1cb93a386Sopenharmony_ci/* 2cb93a386Sopenharmony_ci * Copyright 2006 The Android Open Source Project 3cb93a386Sopenharmony_ci * 4cb93a386Sopenharmony_ci * Use of this source code is governed by a BSD-style license that can be 5cb93a386Sopenharmony_ci * found in the LICENSE file. 6cb93a386Sopenharmony_ci */ 7cb93a386Sopenharmony_ci 8cb93a386Sopenharmony_ci#include "src/core/SkEdge.h" 9cb93a386Sopenharmony_ci 10cb93a386Sopenharmony_ci#include "include/private/SkTo.h" 11cb93a386Sopenharmony_ci#include "src/core/SkFDot6.h" 12cb93a386Sopenharmony_ci#include "src/core/SkMathPriv.h" 13cb93a386Sopenharmony_ci 14cb93a386Sopenharmony_ci#include <utility> 15cb93a386Sopenharmony_ci 16cb93a386Sopenharmony_ci/* 17cb93a386Sopenharmony_ci In setLine, setQuadratic, setCubic, the first thing we do is to convert 18cb93a386Sopenharmony_ci the points into FDot6. This is modulated by the shift parameter, which 19cb93a386Sopenharmony_ci will either be 0, or something like 2 for antialiasing. 20cb93a386Sopenharmony_ci 21cb93a386Sopenharmony_ci In the float case, we want to turn the float into .6 by saying pt * 64, 22cb93a386Sopenharmony_ci or pt * 256 for antialiasing. This is implemented as 1 << (shift + 6). 23cb93a386Sopenharmony_ci 24cb93a386Sopenharmony_ci In the fixed case, we want to turn the fixed into .6 by saying pt >> 10, 25cb93a386Sopenharmony_ci or pt >> 8 for antialiasing. This is implemented as pt >> (10 - shift). 26cb93a386Sopenharmony_ci*/ 27cb93a386Sopenharmony_ci 28cb93a386Sopenharmony_cistatic inline SkFixed SkFDot6ToFixedDiv2(SkFDot6 value) { 29cb93a386Sopenharmony_ci // we want to return SkFDot6ToFixed(value >> 1), but we don't want to throw 30cb93a386Sopenharmony_ci // away data in value, so just perform a modify up-shift 31cb93a386Sopenharmony_ci return SkLeftShift(value, 16 - 6 - 1); 32cb93a386Sopenharmony_ci} 33cb93a386Sopenharmony_ci 34cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////// 35cb93a386Sopenharmony_ci 36cb93a386Sopenharmony_ciint SkEdge::setLine(const SkPoint& p0, const SkPoint& p1, const SkIRect* clip, 37cb93a386Sopenharmony_ci int shift) { 38cb93a386Sopenharmony_ci SkFDot6 x0, y0, x1, y1; 39cb93a386Sopenharmony_ci 40cb93a386Sopenharmony_ci { 41cb93a386Sopenharmony_ci#ifdef SK_RASTERIZE_EVEN_ROUNDING 42cb93a386Sopenharmony_ci x0 = SkScalarRoundToFDot6(p0.fX, shift); 43cb93a386Sopenharmony_ci y0 = SkScalarRoundToFDot6(p0.fY, shift); 44cb93a386Sopenharmony_ci x1 = SkScalarRoundToFDot6(p1.fX, shift); 45cb93a386Sopenharmony_ci y1 = SkScalarRoundToFDot6(p1.fY, shift); 46cb93a386Sopenharmony_ci#else 47cb93a386Sopenharmony_ci float scale = float(1 << (shift + 6)); 48cb93a386Sopenharmony_ci x0 = int(p0.fX * scale); 49cb93a386Sopenharmony_ci y0 = int(p0.fY * scale); 50cb93a386Sopenharmony_ci x1 = int(p1.fX * scale); 51cb93a386Sopenharmony_ci y1 = int(p1.fY * scale); 52cb93a386Sopenharmony_ci#endif 53cb93a386Sopenharmony_ci } 54cb93a386Sopenharmony_ci 55cb93a386Sopenharmony_ci int winding = 1; 56cb93a386Sopenharmony_ci 57cb93a386Sopenharmony_ci if (y0 > y1) { 58cb93a386Sopenharmony_ci using std::swap; 59cb93a386Sopenharmony_ci swap(x0, x1); 60cb93a386Sopenharmony_ci swap(y0, y1); 61cb93a386Sopenharmony_ci winding = -1; 62cb93a386Sopenharmony_ci } 