1/* 2 * Copyright 2011 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "include/core/SkImageEncoder.h" 9#include "include/core/SkPaint.h" 10#include "include/core/SkShader.h" 11#include "include/private/SkColorData.h" 12#include "include/private/SkMacros.h" 13#include "include/private/SkTPin.h" 14#include "src/core/SkBitmapCache.h" 15#include "src/core/SkBitmapProcState.h" 16#include "src/core/SkMipmap.h" 17#include "src/core/SkMipmapAccessor.h" 18#include "src/core/SkOpts.h" 19#include "src/core/SkResourceCache.h" 20 21// One-stop-shop shader for, 22// - nearest-neighbor sampling (_nofilter_), 23// - clamp tiling in X and Y both (Clamp_), 24// - with at most a scale and translate matrix (_DX_), 25// - and no extra alpha applied (_opaque_), 26// - sampling from 8888 (_S32_) and drawing to 8888 (_S32_). 27static void Clamp_S32_opaque_D32_nofilter_DX_shaderproc(const void* sIn, int x, int y, 28 SkPMColor* dst, int count) { 29 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 30 SkASSERT(s.fInvMatrix.isScaleTranslate()); 31 SkASSERT(s.fAlphaScale == 256); 32 33 const unsigned maxX = s.fPixmap.width() - 1; 34 SkFractionalInt fx; 35 int dstY; 36 { 37 const SkBitmapProcStateAutoMapper mapper(s, x, y); 38 const unsigned maxY = s.fPixmap.height() - 1; 39 dstY = SkTPin<int>(mapper.intY(), 0, maxY); 40 fx = mapper.fractionalIntX(); 41 } 42 43 const SkPMColor* src = s.fPixmap.addr32(0, dstY); 44 const SkFractionalInt dx = s.fInvSxFractionalInt; 45 46 // Check if we're safely inside [0...maxX] so no need to clamp each computed index. 47 // 48 if ((uint64_t)SkFractionalIntToInt(fx) <= maxX && 49 (uint64_t)SkFractionalIntToInt(fx + dx * (count - 1)) <= maxX) 50 { 51 int count4 = count >> 2; 52 for (int i = 0; i < count4; ++i) { 53 SkPMColor src0 = src[SkFractionalIntToInt(fx)]; fx += dx; 54 SkPMColor src1 = src[SkFractionalIntToInt(fx)]; fx += dx; 55 SkPMColor src2 = src[SkFractionalIntToInt(fx)]; fx += dx; 56 SkPMColor src3 = src[SkFractionalIntToInt(fx)]; fx += dx; 57 dst[0] = src0; 58 dst[1] = src1; 59 dst[2] = src2; 60 dst[3] = src3; 61 dst += 4; 62 } 63 for (int i = (count4 << 2); i < count; ++i) { 64 unsigned index = SkFractionalIntToInt(fx); 65 SkASSERT(index <= maxX); 66 *dst++ = src[index]; 67 fx += dx; 68 } 69 } else { 70 for (int i = 0; i < count; ++i) { 71 dst[i] = src[SkTPin<int>(SkFractionalIntToInt(fx), 0, maxX)]; 72 fx += dx; 73 } 74 } 75} 76 77static void S32_alpha_D32_nofilter_DX(const SkBitmapProcState& s, 78 const uint32_t* xy, int count, SkPMColor* colors) { 79 SkASSERT(count > 0 && colors != nullptr); 80 SkASSERT(s.fInvMatrix.isScaleTranslate()); 81 SkASSERT(!s.fBilerp); 82 SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); 83 SkASSERT(s.fAlphaScale <= 256); 84 85 // xy is a 32-bit y-coordinate, followed by 16-bit x-coordinates. 