1/* 2 * Copyright 2020 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#include "samplecode/Sample.h" 9 10#include "include/core/SkCanvas.h" 11#include "include/core/SkFont.h" 12#include "include/core/SkPaint.h" 13#include "include/core/SkPath.h" 14#include <tuple> 15 16// Math constants are not always defined. 17#ifndef M_PI 18#define M_PI 3.14159265358979323846264338327950288 19#endif 20 21#ifndef M_SQRT2 22#define M_SQRT2 1.41421356237309504880168872420969808 23#endif 24 25constexpr static int kCenterX = 300; 26constexpr static int kCenterY = 325; 27constexpr static int kRadius = 250; 28 29// This sample fits a cubic to the arc between two interactive points on a circle. It also finds the 30// T-coordinate of max error, and outputs it and its value in pixels. (It turns out that max error 31// always occurs at T=0.21132486540519.) 32// 33// Press 'E' to iteratively cut the arc in half and report the improvement in max error after each 34// halving. (It turns out that max error improves by exactly 64x on every halving.) 35class SampleFitCubicToCircle : public Sample { 36 SkString name() override { return SkString("FitCubicToCircle"); } 37 void onOnceBeforeDraw() override { this->fitCubic(); } 38 void fitCubic(); 39 void onDrawContent(SkCanvas*) override; 40 Sample::Click* onFindClickHandler(SkScalar x, SkScalar y, skui::ModifierKey) override; 41 bool onClick(Sample::Click*) override; 42 bool onChar(SkUnichar) override; 43 44 // Coordinates of two points on the unit circle. These are the two endpoints of the arc we fit. 45 double fEndptsX[2] = {0, 1}; 46 double fEndptsY[2] = {-1, 0}; 47 48 // Fitted cubic and info, set by fitCubic(). 49 double fControlLength; // Length of (p1 - p0) and/or (p3 - p2) in unit circle space. 50 double fMaxErrorT; // T value where the cubic diverges most from the true arc. 51 std::array<double, 4> fCubicX; // Screen space cubic control points. 52 std::array<double, 4> fCubicY; 53 double fMaxError; // Max error (in pixels) between the cubic and the screen-space arc. 54 double fTheta; // Angle of the arc. This is only used for informational purposes. 55 SkTArray<SkString> fInfoStrings; 56 57 class Click; 58}; 59 60// Fits a cubic to an arc on the unit circle with endpoints (x0, y0) and (x1, y1). Using the 61// following 3 constraints, we arrive at the formula used in the method: 62// 63// 1) The endpoints and tangent directions at the endpoints must match the arc. 64// 2) The cubic must be symmetric (i.e., length(p1 - p0) == length(p3 - p2)). 65// 3) The height of the cubic must match the height of the arc. 66// 67// Returns the "control length", or length of (p1 - p0) and/or (p3 - p2). 68static float fit_cubic_to_unit_circle(double x0, double y0, double x1, double y1, 69 std::array<double, 4>* X, std::array<double, 4>* Y) { 70 constexpr static double kM = -4.0/3; 71 constexpr static double kA = 4*M_SQRT2/3; 72 double d = x0*x1 + y0*y1; 73 double c = (std::sqrt(1 + d) * kM + kA) / std::sqrt(1 - d); 74 *X = {x0, x0 - y0*c, x1 + y1*c, x1}; 75 *Y = {y0, y0 + x0*c, y1 - x1*c, y1}; 76 return c; 77} 78 79static double lerp(double x, double y, double T) { 80 return x + T*(y - x); 81} 82 83// Evaluates the cubic and 1st and 2nd derivatives at T. 84static std::tuple<double, double, double> eval_cubic(double x[], double T) { 85 // Use De Casteljau's algorithm for better accuracy and stability. 