1cb93a386Sopenharmony_ci/* 2cb93a386Sopenharmony_ci * Copyright 2012 Google Inc. 3cb93a386Sopenharmony_ci * 4cb93a386Sopenharmony_ci * Use of this source code is governed by a BSD-style license that can be 5cb93a386Sopenharmony_ci * found in the LICENSE file. 6cb93a386Sopenharmony_ci * 7cb93a386Sopenharmony_ci * The following code is based on the description in RFC 1321. 8cb93a386Sopenharmony_ci * http://www.ietf.org/rfc/rfc1321.txt 9cb93a386Sopenharmony_ci */ 10cb93a386Sopenharmony_ci 11cb93a386Sopenharmony_ci//The following macros can be defined to affect the MD5 code generated. 12cb93a386Sopenharmony_ci//SK_MD5_CLEAR_DATA causes all intermediate state to be overwritten with 0's. 13cb93a386Sopenharmony_ci//SK_CPU_LENDIAN allows 32 bit <=> 8 bit conversions without copies (if alligned). 14cb93a386Sopenharmony_ci//SK_CPU_FAST_UNALIGNED_ACCESS allows 32 bit <=> 8 bit conversions without copies if SK_CPU_LENDIAN. 15cb93a386Sopenharmony_ci 16cb93a386Sopenharmony_ci#include "src/core/SkMD5.h" 17cb93a386Sopenharmony_ci#include <string.h> 18cb93a386Sopenharmony_ci 19cb93a386Sopenharmony_ci/** MD5 basic transformation. Transforms state based on block. */ 20cb93a386Sopenharmony_cistatic void transform(uint32_t state[4], const uint8_t block[64]); 21cb93a386Sopenharmony_ci 22cb93a386Sopenharmony_ci/** Encodes input into output (4 little endian 32 bit values). */ 23cb93a386Sopenharmony_cistatic void encode(uint8_t output[16], const uint32_t input[4]); 24cb93a386Sopenharmony_ci 25cb93a386Sopenharmony_ci/** Encodes input into output (little endian 64 bit value). */ 26cb93a386Sopenharmony_cistatic void encode(uint8_t output[8], const uint64_t input); 27cb93a386Sopenharmony_ci 28cb93a386Sopenharmony_ci/** Decodes input (4 little endian 32 bit values) into storage, if required. */ 29cb93a386Sopenharmony_cistatic const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]); 30cb93a386Sopenharmony_ci 31cb93a386Sopenharmony_ciSkMD5::SkMD5() : byteCount(0) { 32cb93a386Sopenharmony_ci // These are magic numbers from the specification. 33cb93a386Sopenharmony_ci this->state[0] = 0x67452301; 34cb93a386Sopenharmony_ci this->state[1] = 0xefcdab89; 35cb93a386Sopenharmony_ci this->state[2] = 0x98badcfe; 36cb93a386Sopenharmony_ci this->state[3] = 0x10325476; 37cb93a386Sopenharmony_ci} 38cb93a386Sopenharmony_ci 39cb93a386Sopenharmony_cibool SkMD5::write(const void* buf, size_t inputLength) { 40cb93a386Sopenharmony_ci const uint8_t* input = reinterpret_cast<const uint8_t*>(buf); 41cb93a386Sopenharmony_ci unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 42cb93a386Sopenharmony_ci unsigned int bufferAvailable = 64 - bufferIndex; 43cb93a386Sopenharmony_ci 44cb93a386Sopenharmony_ci unsigned int inputIndex; 45cb93a386Sopenharmony_ci if (inputLength >= bufferAvailable) { 46cb93a386Sopenharmony_ci if (bufferIndex) { 47cb93a386Sopenharmony_ci memcpy(&this->buffer[bufferIndex], input, bufferAvailable); 48cb93a386Sopenharmony_ci transform(this->state, this->buffer); 49cb93a386Sopenharmony_ci inputIndex = bufferAvailable; 50cb93a386Sopenharmony_ci } else { 51cb93a386Sopenharmony_ci inputIndex = 0; 52cb93a386Sopenharmony_ci } 53cb93a386Sopenharmony_ci 54cb93a386Sopenharmony_ci for (; inputIndex + 