63cb93a386Sopenharmony_ci 64cb93a386Sopenharmony_ci int top = SkFDot6Round(y0); 65cb93a386Sopenharmony_ci int bot = SkFDot6Round(y1); 66cb93a386Sopenharmony_ci 67cb93a386Sopenharmony_ci // are we a zero-height line? 68cb93a386Sopenharmony_ci if (top == bot) { 69cb93a386Sopenharmony_ci return 0; 70cb93a386Sopenharmony_ci } 71cb93a386Sopenharmony_ci // are we completely above or below the clip? 72cb93a386Sopenharmony_ci if (clip && (top >= clip->fBottom || bot <= clip->fTop)) { 73cb93a386Sopenharmony_ci return 0; 74cb93a386Sopenharmony_ci } 75cb93a386Sopenharmony_ci 76cb93a386Sopenharmony_ci SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 77cb93a386Sopenharmony_ci const SkFDot6 dy = SkEdge_Compute_DY(top, y0); 78cb93a386Sopenharmony_ci 79cb93a386Sopenharmony_ci fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 80cb93a386Sopenharmony_ci fDX = slope; 81cb93a386Sopenharmony_ci fFirstY = top; 82cb93a386Sopenharmony_ci fLastY = bot - 1; 83cb93a386Sopenharmony_ci fCurveCount = 0; 84cb93a386Sopenharmony_ci fWinding = SkToS8(winding); 85cb93a386Sopenharmony_ci fCurveShift = 0; 86cb93a386Sopenharmony_ci 87cb93a386Sopenharmony_ci if (clip) { 88cb93a386Sopenharmony_ci this->chopLineWithClip(*clip); 89cb93a386Sopenharmony_ci } 90cb93a386Sopenharmony_ci return 1; 91cb93a386Sopenharmony_ci} 92cb93a386Sopenharmony_ci 93cb93a386Sopenharmony_ci// called from a curve subclass 94cb93a386Sopenharmony_ciint SkEdge::updateLine(SkFixed x0, SkFixed y0, SkFixed x1, SkFixed y1) 95cb93a386Sopenharmony_ci{ 96cb93a386Sopenharmony_ci SkASSERT(fWinding == 1 || fWinding == -1); 97cb93a386Sopenharmony_ci SkASSERT(fCurveCount != 0); 98cb93a386Sopenharmony_ci// SkASSERT(fCurveShift != 0); 99cb93a386Sopenharmony_ci 100cb93a386Sopenharmony_ci y0 >>= 10; 101cb93a386Sopenharmony_ci y1 >>= 10; 102cb93a386Sopenharmony_ci 103cb93a386Sopenharmony_ci SkASSERT(y0 <= y1); 104cb93a386Sopenharmony_ci 105cb93a386Sopenharmony_ci int top = SkFDot6Round(y0); 106cb93a386Sopenharmony_ci int bot = SkFDot6Round(y1); 107cb93a386Sopenharmony_ci 108cb93a386Sopenharmony_ci// SkASSERT(top >= fFirstY); 109cb93a386Sopenharmony_ci 110cb93a386Sopenharmony_ci // are we a zero-height line? 111cb93a386Sopenharmony_ci if (top == bot) 112cb93a386Sopenharmony_ci return 0; 113cb93a386Sopenharmony_ci 114cb93a386Sopenharmony_ci x0 >>= 10; 115cb93a386Sopenharmony_ci x1 >>= 10; 116cb93a386Sopenharmony_ci 117cb93a386Sopenharmony_ci SkFixed slope = SkFDot6Div(x1 - x0, y1 - y0); 118cb93a386Sopenharmony_ci const SkFDot6 dy = SkEdge_Compute_DY(top, y0); 119cb93a386Sopenharmony_ci 120cb93a386Sopenharmony_ci fX = SkFDot6ToFixed(x0 + SkFixedMul(slope, dy)); // + SK_Fixed1/2 121cb93a386Sopenharmony_ci fDX = slope; 122cb93a386Sopenharmony_ci fFirstY = top; 123cb93a386Sopenharmony_ci fLastY = bot - 1; 124cb93a386Sopenharmony_ci 125cb93a386Sopenharmony_ci return 1; 126cb93a386Sopenharmony_ci} 127cb93a386Sopenharmony_ci 128cb93a386Sopenharmony_civoid SkEdge::chopLineWithClip(const SkIRect& clip) 129cb93a386Sopenharmony_ci{ 130cb93a386Sopenharmony_ci int top = fFirstY; 131cb93a386Sopenharmony_ci 132cb93a386Sopenharmony_ci SkASSERT(top < clip.fBottom); 133cb93a386Sopenharmony_ci 134cb93a386Sopenharmony_ci // clip the line to the top 135cb93a386Sopenharmony_ci