86 double ab = lerp(x[0], x[1], T); 87 double bc = lerp(x[1], x[2], T); 88 double cd = lerp(x[2], x[3], T); 89 double abc = lerp(ab, bc, T); 90 double bcd = lerp(bc, cd, T); 91 double abcd = lerp(abc, bcd, T); 92 return {abcd, 3 * (bcd - abc) /*1st derivative.*/, 6 * (cd - 2*bc + ab) /*2nd derivative.*/}; 93} 94 95// Uses newton-raphson convergence to find the point where the provided cubic diverges most from the 96// unit circle. i.e., the point where the derivative of error == 0. For error we use: 97// 98// error = x^2 + y^2 - 1 99// error' = 2xx' + 2yy' 100// error'' = 2xx'' + 2yy'' + 2x'^2 + 2y'^2 101// 102double find_max_error_T(double cubicX[4], double cubicY[4]) { 103 constexpr static double kInitialT = .25; 104 double T = kInitialT; 105 for (int i = 0; i < 64; ++i) { 106 auto [x, dx, ddx] = eval_cubic(cubicX, T); 107 auto [y, dy, ddy] = eval_cubic(cubicY, T); 108 double dError = 2*(x*dx + y*dy); 109 double ddError = 2*(x*ddx + y*ddy + dx*dx + dy*dy); 110 T -= dError / ddError; 111 } 112 return T; 113} 114 115void SampleFitCubicToCircle::fitCubic() { 116 fInfoStrings.reset(); 117 118 std::array<double, 4> X, Y; 119 // "Control length" is the length of (p1 - p0) and/or (p3 - p2) in unit circle space. 120 fControlLength = fit_cubic_to_unit_circle(fEndptsX[0], fEndptsY[0], fEndptsX[1], fEndptsY[1], 121 &X, &Y); 122 fInfoStrings.push_back().printf("control length=%0.14f", fControlLength); 123 124 fMaxErrorT = find_max_error_T(X.data(), Y.data()); 125 fInfoStrings.push_back().printf("max error T=%0.14f", fMaxErrorT); 126 127 for (int i = 0; i < 4; ++i) { 128 fCubicX[i] = X[i] * kRadius + kCenterX; 129 fCubicY[i] = Y[i] * kRadius + kCenterY; 130 } 131 double errX = std::get<0>(eval_cubic(fCubicX.data(), fMaxErrorT)) - kCenterX; 132 double errY = std::get<0>(eval_cubic(fCubicY.data(), fMaxErrorT)) - kCenterY; 133 fMaxError = std::sqrt(errX*errX + errY*errY) - kRadius; 134 fInfoStrings.push_back().printf("max error=%.5gpx", fMaxError); 135 136 fTheta = std::atan2(fEndptsY[1], fEndptsX[1]) - std::atan2(fEndptsY[0], fEndptsX[0]); 137 fTheta = std::abs(fTheta * 180/M_PI); 138 if (fTheta > 180) { 139 fTheta = 360 - fTheta; 140 } 141 fInfoStrings.push_back().printf("(theta=%.2f)", fTheta); 142 143 SkDebugf("\n"); 144 for (const SkString& infoString : fInfoStrings) { 145 SkDebugf("%s\n", infoString.c_str()); 146 } 147} 148 149void SampleFitCubicToCircle::onDrawContent(SkCanvas* canvas) { 150 canvas->clear(SK_ColorBLACK); 151 152 SkPaint circlePaint; 153 circlePaint.setColor(0x80ffffff); 154 circlePaint.setStyle(SkPaint::kStroke_Style); 155 circlePaint.setStrokeWidth(0); 156 circlePaint.setAntiAlias(true); 157 canvas->drawArc(SkRect::MakeXYWH(kCenterX - kRadius, kCenterY - kRadius, kRadius * 2, 158 kRadius * 2), 0, 360, false, circlePaint); 159 160 SkPaint cubicPaint; 161 cubicPaint.setColor(SK_ColorGREEN); 162 cubicPaint.setStyle(SkPaint::kStroke_Style); 163 cubicPaint.setStrokeWidth(10); 