63 < inputLength; inputIndex += 64) { 55cb93a386Sopenharmony_ci transform(this->state, &input[inputIndex]); 56cb93a386Sopenharmony_ci } 57cb93a386Sopenharmony_ci 58cb93a386Sopenharmony_ci bufferIndex = 0; 59cb93a386Sopenharmony_ci } else { 60cb93a386Sopenharmony_ci inputIndex = 0; 61cb93a386Sopenharmony_ci } 62cb93a386Sopenharmony_ci 63cb93a386Sopenharmony_ci memcpy(&this->buffer[bufferIndex], &input[inputIndex], inputLength - inputIndex); 64cb93a386Sopenharmony_ci 65cb93a386Sopenharmony_ci this->byteCount += inputLength; 66cb93a386Sopenharmony_ci return true; 67cb93a386Sopenharmony_ci} 68cb93a386Sopenharmony_ci 69cb93a386Sopenharmony_ciSkMD5::Digest SkMD5::finish() { 70cb93a386Sopenharmony_ci SkMD5::Digest digest; 71cb93a386Sopenharmony_ci // Get the number of bits before padding. 72cb93a386Sopenharmony_ci uint8_t bits[8]; 73cb93a386Sopenharmony_ci encode(bits, this->byteCount << 3); 74cb93a386Sopenharmony_ci 75cb93a386Sopenharmony_ci // Pad out to 56 mod 64. 76cb93a386Sopenharmony_ci unsigned int bufferIndex = (unsigned int)(this->byteCount & 0x3F); 77cb93a386Sopenharmony_ci unsigned int paddingLength = (bufferIndex < 56) ? (56 - bufferIndex) : (120 - bufferIndex); 78cb93a386Sopenharmony_ci static const uint8_t PADDING[64] = { 79cb93a386Sopenharmony_ci 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 80cb93a386Sopenharmony_ci 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81cb93a386Sopenharmony_ci 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 82cb93a386Sopenharmony_ci 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 83cb93a386Sopenharmony_ci }; 84cb93a386Sopenharmony_ci (void)this->write(PADDING, paddingLength); 85cb93a386Sopenharmony_ci 86cb93a386Sopenharmony_ci // Append length (length before padding, will cause final update). 87cb93a386Sopenharmony_ci (void)this->write(bits, 8); 88cb93a386Sopenharmony_ci 89cb93a386Sopenharmony_ci // Write out digest. 90cb93a386Sopenharmony_ci encode(digest.data, this->state); 91cb93a386Sopenharmony_ci 92cb93a386Sopenharmony_ci#if defined(SK_MD5_CLEAR_DATA) 93cb93a386Sopenharmony_ci // Clear state. 94cb93a386Sopenharmony_ci memset(this, 0, sizeof(*this)); 95cb93a386Sopenharmony_ci#endif 96cb93a386Sopenharmony_ci return digest; 97cb93a386Sopenharmony_ci} 98cb93a386Sopenharmony_ci 99cb93a386Sopenharmony_cistruct F { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 100cb93a386Sopenharmony_ci //return (x & y) | ((~x) & z); 101cb93a386Sopenharmony_ci return ((y ^ z) & x) ^ z; //equivelent but faster 102cb93a386Sopenharmony_ci}}; 103cb93a386Sopenharmony_ci 104cb93a386Sopenharmony_cistruct G { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 105cb93a386Sopenharmony_ci return (x & z) | (y & (~z)); 106cb93a386Sopenharmony_ci //return ((x ^ y) & z) ^ y; //equivelent but slower 107cb93a386Sopenharmony_ci}}; 108cb93a386Sopenharmony_ci 109cb93a386Sopenharmony_cistruct H { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 110cb93a386Sopenharmony_ci return x ^ y ^ z; 111cb93a386Sopenharmony_ci}}; 112cb93a386Sopenharmony_ci 113cb93a386Sopenharmony_cistruct I { uint32_t operator()(uint32_t x, uint32_t y, uint32_t z) { 114cb93a386Sopenharmony_ci return y ^ (x | (~z)); 115cb93a386Sopenharmony_ci}}; 