFinite(results[0])) {
1519cb93a386Sopenharmony_ci        return false;
1520cb93a386Sopenharmony_ci    }
1521cb93a386Sopenharmony_ci    // Due to the floating point inaccuracy, there might be an error in a, b, c
1522cb93a386Sopenharmony_ci    // calculated by sdot, further deepened by subsequent arithmetic operations
1523cb93a386Sopenharmony_ci    // on them. Therefore, we allow and cap the nearly-zero negative values.
1524cb93a386Sopenharmony_ci    if (results[0] < 0) {
1525cb93a386Sopenharmony_ci        results[0] = 0;
1526cb93a386Sopenharmony_ci    }
1527cb93a386Sopenharmony_ci    results[0] = SkScalarSqrt(results[0]);
1528cb93a386Sopenharmony_ci    if (kBoth_MinMaxOrBoth == MIN_MAX_OR_BOTH) {
1529cb93a386Sopenharmony_ci        if (!SkScalarIsFinite(results[1])) {
1530cb93a386Sopenharmony_ci            return false;
1531cb93a386Sopenharmony_ci        }
1532cb93a386Sopenharmony_ci        if (results[1] < 0) {
1533cb93a386Sopenharmony_ci            results[1] = 0;
1534cb93a386Sopenharmony_ci        }
1535cb93a386Sopenharmony_ci        results[1] = SkScalarSqrt(results[1]);
1536cb93a386Sopenharmony_ci    }
1537cb93a386Sopenharmony_ci    return true;
1538cb93a386Sopenharmony_ci}
1539cb93a386Sopenharmony_ci
1540cb93a386Sopenharmony_ciSkScalar SkMatrix::getMinScale() const {
1541cb93a386Sopenharmony_ci    SkScalar factor;
1542cb93a386Sopenharmony_ci    if (get_scale_factor<kMin_MinMaxOrBoth>(this->getType(), fMat, &factor)) {
1543cb93a386Sopenharmony_ci        return factor;
1544cb93a386Sopenharmony_ci    } else {
1545cb93a386Sopenharmony_ci        return -1;
1546cb93a386Sopenharmony_ci    }
1547cb93a386Sopenharmony_ci}
1548cb93a386Sopenharmony_ci
1549cb93a386Sopenharmony_ciSkScalar SkMatrix::getMaxScale() const {
1550cb93a386Sopenharmony_ci    SkScalar factor;
1551cb93a386Sopenharmony_ci    if (get_scale_factor<kMax_MinMaxOrBoth>(this->getType(), fMat, &factor)) {
1552cb93a386Sopenharmony_ci        return factor;
1553cb93a386Sopenharmony_ci    } else {
1554cb93a386Sopenharmony_ci        return -1;
1555cb93a386Sopenharmony_ci    }
1556cb93a386Sopenharmony_ci}
1557cb93a386Sopenharmony_ci
1558cb93a386Sopenharmony_cibool SkMatrix::getMinMaxScales(SkScalar scaleFactors[2]) const {
1559cb93a386Sopenharmony_ci    return get_scale_factor<kBoth_MinMaxOrBoth>(this->getType(), fMat, scaleFactors);
1560cb93a386Sopenharmony_ci}
1561cb93a386Sopenharmony_ci
1562cb93a386Sopenharmony_ciconst SkMatrix& SkMatrix::I() {
1563cb93a386Sopenharmony_ci    static constexpr SkMatrix identity;
1564cb93a386Sopenharmony_ci    SkASSERT(identity.isIdentity());
1565cb93a386Sopenharmony_ci    return identity;
1566cb93a386Sopenharmony_ci}
1567cb93a386Sopenharmony_ci
1568cb93a386Sopenharmony_ciconst SkMatrix& SkMatrix::InvalidMatrix() {
1569cb93a386Sopenharmony_ci    static constexpr SkMatrix invalid(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax,
1570cb93a386Sopenharmony_ci                                      SK_ScalarMax, SK_ScalarMax, SK_ScalarMax,
1571cb93a386Sopenharmony_ci                                      SK_ScalarMax, SK_ScalarMax, SK_ScalarMax,