164 cubicPaint.setAntiAlias(true); 165 SkPath cubicPath; 166 cubicPath.moveTo(fCubicX[0], fCubicY[0]); 167 cubicPath.cubicTo(fCubicX[1], fCubicY[1], fCubicX[2], fCubicY[2], fCubicX[3], fCubicY[3]); 168 canvas->drawPath(cubicPath, cubicPaint); 169 170 SkPaint endpointsPaint; 171 endpointsPaint.setColor(SK_ColorBLUE); 172 endpointsPaint.setStrokeWidth(8); 173 endpointsPaint.setAntiAlias(true); 174 SkPoint points[2] = {{(float)fCubicX[0], (float)fCubicY[0]}, 175 {(float)fCubicX[3], (float)fCubicY[3]}}; 176 canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, points, endpointsPaint); 177 178 SkPaint textPaint; 179 textPaint.setColor(SK_ColorWHITE); 180 constexpr static float kInfoTextSize = 16; 181 SkFont font(nullptr, kInfoTextSize); 182 int infoY = 10 + kInfoTextSize; 183 for (const SkString& infoString : fInfoStrings) { 184 canvas->drawString(infoString.c_str(), 10, infoY, font, textPaint); 185 infoY += kInfoTextSize * 3/2; 186 } 187} 188 189class SampleFitCubicToCircle::Click : public Sample::Click { 190public: 191 Click(int ptIdx) : fPtIdx(ptIdx) {} 192 193 void doClick(SampleFitCubicToCircle* that) { 194 double dx = fCurr.fX - kCenterX; 195 double dy = fCurr.fY - kCenterY; 196 double l = std::sqrt(dx*dx + dy*dy); 197 that->fEndptsX[fPtIdx] = dx/l; 198 that->fEndptsY[fPtIdx] = dy/l; 199 if (that->fEndptsX[0] * that->fEndptsY[1] - that->fEndptsY[0] * that->fEndptsX[1] < 0) { 200 std::swap(that->fEndptsX[0], that->fEndptsX[1]); 201 std::swap(that->fEndptsY[0], that->fEndptsY[1]); 202 fPtIdx = 1 - fPtIdx; 203 } 204 that->fitCubic(); 205 } 206 207private: 208 int fPtIdx; 209}; 210 211Sample::Click* SampleFitCubicToCircle::onFindClickHandler(SkScalar x, SkScalar y, 212 skui::ModifierKey) { 213 double dx0 = x - fCubicX[0]; 214 double dy0 = y - fCubicY[0]; 215 double dx3 = x - fCubicX[3]; 216 double dy3 = y - fCubicY[3]; 217 if (dx0*dx0 + dy0*dy0 < dx3*dx3 + dy3*dy3) { 218 return new Click(0); 219 } else { 220 return new Click(1); 221 } 222} 223 224bool SampleFitCubicToCircle::onClick(Sample::Click* click) { 225 Click* myClick = (Click*)click; 226 myClick->doClick(this); 227 return true; 228} 229 230bool SampleFitCubicToCircle::onChar(SkUnichar unichar) { 231 if (unichar == 'E') { 232 constexpr static double kMaxErrorT = 0.21132486540519; // Always the same. 233 // Split the arc in half until error =~0, and report the improvement after each halving. 234 double lastError = -1; 235 for (double theta = fTheta; lastError != 0; theta /= 2) { 236 double rads = theta * M_PI/180; 237 std::array<double, 4> X, Y; 238 fit_cubic_to_unit_circle(1, 0, std::cos(rads), std::sin(rads), &X, &Y); 239 auto [x, dx, ddx] = eval_cubic(X.data(), kMaxErrorT); 240 auto [y, dy, ddy] = eval_cubic(Y.data(), kMaxErrorT); 241 double error = std::sqrt(x*x + y*y) * kRadius - kRadius; 242 if ((float)error <= 0) { 243 error = 0; 244 } 245 SkDebugf("%6.2f degrees: error= %10.5gpx", theta, error); 246 if (lastError > 0) { 247 SkDebugf(" (%17.14fx improvement)", lastError / error); 248 } 249 SkDebugf("\n"); 250 lastError = error; 251 } 252 return true; 253 } 254 return false; 255} 256 257DEF_SAMPLE(return new SampleFitCubicToCircle;) 258