116cb93a386Sopenharmony_ci 117cb93a386Sopenharmony_ci/** Rotates x left n bits. */ 118cb93a386Sopenharmony_cistatic inline uint32_t rotate_left(uint32_t x, uint8_t n) { 119cb93a386Sopenharmony_ci return (x << n) | (x >> (32 - n)); 120cb93a386Sopenharmony_ci} 121cb93a386Sopenharmony_ci 122cb93a386Sopenharmony_citemplate <typename T> 123cb93a386Sopenharmony_cistatic inline void operation(T operation, uint32_t& a, uint32_t b, uint32_t c, uint32_t d, 124cb93a386Sopenharmony_ci uint32_t x, uint8_t s, uint32_t t) { 125cb93a386Sopenharmony_ci a = b + rotate_left(a + operation(b, c, d) + x + t, s); 126cb93a386Sopenharmony_ci} 127cb93a386Sopenharmony_ci 128cb93a386Sopenharmony_cistatic void transform(uint32_t state[4], const uint8_t block[64]) { 129cb93a386Sopenharmony_ci uint32_t a = state[0], b = state[1], c = state[2], d = state[3]; 130cb93a386Sopenharmony_ci 131cb93a386Sopenharmony_ci uint32_t storage[16]; 132cb93a386Sopenharmony_ci const uint32_t* X = decode(storage, block); 133cb93a386Sopenharmony_ci 134cb93a386Sopenharmony_ci // Round 1 135cb93a386Sopenharmony_ci operation(F(), a, b, c, d, X[ 0], 7, 0xd76aa478); // 1 136cb93a386Sopenharmony_ci operation(F(), d, a, b, c, X[ 1], 12, 0xe8c7b756); // 2 137cb93a386Sopenharmony_ci operation(F(), c, d, a, b, X[ 2], 17, 0x242070db); // 3 138cb93a386Sopenharmony_ci operation(F(), b, c, d, a, X[ 3], 22, 0xc1bdceee); // 4 139cb93a386Sopenharmony_ci operation(F(), a, b, c, d, X[ 4], 7, 0xf57c0faf); // 5 140cb93a386Sopenharmony_ci operation(F(), d, a, b, c, X[ 5], 12, 0x4787c62a); // 6 141cb93a386Sopenharmony_ci operation(F(), c, d, a, b, X[ 6], 17, 0xa8304613); // 7 142cb93a386Sopenharmony_ci operation(F(), b, c, d, a, X[ 7], 22, 0xfd469501); // 8 143cb93a386Sopenharmony_ci operation(F(), a, b, c, d, X[ 8], 7, 0x698098d8); // 9 144cb93a386Sopenharmony_ci operation(F(), d, a, b, c, X[ 9], 12, 0x8b44f7af); // 10 145cb93a386Sopenharmony_ci operation(F(), c, d, a, b, X[10], 17, 0xffff5bb1); // 11 146cb93a386Sopenharmony_ci operation(F(), b, c, d, a, X[11], 22, 0x895cd7be); // 12 147cb93a386Sopenharmony_ci operation(F(), a, b, c, d, X[12], 7, 0x6b901122); // 13 148cb93a386Sopenharmony_ci operation(F(), d, a, b, c, X[13], 12, 0xfd987193); // 14 149cb93a386Sopenharmony_ci operation(F(), c, d, a, b, X[14], 17, 0xa679438e); // 15 150cb93a386Sopenharmony_ci operation(F(), b, c, d, a, X[15], 22, 0x49b40821); // 16 151cb93a386Sopenharmony_ci 152cb93a386Sopenharmony_ci // Round 2 153cb93a386Sopenharmony_ci operation(G(), a, b, c, d, X[ 1], 5, 0xf61e2562); // 17 154cb93a386Sopenharmony_ci operation(G(), d, a, b, c, X[ 6], 9, 0xc040b340); // 18 155cb93a386Sopenharmony_ci operation(G(), c, d, a, b, X[11], 14, 0x265e5a51); // 19 156cb93a386Sopenharmony_ci operation(G(), b, c, d, a, X[ 0], 20, 0xe9b6c7aa); // 20 157cb93a386Sopenharmony_ci operation(G(), a, b, c, d, X[ 5], 5, 0xd62f105d); // 21 158cb93a386Sopenharmony_ci operation(G(), d, a, b, c, X[10], 9, 0x2441453); // 22 159cb93a386Sopenharmony_ci operation(G(), c, d, a, b, X[15], 14, 0xd8a1e681); // 23 160cb93a386Sopenharmony_ci operation(G(), b, c, d, a, X[ 4], 20, 0xe7d3fbc8); // 24 161cb93a386Sopenharmony_ci operation(G(), a, b, c, d, X[ 9], 5, 0x21e1cde6); // 25 162cb93a386Sopenharmony_ci