1572cb93a386Sopenharmony_ci                                      kTranslate_Mask | kScale_Mask |
1573cb93a386Sopenharmony_ci                                      kAffine_Mask | kPerspective_Mask);
1574cb93a386Sopenharmony_ci    return invalid;
1575cb93a386Sopenharmony_ci}
1576cb93a386Sopenharmony_ci
1577cb93a386Sopenharmony_cibool SkMatrix::decomposeScale(SkSize* scale, SkMatrix* remaining) const {
1578cb93a386Sopenharmony_ci    if (this->hasPerspective()) {
1579cb93a386Sopenharmony_ci        return false;
1580cb93a386Sopenharmony_ci    }
1581cb93a386Sopenharmony_ci
1582cb93a386Sopenharmony_ci    const SkScalar sx = SkVector::Length(this->getScaleX(), this->getSkewY());
1583cb93a386Sopenharmony_ci    const SkScalar sy = SkVector::Length(this->getSkewX(), this->getScaleY());
1584cb93a386Sopenharmony_ci    if (!SkScalarIsFinite(sx) || !SkScalarIsFinite(sy) ||
1585cb93a386Sopenharmony_ci        SkScalarNearlyZero(sx) || SkScalarNearlyZero(sy)) {
1586cb93a386Sopenharmony_ci        return false;
1587cb93a386Sopenharmony_ci    }
1588cb93a386Sopenharmony_ci
1589cb93a386Sopenharmony_ci    if (scale) {
1590cb93a386Sopenharmony_ci        scale->set(sx, sy);
1591cb93a386Sopenharmony_ci    }
1592cb93a386Sopenharmony_ci    if (remaining) {
1593cb93a386Sopenharmony_ci        *remaining = *this;
1594cb93a386Sopenharmony_ci        remaining->preScale(SkScalarInvert(sx), SkScalarInvert(sy));
1595cb93a386Sopenharmony_ci    }
1596cb93a386Sopenharmony_ci    return true;
1597cb93a386Sopenharmony_ci}
1598cb93a386Sopenharmony_ci
1599cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1600cb93a386Sopenharmony_ci
1601cb93a386Sopenharmony_cisize_t SkMatrix::writeToMemory(void* buffer) const {
1602cb93a386Sopenharmony_ci    // TODO write less for simple matrices
1603cb93a386Sopenharmony_ci    static const size_t sizeInMemory = 9 * sizeof(SkScalar);
1604cb93a386Sopenharmony_ci    if (buffer) {
1605cb93a386Sopenharmony_ci        memcpy(buffer, fMat, sizeInMemory);
1606cb93a386Sopenharmony_ci    }
1607cb93a386Sopenharmony_ci    return sizeInMemory;
1608cb93a386Sopenharmony_ci}
1609cb93a386Sopenharmony_ci
1610cb93a386Sopenharmony_cisize_t SkMatrix::readFromMemory(const void* buffer, size_t length) {
1611cb93a386Sopenharmony_ci    static const size_t sizeInMemory = 9 * sizeof(SkScalar);
1612cb93a386Sopenharmony_ci    if (length < sizeInMemory) {
1613cb93a386Sopenharmony_ci        return 0;
1614cb93a386Sopenharmony_ci    }
1615cb93a386Sopenharmony_ci    memcpy(fMat, buffer, sizeInMemory);
1616cb93a386Sopenharmony_ci    this->setTypeMask(kUnknown_Mask);
1617cb93a386Sopenharmony_ci    // Figure out the type now so that we're thread-safe
1618cb93a386Sopenharmony_ci    (void)this->getType();
1619cb93a386Sopenharmony_ci    return sizeInMemory;
1620cb93a386Sopenharmony_ci}
1621cb93a386Sopenharmony_ci
1622cb93a386Sopenharmony_civoid SkMatrix::dump() const {
1623cb93a386Sopenharmony_ci    SkString str;
1624cb93a386Sopenharmony_ci    str.appendf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]",
1625cb93a386Sopenharmony_ci             fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5],