86 unsigned y = *xy++; 87 SkASSERT(y < (unsigned)s.fPixmap.height()); 88 89 auto row = (const SkPMColor*)( (const char*)s.fPixmap.addr() + y * s.fPixmap.rowBytes() ); 90 91 if (1 == s.fPixmap.width()) { 92 sk_memset32(colors, SkAlphaMulQ(row[0], s.fAlphaScale), count); 93 return; 94 } 95 96 // Step 4 xs == 2 uint32_t at a time. 97 while (count >= 4) { 98 uint32_t x01 = *xy++, 99 x23 = *xy++; 100 101 SkPMColor p0 = row[UNPACK_PRIMARY_SHORT (x01)]; 102 SkPMColor p1 = row[UNPACK_SECONDARY_SHORT(x01)]; 103 SkPMColor p2 = row[UNPACK_PRIMARY_SHORT (x23)]; 104 SkPMColor p3 = row[UNPACK_SECONDARY_SHORT(x23)]; 105 106 *colors++ = SkAlphaMulQ(p0, s.fAlphaScale); 107 *colors++ = SkAlphaMulQ(p1, s.fAlphaScale); 108 *colors++ = SkAlphaMulQ(p2, s.fAlphaScale); 109 *colors++ = SkAlphaMulQ(p3, s.fAlphaScale); 110 111 count -= 4; 112 } 113 114 // Step 1 x == 1 uint16_t at a time. 115 auto x = (const uint16_t*)xy; 116 while (count --> 0) { 117 *colors++ = SkAlphaMulQ(row[*x++], s.fAlphaScale); 118 } 119} 120 121static void S32_alpha_D32_nofilter_DXDY(const SkBitmapProcState& s, 122 const uint32_t* xy, int count, SkPMColor* colors) { 123 SkASSERT(count > 0 && colors != nullptr); 124 SkASSERT(!s.fBilerp); 125 SkASSERT(4 == s.fPixmap.info().bytesPerPixel()); 126 SkASSERT(s.fAlphaScale <= 256); 127 128 auto src = (const char*)s.fPixmap.addr(); 129 size_t rb = s.fPixmap.rowBytes(); 130 131 while (count --> 0) { 132 uint32_t XY = *xy++, 133 x = XY & 0xffff, 134 y = XY >> 16; 135 SkASSERT(x < (unsigned)s.fPixmap.width ()); 136 SkASSERT(y < (unsigned)s.fPixmap.height()); 137 *colors++ = ((const SkPMColor*)(src + y*rb))[x]; 138 } 139} 140 141SkBitmapProcState::SkBitmapProcState(const SkImage_Base* image, SkTileMode tmx, SkTileMode tmy) 142 : fImage(image) 143 , fTileModeX(tmx) 144 , fTileModeY(tmy) 145{} 146 147// true iff the matrix has a scale and no more than an optional translate. 148static bool matrix_only_scale_translate(const SkMatrix& m) { 149 return (m.getType() & ~SkMatrix::kTranslate_Mask) == SkMatrix::kScale_Mask; 150} 151 152/** 153 * For the purposes of drawing bitmaps, if a matrix is "almost" translate 154 * go ahead and treat it as if it were, so that subsequent code can go fast. 155 */ 156static bool just_trans_general(const SkMatrix& matrix) { 157 SkASSERT(matrix_only_scale_translate(matrix)); 158 159 const SkScalar tol = SK_Scalar1 / 32768; 160 161 return SkScalarNearlyZero(matrix[SkMatrix::kMScaleX] - SK_Scalar1, tol) 162 && SkScalarNearlyZero(matrix[SkMatrix::kMScaleY] - SK_Scalar1, tol); 163} 164 165/** 166 * Determine if the matrix can be treated as integral-only-translate, 167 * for the purpose of filtering. 168 */ 169static bool just_trans_integral(const SkMatrix& m) { 170 static constexpr SkScalar tol = SK_Scalar1 / 256; 171 172 return m.getType() <= SkMatrix::kTranslate_Mask 173 && SkScalarNearlyEqual(m.getTranslateX(), SkScalarRoundToScalar(m.getTranslateX()), tol) 174 && SkScalarNearlyEqual(m.getTranslateY(), SkScalarRoundToScalar(m.getTranslateY()), tol); 175} 176 177static bool valid_for_filtering(unsigned dimension) { 178 // for filtering, width and height must fit in 14bits, since we use steal 179 // 2 bits from each to store our 