operation(G(), d, a, b, c, X[14], 9, 0xc33707d6); // 26 163cb93a386Sopenharmony_ci operation(G(), c, d, a, b, X[ 3], 14, 0xf4d50d87); // 27 164cb93a386Sopenharmony_ci operation(G(), b, c, d, a, X[ 8], 20, 0x455a14ed); // 28 165cb93a386Sopenharmony_ci operation(G(), a, b, c, d, X[13], 5, 0xa9e3e905); // 29 166cb93a386Sopenharmony_ci operation(G(), d, a, b, c, X[ 2], 9, 0xfcefa3f8); // 30 167cb93a386Sopenharmony_ci operation(G(), c, d, a, b, X[ 7], 14, 0x676f02d9); // 31 168cb93a386Sopenharmony_ci operation(G(), b, c, d, a, X[12], 20, 0x8d2a4c8a); // 32 169cb93a386Sopenharmony_ci 170cb93a386Sopenharmony_ci // Round 3 171cb93a386Sopenharmony_ci operation(H(), a, b, c, d, X[ 5], 4, 0xfffa3942); // 33 172cb93a386Sopenharmony_ci operation(H(), d, a, b, c, X[ 8], 11, 0x8771f681); // 34 173cb93a386Sopenharmony_ci operation(H(), c, d, a, b, X[11], 16, 0x6d9d6122); // 35 174cb93a386Sopenharmony_ci operation(H(), b, c, d, a, X[14], 23, 0xfde5380c); // 36 175cb93a386Sopenharmony_ci operation(H(), a, b, c, d, X[ 1], 4, 0xa4beea44); // 37 176cb93a386Sopenharmony_ci operation(H(), d, a, b, c, X[ 4], 11, 0x4bdecfa9); // 38 177cb93a386Sopenharmony_ci operation(H(), c, d, a, b, X[ 7], 16, 0xf6bb4b60); // 39 178cb93a386Sopenharmony_ci operation(H(), b, c, d, a, X[10], 23, 0xbebfbc70); // 40 179cb93a386Sopenharmony_ci operation(H(), a, b, c, d, X[13], 4, 0x289b7ec6); // 41 180cb93a386Sopenharmony_ci operation(H(), d, a, b, c, X[ 0], 11, 0xeaa127fa); // 42 181cb93a386Sopenharmony_ci operation(H(), c, d, a, b, X[ 3], 16, 0xd4ef3085); // 43 182cb93a386Sopenharmony_ci operation(H(), b, c, d, a, X[ 6], 23, 0x4881d05); // 44 183cb93a386Sopenharmony_ci operation(H(), a, b, c, d, X[ 9], 4, 0xd9d4d039); // 45 184cb93a386Sopenharmony_ci operation(H(), d, a, b, c, X[12], 11, 0xe6db99e5); // 46 185cb93a386Sopenharmony_ci operation(H(), c, d, a, b, X[15], 16, 0x1fa27cf8); // 47 186cb93a386Sopenharmony_ci operation(H(), b, c, d, a, X[ 2], 23, 0xc4ac5665); // 48 187cb93a386Sopenharmony_ci 188cb93a386Sopenharmony_ci // Round 4 189cb93a386Sopenharmony_ci operation(I(), a, b, c, d, X[ 0], 6, 0xf4292244); // 49 190cb93a386Sopenharmony_ci operation(I(), d, a, b, c, X[ 7], 10, 0x432aff97); // 50 191cb93a386Sopenharmony_ci operation(I(), c, d, a, b, X[14], 15, 0xab9423a7); // 51 192cb93a386Sopenharmony_ci operation(I(), b, c, d, a, X[ 5], 21, 0xfc93a039); // 52 193cb93a386Sopenharmony_ci operation(I(), a, b, c, d, X[12], 6, 0x655b59c3); // 53 194cb93a386Sopenharmony_ci operation(I(), d, a, b, c, X[ 3], 10, 0x8f0ccc92); // 54 195cb93a386Sopenharmony_ci operation(I(), c, d, a, b, X[10], 15, 0xffeff47d); // 55 196cb93a386Sopenharmony_ci operation(I(), b, c, d, a, X[ 1], 21, 0x85845dd1); // 56 197cb93a386Sopenharmony_ci operation(I(), a, b, c, d, X[ 8], 6, 0x6fa87e4f); // 57 198cb93a386Sopenharmony_ci operation(I(), d, a, b, c, X[15], 10, 0xfe2ce6e0); // 58 199cb93a386Sopenharmony_ci operation(I(), c, d, a, b, X[ 6], 15, 0xa3014314); // 59 200cb93a386Sopenharmony_ci operation(I(), b, c, d, a, X[13], 21, 0x4e0811a1); // 60 201cb93a386Sopenharmony_ci operation(I(), a, b, c, d, X[ 4], 6, 0xf7537e82); // 61 202cb93a386Sopenharmony_ci operation(I(), d, a, b, c, X[11], 10, 0xbd3af235); // 62 203cb93a386Sopenharmony_ci operation(I(), c, d, a, b, X[ 2], 15, 0x2ad7d2bb); // 63 204cb93a386Sopenharmony_ci operation(I(), b, c, d, a, X[ 9], 21, 0xeb86d391); // 64 205cb93a386Sopenharmony_ci 206cb93a386Sopenharmony_ci state[0] += a; 207cb93a386Sopenharmony_ci state[1] += b; 208cb93a386Sopenharmony_ci state[2] += c; 209cb93a386Sopenharmony_ci state[3] += d; 210cb93a386Sopenharmony_ci 211cb93a386Sopenharmony_ci#if defined(SK_MD5_CLEAR_DATA) 212cb93a386Sopenharmony_ci // Clear sensitive information. 