1626cb93a386Sopenharmony_ci             fMat[6], fMat[7], fMat[8]);
1627cb93a386Sopenharmony_ci    SkDebugf("%s\n", str.c_str());
1628cb93a386Sopenharmony_ci}
1629cb93a386Sopenharmony_ci
1630cb93a386Sopenharmony_civoid SkMatrix::dump(std::string& desc, int depth) const {
1631cb93a386Sopenharmony_ci    SkString str;
1632cb93a386Sopenharmony_ci    str.appendf("[%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f][%8.4f %8.4f %8.4f]",
1633cb93a386Sopenharmony_ci        fMat[0], fMat[1], fMat[2], fMat[3], fMat[4], fMat[5], fMat[6], fMat[7], fMat[8]);
1634cb93a386Sopenharmony_ci    std::string split(depth, '\t');
1635cb93a386Sopenharmony_ci    desc += split + "\n SkMatrix:{ \n";
1636cb93a386Sopenharmony_ci    desc += std::string(str.c_str());
1637cb93a386Sopenharmony_ci    desc += split + "}\n";
1638cb93a386Sopenharmony_ci
1639cb93a386Sopenharmony_ci    SkDebugf("%s\n", str.c_str());
1640cb93a386Sopenharmony_ci}
1641cb93a386Sopenharmony_ci
1642cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////
1643cb93a386Sopenharmony_ci
1644cb93a386Sopenharmony_ci#include "src/core/SkMatrixUtils.h"
1645cb93a386Sopenharmony_ci#include "src/core/SkSamplingPriv.h"
1646cb93a386Sopenharmony_ci
1647cb93a386Sopenharmony_cibool SkTreatAsSprite(const SkMatrix& mat, const SkISize& size, const SkSamplingOptions& sampling,
1648cb93a386Sopenharmony_ci                     const SkPaint& paint) {
1649cb93a386Sopenharmony_ci    if (!SkSamplingPriv::NoChangeWithIdentityMatrix(sampling)) {
1650cb93a386Sopenharmony_ci        return false;
1651cb93a386Sopenharmony_ci    }
1652cb93a386Sopenharmony_ci
1653cb93a386Sopenharmony_ci    // Our path aa is 2-bits, and our rect aa is 8, so we could use 8,
1654cb93a386Sopenharmony_ci    // but in practice 4 seems enough (still looks smooth) and allows
1655cb93a386Sopenharmony_ci    // more slightly fractional cases to fall into the fast (sprite) case.
1656cb93a386Sopenharmony_ci    static const unsigned kAntiAliasSubpixelBits = 4;
1657cb93a386Sopenharmony_ci
1658cb93a386Sopenharmony_ci    const unsigned subpixelBits = paint.isAntiAlias() ? kAntiAliasSubpixelBits : 0;
1659cb93a386Sopenharmony_ci
1660cb93a386Sopenharmony_ci    // quick reject on affine or perspective
1661cb93a386Sopenharmony_ci    if (mat.getType() & ~(SkMatrix::kScale_Mask | SkMatrix::kTranslate_Mask)) {
1662cb93a386Sopenharmony_ci        return false;
1663cb93a386Sopenharmony_ci    }
1664cb93a386Sopenharmony_ci
1665cb93a386Sopenharmony_ci    // quick success check
1666cb93a386Sopenharmony_ci    if (!subpixelBits && !(mat.getType() & ~SkMatrix::kTranslate_Mask)) {
1667cb93a386Sopenharmony_ci        return true;
1668cb93a386Sopenharmony_ci    }
1669cb93a386Sopenharmony_ci
1670cb93a386Sopenharmony_ci    // mapRect supports negative scales, so we eliminate those first
1671cb93a386Sopenharmony_ci    if (mat.getScaleX() < 0 || mat.getScaleY() < 0) {
1672cb93a386Sopenharmony_ci        return false;
1673cb93a386Sopenharmony_ci    }
1674cb93a386Sopenharmony_ci
1675cb93a386Sopenharmony_ci    SkRect dst;
1676cb93a386Sopenharmony_ci    SkIRect isrc = SkIRect::MakeSize(size);
1677cb93a386Sopenharmony_ci