4bit subpixel data 180 return (dimension & ~0x3FFF) == 0; 181} 182 183bool SkBitmapProcState::init(const SkMatrix& inv, SkAlpha paintAlpha, 184 const SkSamplingOptions& sampling) { 185 SkASSERT(!inv.hasPerspective()); 186 SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || inv.isScaleTranslate()); 187 SkASSERT(!sampling.useCubic); 188 SkASSERT(sampling.mipmap != SkMipmapMode::kLinear); 189 190 fPixmap.reset(); 191 fInvMatrix = inv; 192 fBilerp = false; 193 194 auto* access = SkMipmapAccessor::Make(&fAlloc, (const SkImage*)fImage, inv, sampling.mipmap); 195 if (!access) { 196 return false; 197 } 198 std::tie(fPixmap, fInvMatrix) = access->level(); 199 200 fPaintAlpha = paintAlpha; 201 fBilerp = sampling.filter == SkFilterMode::kLinear; 202 SkASSERT(fPixmap.addr()); 203 204 bool integral_translate_only = just_trans_integral(fInvMatrix); 205 if (!integral_translate_only) { 206 // Most of the scanline procs deal with "unit" texture coordinates, as this 207 // makes it easy to perform tiling modes (repeat = (x & 0xFFFF)). To generate 208 // those, we divide the matrix by its dimensions here. 209 // 210 // We don't do this if we're either trivial (can ignore the matrix) or clamping 211 // in both X and Y since clamping to width,height is just as easy as to 0xFFFF. 212 213 if (fTileModeX != SkTileMode::kClamp || fTileModeY != SkTileMode::kClamp) { 214 SkMatrixPriv::PostIDiv(&fInvMatrix, fPixmap.width(), fPixmap.height()); 215 } 216 217 // Now that all possible changes to the matrix have taken place, check 218 // to see if we're really close to a no-scale matrix. If so, explicitly 219 // set it to be so. Subsequent code may inspect this matrix to choose 220 // a faster path in this case. 221 222 // This code will only execute if the matrix has some scale component; 223 // if it's already pure translate then we won't do this inversion. 224 225 if (matrix_only_scale_translate(fInvMatrix)) { 226 SkMatrix forward; 227 if (fInvMatrix.invert(&forward) && just_trans_general(forward)) { 228 fInvMatrix.setTranslate(-forward.getTranslateX(), -forward.getTranslateY()); 229 } 230 } 231 232 // Recompute the flag after matrix adjustments. 233 integral_translate_only = just_trans_integral(fInvMatrix); 234 } 235 236 if (fBilerp && 237 (!valid_for_filtering(fPixmap.width() | fPixmap.height()) || integral_translate_only)) { 238 fBilerp = false; 239 } 240 241 return true; 242} 243 244/* 245 * Analyze filter-quality and matrix, and decide how to implement that. 246 * 247 * In general, we cascade down the request level [ High ... None ] 248 * - for a given level, if we can fulfill it, fine, else 249 * - else we downgrade to the next lower level and try again. 250 * We can always fulfill requests for Low and None 251 * - sometimes we will "ignore" Low and give None, but this is likely a legacy perf hack 252 * and may be removed. 