if (top < clip.fTop) 136cb93a386Sopenharmony_ci { 137cb93a386Sopenharmony_ci SkASSERT(fLastY >= clip.fTop); 138cb93a386Sopenharmony_ci fX += fDX * (clip.fTop - top); 139cb93a386Sopenharmony_ci fFirstY = clip.fTop; 140cb93a386Sopenharmony_ci } 141cb93a386Sopenharmony_ci} 142cb93a386Sopenharmony_ci 143cb93a386Sopenharmony_ci/////////////////////////////////////////////////////////////////////////////// 144cb93a386Sopenharmony_ci 145cb93a386Sopenharmony_ci/* We store 1<<shift in a (signed) byte, so its maximum value is 1<<6 == 64. 146cb93a386Sopenharmony_ci Note that this limits the number of lines we use to approximate a curve. 147cb93a386Sopenharmony_ci If we need to increase this, we need to store fCurveCount in something 148cb93a386Sopenharmony_ci larger than int8_t. 149cb93a386Sopenharmony_ci*/ 150cb93a386Sopenharmony_ci#define MAX_COEFF_SHIFT 6 151cb93a386Sopenharmony_ci 152cb93a386Sopenharmony_cistatic inline SkFDot6 cheap_distance(SkFDot6 dx, SkFDot6 dy) 153cb93a386Sopenharmony_ci{ 154cb93a386Sopenharmony_ci dx = SkAbs32(dx); 155cb93a386Sopenharmony_ci dy = SkAbs32(dy); 156cb93a386Sopenharmony_ci // return max + min/2 157cb93a386Sopenharmony_ci if (dx > dy) 158cb93a386Sopenharmony_ci dx += dy >> 1; 159cb93a386Sopenharmony_ci else 160cb93a386Sopenharmony_ci dx = dy + (dx >> 1); 161cb93a386Sopenharmony_ci return dx; 162cb93a386Sopenharmony_ci} 163cb93a386Sopenharmony_ci 164cb93a386Sopenharmony_cistatic inline int diff_to_shift(SkFDot6 dx, SkFDot6 dy, int shiftAA = 2) 165cb93a386Sopenharmony_ci{ 166cb93a386Sopenharmony_ci // cheap calc of distance from center of p0-p2 to the center of the curve 167cb93a386Sopenharmony_ci SkFDot6 dist = cheap_distance(dx, dy); 168cb93a386Sopenharmony_ci 169cb93a386Sopenharmony_ci // shift down dist (it is currently in dot6) 170cb93a386Sopenharmony_ci // down by 3 should give us 1/8 pixel accuracy (assuming our dist is accurate...) 171cb93a386Sopenharmony_ci // this is chosen by heuristic: make it as big as possible (to minimize segments) 172cb93a386Sopenharmony_ci // ... but small enough so that our curves still look smooth 173cb93a386Sopenharmony_ci // When shift > 0, we're using AA and everything is scaled up so we can 174cb93a386Sopenharmony_ci // lower the accuracy. 175cb93a386Sopenharmony_ci dist = (dist + (1 << 4)) >> (3 + shiftAA); 176cb93a386Sopenharmony_ci 177cb93a386Sopenharmony_ci // each subdivision (shift value) cuts this dist (error) by 1/4 178cb93a386Sopenharmony_ci return (32 - SkCLZ(dist)) >> 1; 179cb93a386Sopenharmony_ci} 180cb93a386Sopenharmony_ci 181cb93a386Sopenharmony_cibool SkQuadraticEdge::setQuadraticWithoutUpdate(const SkPoint pts[3], int shift) { 182cb93a386Sopenharmony_ci SkFDot6 x0, y0, x1, y1, x2, y2; 183cb93a386Sopenharmony_ci 184cb93a386Sopenharmony_ci { 185cb93a386Sopenharmony_ci#ifdef SK_RASTERIZE_EVEN_ROUNDING 186cb93a386Sopenharmony_ci x0 = SkScalarRoundToFDot6(pts[0].fX, shift); 187cb93a386Sopenharmony_ci y0 = SkScalarRoundToFDot6(pts[0].fY, shift); 188cb93a386Sopenharmony_ci x1 = SkScalarRoundToFDot6(pts[1].fX, shift); 189cb93a386Sopenharmony_ci y1 = SkScalarRoundToFDot6(pts[1].fY, shift); 190cb93a386Sopenharmony_ci x2 = SkScalarRoundToFDot6(pts[2].fX, shift); 191cb93a386Sopenharmony_ci