1678cb93a386Sopenharmony_ci    {
1679cb93a386Sopenharmony_ci        SkRect src;
1680cb93a386Sopenharmony_ci        src.set(isrc);
1681cb93a386Sopenharmony_ci        mat.mapRect(&dst, src);
1682cb93a386Sopenharmony_ci    }
1683cb93a386Sopenharmony_ci
1684cb93a386Sopenharmony_ci    // just apply the translate to isrc
1685cb93a386Sopenharmony_ci    isrc.offset(SkScalarRoundToInt(mat.getTranslateX()),
1686cb93a386Sopenharmony_ci                SkScalarRoundToInt(mat.getTranslateY()));
1687cb93a386Sopenharmony_ci
1688cb93a386Sopenharmony_ci    if (subpixelBits) {
1689cb93a386Sopenharmony_ci        isrc.fLeft = SkLeftShift(isrc.fLeft, subpixelBits);
1690cb93a386Sopenharmony_ci        isrc.fTop = SkLeftShift(isrc.fTop, subpixelBits);
1691cb93a386Sopenharmony_ci        isrc.fRight = SkLeftShift(isrc.fRight, subpixelBits);
1692cb93a386Sopenharmony_ci        isrc.fBottom = SkLeftShift(isrc.fBottom, subpixelBits);
1693cb93a386Sopenharmony_ci
1694cb93a386Sopenharmony_ci        const float scale = 1 << subpixelBits;
1695cb93a386Sopenharmony_ci        dst.fLeft *= scale;
1696cb93a386Sopenharmony_ci        dst.fTop *= scale;
1697cb93a386Sopenharmony_ci        dst.fRight *= scale;
1698cb93a386Sopenharmony_ci        dst.fBottom *= scale;
1699cb93a386Sopenharmony_ci    }
1700cb93a386Sopenharmony_ci
1701cb93a386Sopenharmony_ci    SkIRect idst;
1702cb93a386Sopenharmony_ci    dst.round(&idst);
1703cb93a386Sopenharmony_ci    return isrc == idst;
1704cb93a386Sopenharmony_ci}
1705cb93a386Sopenharmony_ci
1706cb93a386Sopenharmony_ci// A square matrix M can be decomposed (via polar decomposition) into two matrices --
1707cb93a386Sopenharmony_ci// an orthogonal matrix Q and a symmetric matrix S. In turn we can decompose S into U*W*U^T,
1708cb93a386Sopenharmony_ci// where U is another orthogonal matrix and W is a scale matrix. These can be recombined
1709cb93a386Sopenharmony_ci// to give M = (Q*U)*W*U^T, i.e., the product of two orthogonal matrices and a scale matrix.
1710cb93a386Sopenharmony_ci//
1711cb93a386Sopenharmony_ci// The one wrinkle is that traditionally Q may contain a reflection -- the
1712cb93a386Sopenharmony_ci// calculation has been rejiggered to put that reflection into W.
1713cb93a386Sopenharmony_cibool SkDecomposeUpper2x2(const SkMatrix& matrix,
1714cb93a386Sopenharmony_ci                         SkPoint* rotation1,
1715cb93a386Sopenharmony_ci                         SkPoint* scale,
1716cb93a386Sopenharmony_ci                         SkPoint* rotation2) {
1717cb93a386Sopenharmony_ci
1718cb93a386Sopenharmony_ci    SkScalar A = matrix[SkMatrix::kMScaleX];
1719cb93a386Sopenharmony_ci    SkScalar B = matrix[SkMatrix::kMSkewX];
1720cb93a386Sopenharmony_ci    SkScalar C = matrix[SkMatrix::kMSkewY];
1721cb93a386Sopenharmony_ci    SkScalar D = matrix[SkMatrix::kMScaleY];
1722cb93a386Sopenharmony_ci
1723cb93a386Sopenharmony_ci    if (is_degenerate_2x2(A, B, C, D)) {
1724cb93a386Sopenharmony_ci        return false;
1725cb93a386Sopenharmony_ci    }
1726cb93a386Sopenharmony_ci
1727cb93a386Sopenharmony_ci    double w1, w2;
1728cb93a386Sopenharmony_ci    SkScalar cos1, sin1;