253 */ 254bool SkBitmapProcState::chooseProcs() { 255 SkASSERT(!fInvMatrix.hasPerspective()); 256 SkASSERT(SkOpts::S32_alpha_D32_filter_DXDY || fInvMatrix.isScaleTranslate()); 257 SkASSERT(fPixmap.colorType() == kN32_SkColorType); 258 SkASSERT(fPixmap.alphaType() == kPremul_SkAlphaType || 259 fPixmap.alphaType() == kOpaque_SkAlphaType); 260 261 SkASSERT(fTileModeX != SkTileMode::kDecal); 262 263 fInvProc = SkMatrixPriv::GetMapXYProc(fInvMatrix); 264 fInvSxFractionalInt = SkScalarToFractionalInt(fInvMatrix.getScaleX()); 265 fInvKyFractionalInt = SkScalarToFractionalInt(fInvMatrix.getSkewY ()); 266 267 fAlphaScale = SkAlpha255To256(fPaintAlpha); 268 269 bool translate_only = (fInvMatrix.getType() & ~SkMatrix::kTranslate_Mask) == 0; 270 fMatrixProc = this->chooseMatrixProc(translate_only); 271 SkASSERT(fMatrixProc); 272 273 if (fInvMatrix.isScaleTranslate()) { 274 fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DX : S32_alpha_D32_nofilter_DX ; 275 } else { 276 fSampleProc32 = fBilerp ? SkOpts::S32_alpha_D32_filter_DXDY : S32_alpha_D32_nofilter_DXDY; 277 } 278 SkASSERT(fSampleProc32); 279 280 // our special-case shaderprocs 281 // TODO: move this one into chooseShaderProc32() or pull all that in here. 282 if (fAlphaScale == 256 283 && !fBilerp 284 && SkTileMode::kClamp == fTileModeX 285 && SkTileMode::kClamp == fTileModeY 286 && fInvMatrix.isScaleTranslate()) { 287 fShaderProc32 = Clamp_S32_opaque_D32_nofilter_DX_shaderproc; 288 } else { 289 fShaderProc32 = this->chooseShaderProc32(); 290 } 291 292 return true; 293} 294 295static void Clamp_S32_D32_nofilter_trans_shaderproc(const void* sIn, 296 int x, int y, 297 SkPMColor* colors, 298 int count) { 299 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 300 SkASSERT(s.fInvMatrix.isTranslate()); 301 SkASSERT(count > 0 && colors != nullptr); 302 SkASSERT(!s.fBilerp); 303 304 const int maxX = s.fPixmap.width() - 1; 305 const int maxY = s.fPixmap.height() - 1; 306 int ix = s.fFilterOneX + x; 307 int iy = SkTPin(s.fFilterOneY + y, 0, maxY); 308 const SkPMColor* row = s.fPixmap.addr32(0, iy); 309 310 // clamp to the left 311 if (ix < 0) { 312 int n = std::min(-ix, count); 313 sk_memset32(colors, row[0], n); 314 count -= n; 315 if (0 == count) { 316 return; 317 } 318 colors += n; 319 SkASSERT(-ix == n); 320 ix = 0; 321 } 322 // copy the middle 323 if (ix <= maxX) { 324 int n = std::min(maxX - ix + 1, count); 325 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 326 count -= n; 327 if (0 == count) { 328 return; 329 } 330 colors += n; 331 } 332 SkASSERT(count > 0); 333 // clamp to the right 334 sk_memset32(colors, row[maxX], count); 335} 336 337static inline int sk_int_mod(int x, int n) { 338 SkASSERT(n > 0); 339 if ((unsigned)x >= (unsigned)n) { 340 if (x < 0) { 341 x = n + ~(~x % n); 342 } else { 343 x = x % n; 344 } 345 } 346 return x; 347} 348 349static inline int sk_int_mirror(int x, int n) { 350 x = sk_int_mod(x, 2 * n); 351 if (x >= n) { 352 x = n + ~(x - n); 353 } 354 return x; 355} 356 357static void Repeat_S32_D32_nofilter_trans_shaderproc(const void* sIn, 358 int x, int y, 359 SkPMColor* colors, 360 int count) { 361 