y2 = SkScalarRoundToFDot6(pts[2].fY, shift); 192cb93a386Sopenharmony_ci#else 193cb93a386Sopenharmony_ci float scale = float(1 << (shift + 6)); 194cb93a386Sopenharmony_ci x0 = int(pts[0].fX * scale); 195cb93a386Sopenharmony_ci y0 = int(pts[0].fY * scale); 196cb93a386Sopenharmony_ci x1 = int(pts[1].fX * scale); 197cb93a386Sopenharmony_ci y1 = int(pts[1].fY * scale); 198cb93a386Sopenharmony_ci x2 = int(pts[2].fX * scale); 199cb93a386Sopenharmony_ci y2 = int(pts[2].fY * scale); 200cb93a386Sopenharmony_ci#endif 201cb93a386Sopenharmony_ci } 202cb93a386Sopenharmony_ci 203cb93a386Sopenharmony_ci int winding = 1; 204cb93a386Sopenharmony_ci if (y0 > y2) 205cb93a386Sopenharmony_ci { 206cb93a386Sopenharmony_ci using std::swap; 207cb93a386Sopenharmony_ci swap(x0, x2); 208cb93a386Sopenharmony_ci swap(y0, y2); 209cb93a386Sopenharmony_ci winding = -1; 210cb93a386Sopenharmony_ci } 211cb93a386Sopenharmony_ci SkASSERT(y0 <= y1 && y1 <= y2); 212cb93a386Sopenharmony_ci 213cb93a386Sopenharmony_ci int top = SkFDot6Round(y0); 214cb93a386Sopenharmony_ci int bot = SkFDot6Round(y2); 215cb93a386Sopenharmony_ci 216cb93a386Sopenharmony_ci // are we a zero-height quad (line)? 217cb93a386Sopenharmony_ci if (top == bot) 218cb93a386Sopenharmony_ci return 0; 219cb93a386Sopenharmony_ci 220cb93a386Sopenharmony_ci // compute number of steps needed (1 << shift) 221cb93a386Sopenharmony_ci { 222cb93a386Sopenharmony_ci SkFDot6 dx = (SkLeftShift(x1, 1) - x0 - x2) >> 2; 223cb93a386Sopenharmony_ci SkFDot6 dy = (SkLeftShift(y1, 1) - y0 - y2) >> 2; 224cb93a386Sopenharmony_ci // This is a little confusing: 225cb93a386Sopenharmony_ci // before this line, shift is the scale up factor for AA; 226cb93a386Sopenharmony_ci // after this line, shift is the fCurveShift. 227cb93a386Sopenharmony_ci shift = diff_to_shift(dx, dy, shift); 228cb93a386Sopenharmony_ci SkASSERT(shift >= 0); 229cb93a386Sopenharmony_ci } 230cb93a386Sopenharmony_ci // need at least 1 subdivision for our bias trick 231cb93a386Sopenharmony_ci if (shift == 0) { 232cb93a386Sopenharmony_ci shift = 1; 233cb93a386Sopenharmony_ci } else if (shift > MAX_COEFF_SHIFT) { 234cb93a386Sopenharmony_ci shift = MAX_COEFF_SHIFT; 235cb93a386Sopenharmony_ci } 236cb93a386Sopenharmony_ci 237cb93a386Sopenharmony_ci fWinding = SkToS8(winding); 238cb93a386Sopenharmony_ci //fCubicDShift only set for cubics 239cb93a386Sopenharmony_ci fCurveCount = SkToS8(1 << shift); 240cb93a386Sopenharmony_ci 241cb93a386Sopenharmony_ci /* 242cb93a386Sopenharmony_ci * We want to reformulate into polynomial form, to make it clear how we 243cb93a386Sopenharmony_ci * should forward-difference. 244cb93a386Sopenharmony_ci * 245cb93a386Sopenharmony_ci * p0 (1 - t)^2 + p1 t(1 - t) + p2 t^2 ==> At^2 + Bt + C 246cb93a386Sopenharmony_ci * 247cb93a386Sopenharmony_ci * A = p0 - 2p1 + p2 248cb93a386Sopenharmony_ci * B = 2(p1 - p0) 249cb93a386Sopenharmony_ci * C = p0 250cb93a386Sopenharmony_ci * 251cb93a386Sopenharmony_ci * Our caller must have constrained our inputs (p0..p2) to all fit into 252cb93a386Sopenharmony_ci * 16.16. However, as seen above, we sometimes compute values that can be 253cb93a386Sopenharmony_ci * larger (e.g. B = 2*(p1 - p0)). To guard against overflow, we will store 254cb93a386Sopenharmony_ci * A and B at 1/2 of their actual value, and just apply a 2x scale during 255cb93a386Sopenharmony_ci * application in updateQuadratic(). Hence we store (shift - 1) in 256cb93a386Sopenharmony_ci * fCurveShift. 