1729cb93a386Sopenharmony_ci    SkScalar cos2, sin2;
1730cb93a386Sopenharmony_ci
1731cb93a386Sopenharmony_ci    // do polar decomposition (M = Q*S)
1732cb93a386Sopenharmony_ci    SkScalar cosQ, sinQ;
1733cb93a386Sopenharmony_ci    double Sa, Sb, Sd;
1734cb93a386Sopenharmony_ci    // if M is already symmetric (i.e., M = I*S)
1735cb93a386Sopenharmony_ci    if (SkScalarNearlyEqual(B, C)) {
1736cb93a386Sopenharmony_ci        cosQ = 1;
1737cb93a386Sopenharmony_ci        sinQ = 0;
1738cb93a386Sopenharmony_ci
1739cb93a386Sopenharmony_ci        Sa = A;
1740cb93a386Sopenharmony_ci        Sb = B;
1741cb93a386Sopenharmony_ci        Sd = D;
1742cb93a386Sopenharmony_ci    } else {
1743cb93a386Sopenharmony_ci        cosQ = A + D;
1744cb93a386Sopenharmony_ci        sinQ = C - B;
1745cb93a386Sopenharmony_ci        SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cosQ*cosQ + sinQ*sinQ));
1746cb93a386Sopenharmony_ci        cosQ *= reciplen;
1747cb93a386Sopenharmony_ci        sinQ *= reciplen;
1748cb93a386Sopenharmony_ci
1749cb93a386Sopenharmony_ci        // S = Q^-1*M
1750cb93a386Sopenharmony_ci        // we don't calc Sc since it's symmetric
1751cb93a386Sopenharmony_ci        Sa = A*cosQ + C*sinQ;
1752cb93a386Sopenharmony_ci        Sb = B*cosQ + D*sinQ;
1753cb93a386Sopenharmony_ci        Sd = -B*sinQ + D*cosQ;
1754cb93a386Sopenharmony_ci    }
1755cb93a386Sopenharmony_ci
1756cb93a386Sopenharmony_ci    // Now we need to compute eigenvalues of S (our scale factors)
1757cb93a386Sopenharmony_ci    // and eigenvectors (bases for our rotation)
1758cb93a386Sopenharmony_ci    // From this, should be able to reconstruct S as U*W*U^T
1759cb93a386Sopenharmony_ci    if (SkScalarNearlyZero(SkDoubleToScalar(Sb))) {
1760cb93a386Sopenharmony_ci        // already diagonalized
1761cb93a386Sopenharmony_ci        cos1 = 1;
1762cb93a386Sopenharmony_ci        sin1 = 0;
1763cb93a386Sopenharmony_ci        w1 = Sa;
1764cb93a386Sopenharmony_ci        w2 = Sd;
1765cb93a386Sopenharmony_ci        cos2 = cosQ;
1766cb93a386Sopenharmony_ci        sin2 = sinQ;
1767cb93a386Sopenharmony_ci    } else {
1768cb93a386Sopenharmony_ci        double diff = Sa - Sd;
1769cb93a386Sopenharmony_ci        double discriminant = sqrt(diff*diff + 4.0*Sb*Sb);
1770cb93a386Sopenharmony_ci        double trace = Sa + Sd;
1771cb93a386Sopenharmony_ci        if (diff > 0) {
1772cb93a386Sopenharmony_ci            w1 = 0.5*(trace + discriminant);
1773cb93a386Sopenharmony_ci            w2 = 0.5*(trace - discriminant);
1774cb93a386Sopenharmony_ci        } else {
1775cb93a386Sopenharmony_ci            w1 = 0.5*(trace - discriminant);
1776cb93a386Sopenharmony_ci            w2 = 0.5*(trace + discriminant);
1777cb93a386Sopenharmony_ci        }
1778cb93a386Sopenharmony_ci
1779cb93a386Sopenharmony_ci        cos1 = SkDoubleToScalar(Sb); sin1 = SkDoubleToScalar(w1 - Sa);
1780cb93a386Sopenharmony_ci        SkScalar reciplen = SkScalarInvert(SkScalarSqrt(cos1*cos1 + sin1*sin1));
1781cb93a386Sopenharmony_ci        cos1 *= reciplen;
1782cb93a386Sopenharmony_ci        sin1 *= reciplen;
1783cb93a386Sopenharmony_ci
1784cb93a386Sopenharmony_ci        // rotation 2 is composition of Q and U