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 362 SkASSERT(s.fInvMatrix.isTranslate()); 363 SkASSERT(count > 0 && colors != nullptr); 364 SkASSERT(!s.fBilerp); 365 366 const int stopX = s.fPixmap.width(); 367 const int stopY = s.fPixmap.height(); 368 int ix = s.fFilterOneX + x; 369 int iy = sk_int_mod(s.fFilterOneY + y, stopY); 370 const SkPMColor* row = s.fPixmap.addr32(0, iy); 371 372 ix = sk_int_mod(ix, stopX); 373 for (;;) { 374 int n = std::min(stopX - ix, count); 375 memcpy(colors, row + ix, n * sizeof(SkPMColor)); 376 count -= n; 377 if (0 == count) { 378 return; 379 } 380 colors += n; 381 ix = 0; 382 } 383} 384 385static inline void filter_32_alpha(unsigned t, 386 SkPMColor color0, 387 SkPMColor color1, 388 SkPMColor* dstColor, 389 unsigned alphaScale) { 390 SkASSERT((unsigned)t <= 0xF); 391 SkASSERT(alphaScale <= 256); 392 393 const uint32_t mask = 0xFF00FF; 394 395 int scale = 256 - 16*t; 396 uint32_t lo = (color0 & mask) * scale; 397 uint32_t hi = ((color0 >> 8) & mask) * scale; 398 399 scale = 16*t; 400 lo += (color1 & mask) * scale; 401 hi += ((color1 >> 8) & mask) * scale; 402 403 // TODO: if (alphaScale < 256) ... 404 lo = ((lo >> 8) & mask) * alphaScale; 405 hi = ((hi >> 8) & mask) * alphaScale; 406 407 *dstColor = ((lo >> 8) & mask) | (hi & ~mask); 408} 409 410static void S32_D32_constX_shaderproc(const void* sIn, 411 int x, int y, 412 SkPMColor* colors, 413 int count) { 414 const SkBitmapProcState& s = *static_cast<const SkBitmapProcState*>(sIn); 415 SkASSERT(s.fInvMatrix.isScaleTranslate()); 416 SkASSERT(count > 0 && colors != nullptr); 417 SkASSERT(1 == s.fPixmap.width()); 418 419 int iY0; 420 int iY1 SK_INIT_TO_AVOID_WARNING; 421 int iSubY SK_INIT_TO_AVOID_WARNING; 422 423 if (s.fBilerp) { 424 SkBitmapProcState::MatrixProc mproc = s.getMatrixProc(); 425 uint32_t xy[2]; 426 427 mproc(s, xy, 1, x, y); 428 429 iY0 = xy[0] >> 18; 430 iY1 = xy[0] & 0x3FFF; 431 iSubY = (xy[0] >> 14) & 0xF; 432 } else { 433 int yTemp; 434 435 if (s.fInvMatrix.isTranslate()) { 436 yTemp = s.fFilterOneY + y; 437 } else{ 438 const SkBitmapProcStateAutoMapper mapper(s, x, y); 439 440 // When the matrix has a scale component the setup code in 441 // chooseProcs multiples the inverse matrix by the inverse of the 442 // bitmap's width and height. Since this method is going to do 443 // its own tiling and sampling we need to undo that here. 444 if (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY) { 445 yTemp = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); 446 } else { 447 yTemp = mapper.intY(); 448 } 449 } 450 451 const int stopY = s.fPixmap.height(); 452 switch (s.fTileModeY) { 453 case SkTileMode::kClamp: 454 iY0 = SkTPin(yTemp, 0, stopY-1); 455 break; 456 case SkTileMode::kRepeat: 457 iY0 = sk_int_mod(yTemp, stopY); 458 break; 459 case SkTileMode::kMirror: 460 default: 461 iY0 = sk_int_mirror(yTemp, stopY); 462 break; 463 } 464 465#ifdef SK_DEBUG 466 { 467 const SkBitmapProcStateAutoMapper mapper(s, x, y); 468 int iY2; 469 470 if (!s.fInvMatrix.isTranslate() && 471 (SkTileMode::kClamp != s.fTileModeX || SkTileMode::kClamp != s.fTileModeY)) { 472 iY2 = SkFractionalIntToInt(mapper.fractionalIntY() * s.fPixmap.height()); 473 } else { 474 iY2 = mapper.intY(); 475 } 476 477 switch (s.fTileModeY) { 478 case SkTileMode::kClamp: 479 iY2 = SkTPin(iY2, 0, stopY-1); 480 break; 481 case SkTileMode::kRepeat: 482 iY2 = sk_int_mod(iY2, stopY); 483 break; 484 case SkTileMode::kMirror: 485 default: 486 iY2 = sk_int_mirror(iY2, stopY); 487 break; 488 } 489 490 SkASSERT(iY0 == iY2); 491 } 492#endif 493 } 494 495 const SkPMColor* row0 = s.fPixmap.addr32(0, iY0); 496 SkPMColor color; 497 498 if (s.fBilerp) { 499 const SkPMColor* row1 = s.fPixmap.addr32(0, iY1); 500 filter_32_alpha(iSubY, *row0, *row1, &color, s.fAlphaScale); 501 } else { 502 if (s.fAlphaScale < 256) { 503 color = SkAlphaMulQ(*row0, s.fAlphaScale); 504 } else { 505 color = *row0; 506 } 507 } 508 509 sk_memset32(colors, color, count); 510} 511 512static void DoNothing_shaderproc(const void*, int x, int y, 513 SkPMColor* colors, int count) { 514 // if we get called, the matrix is too tricky, so we just draw nothing 515 sk_memset32(colors, 0, count); 516} 517 518bool SkBitmapProcState::setupForTranslate() { 519 SkPoint pt; 520 const SkBitmapProcStateAutoMapper mapper(*this, 0, 0, &pt); 521 522 /* 523 * if the translate is larger than our ints, we can get random results, or 524 * worse, we might get 0x80000000, which wreaks havoc on us, since we can't 525 * negate it. 526 */ 527 const SkScalar too_big = SkIntToScalar(1 << 30); 528 if (SkScalarAbs(pt.fX) > too_big || SkScalarAbs(pt.fY) > too_big) { 529 return false; 530 } 531 532 // Since we know we're not filtered, we re-purpose these fields allow 533 // us to go from device -> src coordinates w/ just an integer add, 534 // rather than running through the inverse-matrix 535 fFilterOneX = mapper.intX(); 536 fFilterOneY = mapper.intY(); 537 538 return true; 539} 540 541SkBitmapProcState::ShaderProc32 SkBitmapProcState::chooseShaderProc32() { 542 543 if (kN32_SkColorType != fPixmap.colorType()) { 544 return nullptr; 545 } 546 547 if (1 == fPixmap.width() && fInvMatrix.isScaleTranslate()) { 548 if (!fBilerp && fInvMatrix.isTranslate() && !this->setupForTranslate()) { 549 return DoNothing_shaderproc; 550 } 551 return S32_D32_constX_shaderproc; 552 } 553 554 if (fAlphaScale < 256) { 555 return nullptr; 556 } 557 if (!fInvMatrix.isTranslate()) { 558 return nullptr; 559 } 560 if (fBilerp) { 561 return nullptr; 562 } 563 564 SkTileMode tx = fTileModeX; 565 SkTileMode ty = fTileModeY; 566 567 if (SkTileMode::kClamp == tx && SkTileMode::kClamp == ty) { 568 if (this->setupForTranslate()) { 569 return Clamp_S32_D32_nofilter_trans_shaderproc; 570 } 571 return DoNothing_shaderproc; 572 } 573 if (SkTileMode::kRepeat == tx && SkTileMode::kRepeat == ty) { 574 if (this->setupForTranslate()) { 575 return Repeat_S32_D32_nofilter_trans_shaderproc; 576 } 577 return DoNothing_shaderproc; 578 } 579 return