257cb93a386Sopenharmony_ci */ 258cb93a386Sopenharmony_ci 259cb93a386Sopenharmony_ci fCurveShift = SkToU8(shift - 1); 260cb93a386Sopenharmony_ci 261cb93a386Sopenharmony_ci SkFixed A = SkFDot6ToFixedDiv2(x0 - x1 - x1 + x2); // 1/2 the real value 262cb93a386Sopenharmony_ci SkFixed B = SkFDot6ToFixed(x1 - x0); // 1/2 the real value 263cb93a386Sopenharmony_ci 264cb93a386Sopenharmony_ci fQx = SkFDot6ToFixed(x0); 265cb93a386Sopenharmony_ci fQDx = B + (A >> shift); // biased by shift 266cb93a386Sopenharmony_ci fQDDx = A >> (shift - 1); // biased by shift 267cb93a386Sopenharmony_ci 268cb93a386Sopenharmony_ci A = SkFDot6ToFixedDiv2(y0 - y1 - y1 + y2); // 1/2 the real value 269cb93a386Sopenharmony_ci B = SkFDot6ToFixed(y1 - y0); // 1/2 the real value 270cb93a386Sopenharmony_ci 271cb93a386Sopenharmony_ci fQy = SkFDot6ToFixed(y0); 272cb93a386Sopenharmony_ci fQDy = B + (A >> shift); // biased by shift 273cb93a386Sopenharmony_ci fQDDy = A >> (shift - 1); // biased by shift 274cb93a386Sopenharmony_ci 275cb93a386Sopenharmony_ci fQLastX = SkFDot6ToFixed(x2); 276cb93a386Sopenharmony_ci fQLastY = SkFDot6ToFixed(y2); 277cb93a386Sopenharmony_ci 278cb93a386Sopenharmony_ci return true; 279cb93a386Sopenharmony_ci} 280cb93a386Sopenharmony_ci 281cb93a386Sopenharmony_ciint SkQuadraticEdge::setQuadratic(const SkPoint pts[3], int shift) { 282cb93a386Sopenharmony_ci if (!setQuadraticWithoutUpdate(pts, shift)) { 283cb93a386Sopenharmony_ci return 0; 284cb93a386Sopenharmony_ci } 285cb93a386Sopenharmony_ci return this->updateQuadratic(); 286cb93a386Sopenharmony_ci} 287cb93a386Sopenharmony_ci 288cb93a386Sopenharmony_ciint SkQuadraticEdge::updateQuadratic() 289cb93a386Sopenharmony_ci{ 290cb93a386Sopenharmony_ci int success; 291cb93a386Sopenharmony_ci int count = fCurveCount; 292cb93a386Sopenharmony_ci SkFixed oldx = fQx; 293cb93a386Sopenharmony_ci SkFixed oldy = fQy; 294cb93a386Sopenharmony_ci SkFixed dx = fQDx; 295cb93a386Sopenharmony_ci SkFixed dy = fQDy; 296cb93a386Sopenharmony_ci SkFixed newx, newy; 297cb93a386Sopenharmony_ci int shift = fCurveShift; 298cb93a386Sopenharmony_ci 299cb93a386Sopenharmony_ci SkASSERT(count > 0); 300cb93a386Sopenharmony_ci 301cb93a386Sopenharmony_ci do { 302cb93a386Sopenharmony_ci if (--count > 0) 303cb93a386Sopenharmony_ci { 304cb93a386Sopenharmony_ci newx = oldx + (dx >> shift); 305cb93a386Sopenharmony_ci dx += fQDDx; 306cb93a386Sopenharmony_ci newy = oldy + (dy >> shift); 307cb93a386Sopenharmony_ci dy += fQDDy; 308cb93a386Sopenharmony_ci } 309cb93a386Sopenharmony_ci else // last segment 310cb93a386Sopenharmony_ci { 311cb93a386Sopenharmony_ci newx = fQLastX; 312cb93a386Sopenharmony_ci newy = fQLastY; 313cb93a386Sopenharmony_ci } 314cb93a386Sopenharmony_ci success = this->updateLine(oldx, oldy, newx, newy); 315cb93a386Sopenharmony_ci oldx = newx; 316cb93a386Sopenharmony_ci oldy = newy; 317cb93a386Sopenharmony_ci } while (count > 0 && !success); 318cb93a386Sopenharmony_ci 319cb93a386Sopenharmony_ci fQx = newx; 320cb93a386Sopenharmony_ci fQy = newy; 