1785cb93a386Sopenharmony_ci        cos2 = cos1*cosQ - sin1*sinQ;
1786cb93a386Sopenharmony_ci        sin2 = sin1*cosQ + cos1*sinQ;
1787cb93a386Sopenharmony_ci
1788cb93a386Sopenharmony_ci        // rotation 1 is U^T
1789cb93a386Sopenharmony_ci        sin1 = -sin1;
1790cb93a386Sopenharmony_ci    }
1791cb93a386Sopenharmony_ci
1792cb93a386Sopenharmony_ci    if (scale) {
1793cb93a386Sopenharmony_ci        scale->fX = SkDoubleToScalar(w1);
1794cb93a386Sopenharmony_ci        scale->fY = SkDoubleToScalar(w2);
1795cb93a386Sopenharmony_ci    }
1796cb93a386Sopenharmony_ci    if (rotation1) {
1797cb93a386Sopenharmony_ci        rotation1->fX = cos1;
1798cb93a386Sopenharmony_ci        rotation1->fY = sin1;
1799cb93a386Sopenharmony_ci    }
1800cb93a386Sopenharmony_ci    if (rotation2) {
1801cb93a386Sopenharmony_ci        rotation2->fX = cos2;
1802cb93a386Sopenharmony_ci        rotation2->fY = sin2;
1803cb93a386Sopenharmony_ci    }
1804cb93a386Sopenharmony_ci
1805cb93a386Sopenharmony_ci    return true;
1806cb93a386Sopenharmony_ci}
1807cb93a386Sopenharmony_ci
1808cb93a386Sopenharmony_ci//////////////////////////////////////////////////////////////////////////////////////////////////
1809cb93a386Sopenharmony_ci
1810cb93a386Sopenharmony_civoid SkRSXform::toQuad(SkScalar width, SkScalar height, SkPoint quad[4]) const {
1811cb93a386Sopenharmony_ci#if 0
1812cb93a386Sopenharmony_ci    // This is the slow way, but it documents what we're doing
1813cb93a386Sopenharmony_ci    quad[0].set(0, 0);
1814cb93a386Sopenharmony_ci    quad[1].set(width, 0);
1815cb93a386Sopenharmony_ci    quad[2].set(width, height);
1816cb93a386Sopenharmony_ci    quad[3].set(0, height);
1817cb93a386Sopenharmony_ci    SkMatrix m;
1818cb93a386Sopenharmony_ci    m.setRSXform(*this).mapPoints(quad, quad, 4);
1819cb93a386Sopenharmony_ci#else
1820cb93a386Sopenharmony_ci    const SkScalar m00 = fSCos;
1821cb93a386Sopenharmony_ci    const SkScalar m01 = -fSSin;
1822cb93a386Sopenharmony_ci    const SkScalar m02 = fTx;
1823cb93a386Sopenharmony_ci    const SkScalar m10 = -m01;
1824cb93a386Sopenharmony_ci    const SkScalar m11 = m00;
1825cb93a386Sopenharmony_ci    const SkScalar m12 = fTy;
1826cb93a386Sopenharmony_ci
1827cb93a386Sopenharmony_ci    quad[0].set(m02, m12);
1828cb93a386Sopenharmony_ci    quad[1].set(m00 * width + m02, m10 * width + m12);
1829cb93a386Sopenharmony_ci    quad[2].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12);
1830cb93a386Sopenharmony_ci    quad[3].set(m01 * height + m02, m11 * height + m12);
1831cb93a386Sopenharmony_ci#endif
1832cb93a386Sopenharmony_ci}
1833cb93a386Sopenharmony_ci
1834cb93a386Sopenharmony_civoid SkRSXform::toTriStrip(SkScalar width, SkScalar height, SkPoint strip[4]) const {
1835cb93a386Sopenharmony_ci    const SkScalar m00 = fSCos;
1836cb93a386Sopenharmony_ci    const SkScalar m01 = -fSSin;
1837cb93a386Sopenharmony_ci    const SkScalar m02 = fTx;
1838cb93a386Sopenharmony_ci    const SkScalar m10 = -m01;
1839cb93a386Sopenharmony_ci    const SkScalar m11 = m00;
1840cb93a386Sopenharmony_ci    const SkScalar m12 = fTy;
1841cb93a386Sopenharmony_ci
