1/* 2 * Copyright 2006 The Android Open Source Project 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8#ifndef SkFloatingPoint_DEFINED 9#define SkFloatingPoint_DEFINED 10 11#include "include/core/SkTypes.h" 12#include "include/private/SkFloatBits.h" 13#include "include/private/SkSafe_math.h" 14#include <float.h> 15#include <math.h> 16#include <cmath> 17#include <cstring> 18#include <limits> 19 20 21#if defined(SK_LEGACY_FLOAT_RSQRT) 22#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 23 #include <xmmintrin.h> 24#elif defined(SK_ARM_HAS_NEON) 25 #include <arm_neon.h> 26#endif 27#endif 28 29// For _POSIX_VERSION 30#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) 31#include <unistd.h> 32#endif 33 34constexpr float SK_FloatSqrt2 = 1.41421356f; 35constexpr float SK_FloatPI = 3.14159265f; 36constexpr double SK_DoublePI = 3.14159265358979323846264338327950288; 37 38// C++98 cmath std::pow seems to be the earliest portable way to get float pow. 39// However, on Linux including cmath undefines isfinite. 40// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 41static inline float sk_float_pow(float base, float exp) { 42 return powf(base, exp); 43} 44 45#define sk_float_sqrt(x) sqrtf(x) 46#define sk_float_sin(x) sinf(x) 47#define sk_float_cos(x) cosf(x) 48#define sk_float_tan(x) tanf(x) 49#define sk_float_floor(x) floorf(x) 50#define sk_float_ceil(x) ceilf(x) 51#define sk_float_trunc(x) truncf(x) 52#ifdef SK_BUILD_FOR_MAC 53# define sk_float_acos(x) static_cast<float>(acos(x)) 54# define sk_float_asin(x) static_cast<float>(asin(x)) 55#else 56# define sk_float_acos(x) acosf(x) 57# define sk_float_asin(x) asinf(x) 58#endif 59#define sk_float_atan2(y,x) atan2f(y,x) 60#define sk_float_abs(x) fabsf(x) 61#define sk_float_copysign(x, y) copysignf(x, y) 62#define sk_float_mod(x,y) fmodf(x,y) 63#define sk_float_exp(x) expf(x) 64#define sk_float_log(x) logf(x) 65 66constexpr float sk_float_degrees_to_radians(float degrees) { 67 return degrees * (SK_FloatPI / 180); 68} 69 70constexpr float sk_float_radians_to_degrees(float radians) { 71 return radians * (180 / SK_FloatPI); 72} 73 74#define sk_float_round(x) sk_float_floor((x) + 0.5f) 75 76// can't find log2f on android, but maybe that just a tool bug? 77#ifdef SK_BUILD_FOR_ANDROID 78 static inline float sk_float_log2(float x) { 79 const double inv_ln_2 = 1.44269504088896; 80 return (float)(log(x) * inv_ln_2); 81 } 82#else 83 #define sk_float_log2(x) log2f(x) 84#endif 85 86static inline bool sk_float_isfinite(float x) { 87 return SkFloatBits_IsFinite(SkFloat2Bits(x)); 88} 89 90static inline bool sk_floats_are_finite(float a, float b) { 91 return sk_float_isfinite(a) && sk_float_isfinite(b); 92} 93 94// warning: comparing floating point with == or != is unsafe 95// storing and comparing against same constants ok. 96#if defined(__clang__) 97#pragma clang diagnostic ignored "-Wfloat-equal" 98#elif defined(__GNUC__) 99#pragma GCC diagnostic ignored "-Wfloat-equal" 100#endif 101static inline bool sk_floats_are_finite(const float array[], int count) { 102 float prod = 0; 103 for (int i = 0; i < count; ++i) { 104 prod *= array[i]; 105 } 106 // At this point, prod will either be NaN or 0 107 return prod == 0; // if prod is NaN, this check will return false 108} 109 110static inline bool sk_float_isinf(float x) { 111 return SkFloatBits_IsInf(SkFloat2Bits(x)); 112} 113 114static inline bool sk_float_isnan(float x) { 115 return !(x == x); 116} 117 118#define sk_double_isnan(a) sk_float_isnan(a) 119 120#define SK_MaxS32FitsInFloat 2147483520 121#define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat 122 123#define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000 124#define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat 125 126/** 127 * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN. 128 */ 129static inline int sk_float_saturate2int(float x) { 130 x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat; 131 x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat; 132 return (int)x; 133} 134 135/** 136 * Return the closest int for the given double. Returns SK_MaxS32 for NaN. 137 */ 138static inline int sk_double_saturate2int(double x) { 139 x = x < SK_MaxS32 ? x : SK_MaxS32; 140 x = x > SK_MinS32 ? x : SK_MinS32; 141 return (int)x; 142} 143 144/** 145 * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN. 146 */ 147static inline int64_t sk_float_saturate2int64(float x) { 148 x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat; 149 x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat; 150 return (int64_t)x; 151} 152 153#define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x)) 154#define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f)) 155#define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x)) 156 157#define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x) 158#define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f) 159#define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x) 160 161#define sk_double_floor(x) floor(x) 162#define sk_double_round(x) floor((x) + 0.5) 163#define sk_double_ceil(x) ceil(x) 164#define sk_double_floor2int(x) (int)floor(x) 165#define sk_double_round2int(x) (int)floor((x) + 0.5) 166#define sk_double_ceil2int(x) (int)ceil(x) 167 168// Cast double to float, ignoring any warning about too-large finite values being cast to float. 