1/* 2 * Copyright 2012 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 * 7 * The following code is based on the description in RFC 1321. 8 * http://www.ietf.org/rfc/rfc1321.txt 9 */ 10 11//The following macros can be defined to affect the MD5 code generated. 12//SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's. 13//SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned). 14//SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN. 15 16#include "src/core/SkMD5.h" 17#include <string.h> 18 19/** MD5 basic transformation. Transforms state based on block. */ 20static void transform(uint32_t state[4], const uint8_t block[64]); 21 22/** Encodes input into output (4 little endian 32 bit values). */ 23static void encode(uint8_t output[16], const uint32_t input[4]); 24 25/** Encodes input into output (little endian 64 bit value). */ 26static void encode(uint8_t output[8], const uint64_t input); 27 28/** Decodes input (4 little endian 32 bit values) into storage, if required. */ 29static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); 30 31SkMD5::SkMD5() : byteCount(0) { 32 // These are magic numbers from the specification. 33 this->state[0] = 0x67452301; 34 this->state[1] = 0xefcdab89; 35 this->state[2] = 0x98badcfe; 36 this->state[3] = 0x10325476; 37} 38 39bool SkMD5::write(const void* buf, size_t inputLength) { 40 const uint8_t* input = reinterpret_cast<const uint8_t*>(buf); 41 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 42 unsigned int bufferAvailable = 64 - bufferIndex; 43 44 unsigned int inputIndex; 45 if (inputLength >= bufferAvailable) { 46 if (bufferIndex) { 47 memcpy(&this->buffer[bufferIndex], input, bufferAvailable); 48 transform(this->state, this->buffer); 49 inputIndex = bufferAvailable; 50 } else { 51 inputIndex = 0; 52 } 53 54 for (; inputIndex + 63 < inputLength; inputIndex += 64) { 55 transform(this->state, &input[inputIndex]); 56 } 57 58 bufferIndex = 0; 59 } else { 60 inputIndex = 0; 61 } 62 63 memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); 64 65 this->byteCount += inputLength; 66 return true; 67} 68 69SkMD5::Digest SkMD5::finish() { 70 SkMD5::Digest digest; 71 // Get the number of bits before padding. 72 uint8_t bits[8]; 73 encode(bits, this->byteCount << 3); 74 75 // Pad out to 56 mod 64. 76 unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 77 unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); 78 static const uint8_t PADDING[64] = { 79 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 82 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 83 }; 84 (void)this->write(PADDING, paddingLength); 85 86 // Append length (length before padding, will cause final update). 87 (void)this->write(bits, 8); 88 89 // Write out digest. 90 encode(digest.data, this->state); 91 92#if defined(SK_MD5_CLEAR_DATA) 93 // Clear state. 94 memset(this, 0, sizeof(*this)); 95#endif 96 return digest; 97} 98 99struct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 100 //return (x & y) | ((~x) & z); 101 return ((y ^ z) & x) ^ z; //equivelent but faster 102}}; 103 104struct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 105 return (x & z) | (y & (~z)); 106 //return ((x ^ y) & z) ^ y; //equivelent but slower 107}}; 108 109struct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 110 return x ^ y ^ z; 111}}; 112 113struct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 114 return y ^ (x | (~z)); 115}}; 116 117/** Rotates x left n bits. */ 118static inline uint32_t rotate_left(uint32_t x, uint8_t n) { 119 return (x << n) | (x >> (32 - n)); 120} 121 122template <typename T> 123static inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, 124 uint32_t x, uint8_t s, uint32_t t) { 125 a = b + rotate_left(a + operation(b, c, d) + x + t, s); 126} 127 128static void transform(uint32_t state[4], const uint8_t block[64]) { 129 uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; 130 131 uint32_t storage[16]; 132 const uint32_t* X = decode(storage, block); 133 134 // Round 1 135 operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 136 operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 137 operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 138 operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 139 operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 140 operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 141 operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 142 operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 143 operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 144 operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 145 operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 146 operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 147 operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 148 operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 149 operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 150 operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 151 152 // Round 2 153 operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 154 operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 155 operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 156 operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 157 operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 158 operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 159 operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 160 operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 161 operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 162 operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 163 operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 164 operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 165 operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 166 operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 167 operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 168 operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 169 170 // Round 3 171 operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 172 operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 173 operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 174 operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 175 operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 176 operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 177 operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 178 operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 179 operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 180 operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 181 operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 182 operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 183 operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 184 operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 185 operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 186 operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 187 188 // Round 4 189 operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 190 operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 191 operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 192 operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 193 operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 194 operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 195 operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 196 operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 197 operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 198 operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 199 operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 200 operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 201 operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 202 operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 203 operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 204 operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 205 206 state[0] += a; 207 state[1] += b; 208 state[2] += c; 209 state[3] += d; 210 211#if defined(SK_MD5_CLEAR_DATA) 212 // Clear sensitive information. 213 if (X == &storage) { 214 memset(storage, 0, sizeof(storage)); 215 } 216#endif 217} 218 219static void encode(uint8_t output[16], const uint32_t input[4]) { 220 for (size_t i = 0, j = 0; i < 4; i++, j += 4) { 221 output[j ] = (uint8_t) (input[i] & 0xff); 222 output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); 223 output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); 224 output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); 225 } 226} 227 228static void encode(uint8_t output[8], const uint64_t input) { 229 output[0] = (uint8_t) (input & 0xff); 230 output[1] = (uint8_t)((input >> 8) & 0xff); 231 output[2] = (uint8_t)((input >> 16) & 0xff); 232 output[3] = (uint8_t)((input >> 24) & 0xff); 233 output[4] = (uint8_t)((input >> 32) & 0xff); 234 output[5] = (uint8_t)((input >> 40) & 0xff); 235 output[6] = (uint8_t)((input >> 48) & 0xff); 236 output[7] = (uint8_t)((input >> 56) & 0xff); 237} 238 239static inline bool is_aligned(const void *pointer, size_t byte_count) { 240 return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; 241} 242 243static const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { 244#if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) 245 return reinterpret_cast<const uint32_t*>(input); 246#else 247#if defined(SK_CPU_LENDIAN) 248 if (is_aligned(input, 4)) { 249 return reinterpret_cast<const uint32_t*>(input); 250 } 251#endif 252 for (size_t i = 0, j = 0; j < 64; i++, j += 4) { 253 storage[i] = ((uint32_t)input[j ]) | 254 (((uint32_t)input[j+1]) << 8) | 255 (((uint32_t)input[j+2]) << 16) | 256 (((uint32_t)input[j+3]) << 24); 257 } 258 return storage; 259#endif 260} 261