1842cb93a386Sopenharmony_ci    strip[0].set(m02, m12);
1843cb93a386Sopenharmony_ci    strip[1].set(m01 * height + m02, m11 * height + m12);
1844cb93a386Sopenharmony_ci    strip[2].set(m00 * width + m02, m10 * width + m12);
1845cb93a386Sopenharmony_ci    strip[3].set(m00 * width + m01 * height + m02, m10 * width + m11 * height + m12);
1846cb93a386Sopenharmony_ci}
1847cb93a386Sopenharmony_ci
1848cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////////////////////////////////
1849cb93a386Sopenharmony_ci
1850cb93a386Sopenharmony_ciSkScalar SkMatrixPriv::DifferentialAreaScale(const SkMatrix& m, const SkPoint& p) {
1851cb93a386Sopenharmony_ci    //              [m00 m01 m02]                                 [f(u,v)]
1852cb93a386Sopenharmony_ci    // Assuming M = [m10 m11 m12], define the projected p'(u,v) = [g(u,v)] where
1853cb93a386Sopenharmony_ci    //              [m20 m12 m22]
1854cb93a386Sopenharmony_ci    //                                                        [x]     [u]
1855cb93a386Sopenharmony_ci    // f(u,v) = x(u,v) / w(u,v), g(u,v) = y(u,v) / w(u,v) and [y] = M*[v]
1856cb93a386Sopenharmony_ci    //                                                        [w]     [1]
1857cb93a386Sopenharmony_ci    //
1858cb93a386Sopenharmony_ci    // Then the differential scale factor between p = (u,v) and p' is |det J|,
1859cb93a386Sopenharmony_ci    // where J is the Jacobian for p': [df/du dg/du]
1860cb93a386Sopenharmony_ci    //                                 [df/dv dg/dv]
1861cb93a386Sopenharmony_ci    // and df/du = (w*dx/du - x*dw/du)/w^2,   dg/du = (w*dy/du - y*dw/du)/w^2
1862cb93a386Sopenharmony_ci    //     df/dv = (w*dx/dv - x*dw/dv)/w^2,   dg/dv = (w*dy/dv - y*dw/dv)/w^2
1863cb93a386Sopenharmony_ci    //
1864cb93a386Sopenharmony_ci    // From here, |det J| can be rewritten as |det J'/w^3|, where
1865cb93a386Sopenharmony_ci    //      [x     y     w    ]   [x   y   w  ]
1866cb93a386Sopenharmony_ci    // J' = [dx/du dy/du dw/du] = [m00 m10 m20]
1867cb93a386Sopenharmony_ci    //      [dx/dv dy/dv dw/dv]   [m01 m11 m21]
1868cb93a386Sopenharmony_ci    SkPoint3 xyw;
1869cb93a386Sopenharmony_ci    m.mapHomogeneousPoints(&xyw, &p, 1);
1870cb93a386Sopenharmony_ci
1871cb93a386Sopenharmony_ci    if (xyw.fZ < SK_ScalarNearlyZero) {
1872cb93a386Sopenharmony_ci        // Reaching the discontinuity of xy/w and where the point would clip to w >= 0
1873cb93a386Sopenharmony_ci        return SK_ScalarInfinity;
1874cb93a386Sopenharmony_ci    }
1875cb93a386Sopenharmony_ci    SkMatrix jacobian = SkMatrix::MakeAll(xyw.fX, xyw.fY, xyw.fZ,
1876cb93a386Sopenharmony_ci                                          m.getScaleX(), m.getSkewY(), m.getPerspX(),
1877cb93a386Sopenharmony_ci                                          m.getSkewX(), m.getScaleY(), m.getPerspY());
1878cb93a386Sopenharmony_ci
1879cb93a386Sopenharmony_ci    double denom = 1.0 / xyw.fZ;   // 1/w
1880cb93a386Sopenharmony_ci    denom = denom * denom * denom; // 1/w^3
1881cb93a386Sopenharmony_ci    return SkScalarAbs(SkDoubleToScalar(sk_determinant(jacobian.fMat, true) * denom));
1882cb93a386Sopenharmony_ci}
1883