nullptr; 580} 581 582#ifdef SK_DEBUG 583 584static void check_scale_nofilter(uint32_t bitmapXY[], int count, 585 unsigned mx, unsigned my) { 586 unsigned y = *bitmapXY++; 587 SkASSERT(y < my); 588 589 const uint16_t* xptr = reinterpret_cast<const uint16_t*>(bitmapXY); 590 for (int i = 0; i < count; ++i) { 591 SkASSERT(xptr[i] < mx); 592 } 593} 594 595static void check_scale_filter(uint32_t bitmapXY[], int count, 596 unsigned mx, unsigned my) { 597 uint32_t YY = *bitmapXY++; 598 unsigned y0 = YY >> 18; 599 unsigned y1 = YY & 0x3FFF; 600 SkASSERT(y0 < my); 601 SkASSERT(y1 < my); 602 603 for (int i = 0; i < count; ++i) { 604 uint32_t XX = bitmapXY[i]; 605 unsigned x0 = XX >> 18; 606 unsigned x1 = XX & 0x3FFF; 607 SkASSERT(x0 < mx); 608 SkASSERT(x1 < mx); 609 } 610} 611 612static void check_affine_nofilter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { 613 for (int i = 0; i < count; ++i) { 614 uint32_t XY = bitmapXY[i]; 615 unsigned x = XY & 0xFFFF; 616 unsigned y = XY >> 16; 617 SkASSERT(x < mx); 618 SkASSERT(y < my); 619 } 620} 621 622static void check_affine_filter(uint32_t bitmapXY[], int count, unsigned mx, unsigned my) { 623 for (int i = 0; i < count; ++i) { 624 uint32_t YY = *bitmapXY++; 625 unsigned y0 = YY >> 18; 626 unsigned y1 = YY & 0x3FFF; 627 SkASSERT(y0 < my); 628 SkASSERT(y1 < my); 629 630 uint32_t XX = *bitmapXY++; 631 unsigned x0 = XX >> 18; 632 unsigned x1 = XX & 0x3FFF; 633 SkASSERT(x0 < mx); 634 SkASSERT(x1 < mx); 635 } 636} 637 638void SkBitmapProcState::DebugMatrixProc(const SkBitmapProcState& state, 639 uint32_t bitmapXY[], int count, 640 int x, int y) { 641 SkASSERT(bitmapXY); 642 SkASSERT(count > 0); 643 644 state.fMatrixProc(state, bitmapXY, count, x, y); 645 646 void (*proc)(uint32_t bitmapXY[], int count, unsigned mx, unsigned my); 647 648 if (state.fInvMatrix.isScaleTranslate()) { 649 proc = state.fBilerp ? check_scale_filter : check_scale_nofilter; 650 } else { 651 proc = state.fBilerp ? check_affine_filter : check_affine_nofilter; 652 } 653 654 proc(bitmapXY, count, state.fPixmap.width(), state.fPixmap.height()); 655} 656 657SkBitmapProcState::MatrixProc SkBitmapProcState::getMatrixProc() const { 658 return DebugMatrixProc; 659} 660 661#endif 662 663/* 664 The storage requirements for the different matrix procs are as follows, 665 where each X or Y is 2 bytes, and N is the number of pixels/elements: 666 667 scale/translate nofilter Y(4bytes) + N * X 668 affine/perspective nofilter N * (X Y) 669 scale/translate filter Y Y + N * (X X) 670 affine filter N * (Y Y X X) 671 */ 672int SkBitmapProcState::maxCountForBufferSize(size_t bufferSize) const { 673 int32_t size = static_cast<int32_t>(bufferSize); 674 675 size &= ~3; // only care about 4-byte aligned chunks 676 if (fInvMatrix.isScaleTranslate()) { 677 size -= 4; // the shared Y (or YY) coordinate 678 if (size < 0) { 679 size = 0; 680 } 681 size >>= 1; 682 } else { 683 size >>= 2; 684 } 685 686 if (fBilerp) { 687 size >>= 1; 688 } 689 690 return size; 691} 692 693