321cb93a386Sopenharmony_ci fQDx = dx; 322cb93a386Sopenharmony_ci fQDy = dy; 323cb93a386Sopenharmony_ci fCurveCount = SkToS8(count); 324cb93a386Sopenharmony_ci return success; 325cb93a386Sopenharmony_ci} 326cb93a386Sopenharmony_ci 327cb93a386Sopenharmony_ci///////////////////////////////////////////////////////////////////////// 328cb93a386Sopenharmony_ci 329cb93a386Sopenharmony_cistatic inline int SkFDot6UpShift(SkFDot6 x, int upShift) { 330cb93a386Sopenharmony_ci SkASSERT((SkLeftShift(x, upShift) >> upShift) == x); 331cb93a386Sopenharmony_ci return SkLeftShift(x, upShift); 332cb93a386Sopenharmony_ci} 333cb93a386Sopenharmony_ci 334cb93a386Sopenharmony_ci/* f(1/3) = (8a + 12b + 6c + d) / 27 335cb93a386Sopenharmony_ci f(2/3) = (a + 6b + 12c + 8d) / 27 336cb93a386Sopenharmony_ci 337cb93a386Sopenharmony_ci f(1/3)-b = (8a - 15b + 6c + d) / 27 338cb93a386Sopenharmony_ci f(2/3)-c = (a + 6b - 15c + 8d) / 27 339cb93a386Sopenharmony_ci 340cb93a386Sopenharmony_ci use 16/512 to approximate 1/27 341cb93a386Sopenharmony_ci*/ 342cb93a386Sopenharmony_cistatic SkFDot6 cubic_delta_from_line(SkFDot6 a, SkFDot6 b, SkFDot6 c, SkFDot6 d) 343cb93a386Sopenharmony_ci{ 344cb93a386Sopenharmony_ci // since our parameters may be negative, we don't use << to avoid ASAN warnings 345cb93a386Sopenharmony_ci SkFDot6 oneThird = (a*8 - b*15 + 6*c + d) * 19 >> 9; 346cb93a386Sopenharmony_ci SkFDot6 twoThird = (a + 6*b - c*15 + d*8) * 19 >> 9; 347cb93a386Sopenharmony_ci 348cb93a386Sopenharmony_ci return std::max(SkAbs32(oneThird), SkAbs32(twoThird)); 349cb93a386Sopenharmony_ci} 350cb93a386Sopenharmony_ci 351cb93a386Sopenharmony_cibool SkCubicEdge::setCubicWithoutUpdate(const SkPoint pts[4], int shift, bool sortY) { 352cb93a386Sopenharmony_ci SkFDot6 x0, y0, x1, y1, x2, y2, x3, y3; 353cb93a386Sopenharmony_ci 354cb93a386Sopenharmony_ci { 355cb93a386Sopenharmony_ci#ifdef SK_RASTERIZE_EVEN_ROUNDING 356cb93a386Sopenharmony_ci x0 = SkScalarRoundToFDot6(pts[0].fX, shift); 357cb93a386Sopenharmony_ci y0 = SkScalarRoundToFDot6(pts[0].fY, shift); 358cb93a386Sopenharmony_ci x1 = SkScalarRoundToFDot6(pts[1].fX, shift); 359cb93a386Sopenharmony_ci y1 = SkScalarRoundToFDot6(pts[1].fY, shift); 360cb93a386Sopenharmony_ci x2 = SkScalarRoundToFDot6(pts[2].fX, shift); 361cb93a386Sopenharmony_ci y2 = SkScalarRoundToFDot6(pts[2].fY, shift); 362cb93a386Sopenharmony_ci x3 = SkScalarRoundToFDot6(pts[3].fX, shift); 363cb93a386Sopenharmony_ci y3 = SkScalarRoundToFDot6(pts[3].fY, shift); 364cb93a386Sopenharmony_ci#else 365cb93a386Sopenharmony_ci float scale = float(1 << (shift + 6)); 366cb93a386Sopenharmony_ci x0 = int(pts[0].fX * scale); 367cb93a386Sopenharmony_ci y0 = int(pts[0].fY * scale); 368cb93a386Sopenharmony_ci x1 = int(pts[1].fX * scale); 369cb93a386Sopenharmony_ci y1 = int(pts[1].fY * scale); 370cb93a386Sopenharmony_ci x2 = int(pts[2].fX * scale); 371cb93a386Sopenharmony_ci y2 = int(pts[2].fY * scale); 372cb93a386Sopenharmony_ci x3 = int(pts[3].fX * scale); 373cb93a386Sopenharmony_ci y3 = int(pts[3].fY * scale); 374cb93a386Sopenharmony_ci#endif 375cb93a386Sopenharmony_ci } 376cb93a386Sopenharmony_ci 377cb93a386Sopenharmony_ci int winding = 1; 378cb93a386Sopenharmony_ci if (sortY && y0 > y3) 379cb93a386Sopenharmony_ci { 