169// Clang thinks this is undefined, but it's actually implementation defined to return either 170// the largest float or infinity (one of the two bracketing representable floats). Good enough! 171SK_ATTRIBUTE(no_sanitize("float-cast-overflow")) 172static inline float sk_double_to_float(double x) { 173 return static_cast<float>(x); 174} 175 176#define SK_FloatNaN std::numeric_limits<float>::quiet_NaN() 177#define SK_FloatInfinity (+std::numeric_limits<float>::infinity()) 178#define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity()) 179 180#define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN() 181 182// Returns false if any of the floats are outside of [0...1] 183// Returns true if count is 0 184bool sk_floats_are_unit(const float array[], size_t count); 185 186#if defined(SK_LEGACY_FLOAT_RSQRT) 187static inline float sk_float_rsqrt_portable(float x) { 188 // Get initial estimate. 189 int i; 190 memcpy(&i, &x, 4); 191 i = 0x5F1FFFF9 - (i>>1); 192 float estimate; 193 memcpy(&estimate, &i, 4); 194 195 // One step of Newton's method to refine. 196 const float estimate_sq = estimate*estimate; 197 estimate *= 0.703952253f*(2.38924456f-x*estimate_sq); 198 return estimate; 199} 200 201// Fast, approximate inverse square root. 202// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. 203static inline float sk_float_rsqrt(float x) { 204// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got 205// it at compile time. This is going to be too fast to productively hide behind a function pointer. 206// 207// We do one step of Newton's method to refine the estimates in the NEON and portable paths. No 208// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. 209// 210// Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html 211#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 212 return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); 213#elif defined(SK_ARM_HAS_NEON) 214 // Get initial estimate. 215 const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. 216 float32x2_t estimate = vrsqrte_f32(xx); 217 218 // One step of Newton's method to refine. 219 const float32x2_t estimate_sq = vmul_f32(estimate, estimate); 220 estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); 221 return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. 222#else 223 return sk_float_rsqrt_portable(x); 224#endif 225} 226#else 227 228static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); } 229static inline float sk_float_rsqrt (float x) { return 1.0f / sk_float_sqrt(x); } 230 231#endif 232 233// Returns the log2 of the provided value, were that value to be rounded up to the next power of 2. 234// Returns 0 if value <= 0: 235// Never returns a negative number, even if value is NaN. 236// 237// sk_float_nextlog2((-inf..1]) -> 0 238// sk_float_nextlog2((1..2]) -> 1 239// sk_float_nextlog2((2..4]) -> 2 240// sk_float_nextlog2((4..8]) -> 3 241// ... 242static inline int sk_float_nextlog2(float x) { 243 uint32_t bits = (uint32_t)SkFloat2Bits(x); 244 bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2. 245 int exp = ((int32_t)bits >> 23) - 127; 246 return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0. 247} 248 249// This is the number of significant digits we can print in a string such that when we read that 250// string back we get the floating point number we expect. The minimum value C requires is 6, but 251// most compilers support 9 252#ifdef FLT_DECIMAL_DIG 253#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG 254#else 255#define SK_FLT_DECIMAL_DIG 9 256#endif 257 258// IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not 259// so we have a helper that suppresses the possible undefined-behavior warnings. 260 261SK_ATTRIBUTE(no_sanitize("float-divide-by-zero")) 262static inline float sk_ieee_float_divide(float numer, float denom) { 263 return numer / denom; 264} 265 266SK_ATTRIBUTE(no_sanitize("float-divide-by-zero")) 267static inline double sk_ieee_double_divide(double numer, double denom) { 268 return numer / denom; 269} 270 271// While we clean up divide by zero, we'll replace places that do divide by zero with this TODO. 272static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) { 273 return sk_ieee_float_divide(n,d); 274} 275 276static inline float sk_fmaf(float f, float m, float a) { 277#if defined(FP_FAST_FMA) 278 return std::fmaf(f,m,a); 279#else 280 return f*m+a; 281#endif 282} 283 284#endif 285