213cb93a386Sopenharmony_ci if (X == &storage) { 214cb93a386Sopenharmony_ci memset(storage, 0, sizeof(storage)); 215cb93a386Sopenharmony_ci } 216cb93a386Sopenharmony_ci#endif 217cb93a386Sopenharmony_ci} 218cb93a386Sopenharmony_ci 219cb93a386Sopenharmony_cistatic void encode(uint8_t output[16], const uint32_t input[4]) { 220cb93a386Sopenharmony_ci for (size_t i = 0, j = 0; i < 4; i++, j += 4) { 221cb93a386Sopenharmony_ci output[j ] = (uint8_t) (input[i] & 0xff); 222cb93a386Sopenharmony_ci output[j+1] = (uint8_t)((input[i] >> 8) & 0xff); 223cb93a386Sopenharmony_ci output[j+2] = (uint8_t)((input[i] >> 16) & 0xff); 224cb93a386Sopenharmony_ci output[j+3] = (uint8_t)((input[i] >> 24) & 0xff); 225cb93a386Sopenharmony_ci } 226cb93a386Sopenharmony_ci} 227cb93a386Sopenharmony_ci 228cb93a386Sopenharmony_cistatic void encode(uint8_t output[8], const uint64_t input) { 229cb93a386Sopenharmony_ci output[0] = (uint8_t) (input & 0xff); 230cb93a386Sopenharmony_ci output[1] = (uint8_t)((input >> 8) & 0xff); 231cb93a386Sopenharmony_ci output[2] = (uint8_t)((input >> 16) & 0xff); 232cb93a386Sopenharmony_ci output[3] = (uint8_t)((input >> 24) & 0xff); 233cb93a386Sopenharmony_ci output[4] = (uint8_t)((input >> 32) & 0xff); 234cb93a386Sopenharmony_ci output[5] = (uint8_t)((input >> 40) & 0xff); 235cb93a386Sopenharmony_ci output[6] = (uint8_t)((input >> 48) & 0xff); 236cb93a386Sopenharmony_ci output[7] = (uint8_t)((input >> 56) & 0xff); 237cb93a386Sopenharmony_ci} 238cb93a386Sopenharmony_ci 239cb93a386Sopenharmony_cistatic inline bool is_aligned(const void *pointer, size_t byte_count) { 240cb93a386Sopenharmony_ci return reinterpret_cast<uintptr_t>(pointer) % byte_count == 0; 241cb93a386Sopenharmony_ci} 242cb93a386Sopenharmony_ci 243cb93a386Sopenharmony_cistatic const uint32_t* decode(uint32_t storage[16], const uint8_t input[64]) { 244cb93a386Sopenharmony_ci#if defined(SK_CPU_LENDIAN) && defined(SK_CPU_FAST_UNALIGNED_ACCESS) 245cb93a386Sopenharmony_ci return reinterpret_cast<const uint32_t*>(input); 246cb93a386Sopenharmony_ci#else 247cb93a386Sopenharmony_ci#if defined(SK_CPU_LENDIAN) 248cb93a386Sopenharmony_ci if (is_aligned(input, 4)) { 249cb93a386Sopenharmony_ci return reinterpret_cast<const uint32_t*>(input); 250cb93a386Sopenharmony_ci } 251cb93a386Sopenharmony_ci#endif 252cb93a386Sopenharmony_ci for (size_t i = 0, j = 0; j < 64; i++, j += 4) { 253cb93a386Sopenharmony_ci storage[i] = ((uint32_t)input[j ]) | 254cb93a386Sopenharmony_ci (((uint32_t)input[j+1]) << 8) | 255cb93a386Sopenharmony_ci (((uint32_t)input[j+2]) << 16) | 256cb93a386Sopenharmony_ci (((uint32_t)input[j+3]) << 24); 257cb93a386Sopenharmony_ci } 258cb93a386Sopenharmony_ci return storage; 259cb93a386Sopenharmony_ci#endif 260cb93a386Sopenharmony_ci} 261