380cb93a386Sopenharmony_ci using std::swap; 381cb93a386Sopenharmony_ci swap(x0, x3); 382cb93a386Sopenharmony_ci swap(x1, x2); 383cb93a386Sopenharmony_ci swap(y0, y3); 384cb93a386Sopenharmony_ci swap(y1, y2); 385cb93a386Sopenharmony_ci winding = -1; 386cb93a386Sopenharmony_ci } 387cb93a386Sopenharmony_ci 388cb93a386Sopenharmony_ci int top = SkFDot6Round(y0); 389cb93a386Sopenharmony_ci int bot = SkFDot6Round(y3); 390cb93a386Sopenharmony_ci 391cb93a386Sopenharmony_ci // are we a zero-height cubic (line)? 392cb93a386Sopenharmony_ci if (sortY && top == bot) 393cb93a386Sopenharmony_ci return 0; 394cb93a386Sopenharmony_ci 395cb93a386Sopenharmony_ci // compute number of steps needed (1 << shift) 396cb93a386Sopenharmony_ci { 397cb93a386Sopenharmony_ci // Can't use (center of curve - center of baseline), since center-of-curve 398cb93a386Sopenharmony_ci // need not be the max delta from the baseline (it could even be coincident) 399cb93a386Sopenharmony_ci // so we try just looking at the two off-curve points 400cb93a386Sopenharmony_ci SkFDot6 dx = cubic_delta_from_line(x0, x1, x2, x3); 401cb93a386Sopenharmony_ci SkFDot6 dy = cubic_delta_from_line(y0, y1, y2, y3); 402cb93a386Sopenharmony_ci // add 1 (by observation) 403cb93a386Sopenharmony_ci shift = diff_to_shift(dx, dy) + 1; 404cb93a386Sopenharmony_ci } 405cb93a386Sopenharmony_ci // need at least 1 subdivision for our bias trick 406cb93a386Sopenharmony_ci SkASSERT(shift > 0); 407cb93a386Sopenharmony_ci if (shift > MAX_COEFF_SHIFT) { 408cb93a386Sopenharmony_ci shift = MAX_COEFF_SHIFT; 409cb93a386Sopenharmony_ci } 410cb93a386Sopenharmony_ci 411cb93a386Sopenharmony_ci /* Since our in coming data is initially shifted down by 10 (or 8 in 412cb93a386Sopenharmony_ci antialias). That means the most we can shift up is 8. However, we 413cb93a386Sopenharmony_ci compute coefficients with a 3*, so the safest upshift is really 6 414cb93a386Sopenharmony_ci */ 415cb93a386Sopenharmony_ci int upShift = 6; // largest safe value 416cb93a386Sopenharmony_ci int downShift = shift + upShift - 10; 417cb93a386Sopenharmony_ci if (downShift < 0) { 418cb93a386Sopenharmony_ci downShift = 0; 419cb93a386Sopenharmony_ci upShift = 10 - shift; 420cb93a386Sopenharmony_ci } 421cb93a386Sopenharmony_ci 422cb93a386Sopenharmony_ci fWinding = SkToS8(winding); 423cb93a386Sopenharmony_ci fCurveCount = SkToS8(SkLeftShift(-1, shift)); 424cb93a386Sopenharmony_ci fCurveShift = SkToU8(shift); 425cb93a386Sopenharmony_ci fCubicDShift = SkToU8(downShift); 426cb93a386Sopenharmony_ci 427cb93a386Sopenharmony_ci SkFixed B = SkFDot6UpShift(3 * (x1 - x0), upShift); 428cb93a386Sopenharmony_ci SkFixed C = SkFDot6UpShift(3 * (x0 - x1 - x1 + x2), upShift); 429cb93a386Sopenharmony_ci SkFixed D = SkFDot6UpShift(x3 + 3 * (x1 - x2) - x0, upShift); 430cb93a386Sopenharmony_ci 431cb93a386Sopenharmony_ci fCx = SkFDot6ToFixed(x0); 432cb93a386Sopenharmony_ci fCDx = B + (C >> shift) + (D >> 2*shift); // biased by shift 433cb93a386Sopenharmony_ci fCDDx = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 434cb93a386Sopenharmony_ci fCDDDx = 3*D >> (shift - 1); // biased by 2*shift 435cb93a386Sopenharmony_ci 436cb93a386Sopenharmony_ci B = SkFDot6UpShift(3 * (y1 - y0), upShift); 437cb93a386Sopenharmony_ci C = SkFDot6UpShift(3 * (y0 - y1 - y1 + y2), upShift); 438cb93a386Sopenharmony_ci D = SkFDot6UpShift(y3 + 3 * (y1 - y2) - y0, upShift); 439cb93a386Sopenharmony_ci 440cb93a386Sopenharmony_ci fCy = SkFDot6ToFixed(y0); 441cb93a386Sopenharmony_ci fCDy = B + (C >> shift) + (D >> 2*shift); // biased by shift 442cb93a386Sopenharmony_ci fCDDy = 2*C + (3*D >> (shift - 1)); // biased by 2*shift 443cb93a386Sopenharmony_ci fCDDDy = 3*D >> (shift - 1); // biased by 2*shift 444cb93a386Sopenharmony_ci 445cb93a386Sopenharmony_ci fCLastX = SkFDot6ToFixed(x3); 446cb93a386Sopenharmony_ci fCLastY = SkFDot6ToFixed(y3); 447cb93a386Sopenharmony_ci 448cb93a386Sopenharmony_ci return true; 449cb93a386Sopenharmony_ci} 450cb93a386Sopenharmony_ci 451cb93a386Sopenharmony_ciint SkCubicEdge::setCubic(const SkPoint pts[4], int shift) { 452cb93a386Sopenharmony_ci if (!this->setCubicWithoutUpdate(pts, shift)) { 453cb93a386Sopenharmony_ci return 0; 454cb93a386Sopenharmony_ci } 455cb93a386Sopenharmony_ci return this->updateCubic(); 456cb93a386Sopenharmony_ci} 457cb93a386Sopenharmony_ci 458cb93a386Sopenharmony_ciint SkCubicEdge::updateCubic() 459cb93a386Sopenharmony_ci{ 460cb93a386Sopenharmony_ci int success; 461cb93a386Sopenharmony_ci int count = fCurveCount; 462cb93a386Sopenharmony_ci SkFixed oldx = fCx; 463cb93a386Sopenharmony_ci SkFixed oldy = fCy; 464cb93a386Sopenharmony_ci SkFixed newx, newy; 465cb93a386Sopenharmony_ci const int ddshift = fCurveShift; 466cb93a386Sopenharmony_ci const int dshift = fCubicDShift; 467cb93a386Sopenharmony_ci 468cb93a386Sopenharmony_ci SkASSERT(count < 0); 469cb93a386Sopenharmony_ci 470cb93a386Sopenharmony_ci do { 471cb93a386Sopenharmony_ci if (++count < 0) 472cb93a386Sopenharmony_ci { 473cb93a386Sopenharmony_ci newx = oldx + (fCDx >> dshift); 474cb93a386Sopenharmony_ci fCDx += fCDDx >> ddshift; 475cb93a386Sopenharmony_ci fCDDx += fCDDDx; 476cb93a386Sopenharmony_ci 477cb93a386Sopenharmony_ci newy = oldy + (fCDy >> dshift); 478cb93a386Sopenharmony_ci fCDy += fCDDy >> ddshift; 479cb93a386Sopenharmony_ci fCDDy += fCDDDy; 480cb93a386Sopenharmony_ci } 481cb93a386Sopenharmony_ci else // last segment 482cb93a386Sopenharmony_ci { 483cb93a386Sopenharmony_ci // SkDebugf("LastX err=%d, LastY err=%d\n", (oldx + (fCDx >> shift) - fLastX), (oldy + (fCDy >> shift) - fLastY)); 484cb93a386Sopenharmony_ci newx = fCLastX; 485cb93a386Sopenharmony_ci newy = fCLastY; 486cb93a386Sopenharmony_ci } 487cb93a386Sopenharmony_ci 488cb93a386Sopenharmony_ci // we want to say SkASSERT(oldy <= newy), but our finite fixedpoint 489cb93a386Sopenharmony_ci // doesn't always achieve that, so we have to explicitly pin it here. 490cb93a386Sopenharmony_ci if (newy < oldy) { 491cb93a386Sopenharmony_ci newy = oldy; 492cb93a386Sopenharmony_ci } 493cb93a386Sopenharmony_ci 494cb93a386Sopenharmony_ci success = this->updateLine(oldx, oldy, newx, newy); 495cb93a386Sopenharmony_ci oldx = newx; 496cb93a386Sopenharmony_ci oldy = newy; 497cb93a386Sopenharmony_ci } while (count < 0 && !success); 498cb93a386Sopenharmony_ci 499cb93a386Sopenharmony_ci fCx = newx; 500cb93a386Sopenharmony_ci fCy = newy; 501cb93a386Sopenharmony_ci fCurveCount = SkToS8(count); 502cb93a386Sopenharmony_ci return success; 503cb93a386Sopenharmony_ci} 504