xref: /third_party/skia/include/core/SkRefCnt.h (revision cb93a386)
1/*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#ifndef SkRefCnt_DEFINED
9#define SkRefCnt_DEFINED
10
11#include "include/core/SkTypes.h"
12
13#include <atomic>       // std::atomic, std::memory_order_*
14#include <cstddef>      // std::nullptr_t
15#include <iosfwd>       // std::basic_ostream
16#include <memory>       // TODO: unused
17#include <type_traits>  // std::enable_if, std::is_convertible
18#include <utility>      // std::forward, std::swap
19
20/** \class SkRefCntBase
21
22    SkRefCntBase is the base class for objects that may be shared by multiple
23    objects. When an existing owner wants to share a reference, it calls ref().
24    When an owner wants to release its reference, it calls unref(). When the
25    shared object's reference count goes to zero as the result of an unref()
26    call, its (virtual) destructor is called. It is an error for the
27    destructor to be called explicitly (or via the object going out of scope on
28    the stack or calling delete) if getRefCnt() > 1.
29*/
30class SK_API SkRefCntBase {
31public:
32    /** Default construct, initializing the reference count to 1.
33    */
34    SkRefCntBase() : fRefCnt(1) {}
35
36    /** Destruct, asserting that the reference count is 1.
37    */
38    virtual ~SkRefCntBase() {
39    #ifdef SK_DEBUG
40        SkASSERTF(this->getRefCnt() == 1, "fRefCnt was %d", this->getRefCnt());
41        // illegal value, to catch us if we reuse after delete
42        fRefCnt.store(0, std::memory_order_relaxed);
43    #endif
44    }
45
46    /** May return true if the caller is the only owner.
47     *  Ensures that all previous owner's actions are complete.
48     */
49    bool unique() const {
50        if (1 == fRefCnt.load(std::memory_order_acquire)) {
51            // The acquire barrier is only really needed if we return true.  It
52            // prevents code conditioned on the result of unique() from running
53            // until previous owners are all totally done calling unref().
54            return true;
55        }
56        return false;
57    }
58
59    /** Increment the reference count. Must be balanced by a call to unref().
60    */
61    void ref() const {
62        SkASSERT(this->getRefCnt() > 0);
63        // No barrier required.
64        (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
65    }
66
67    /** Decrement the reference count. If the reference count is 1 before the
68        decrement, then delete the object. Note that if this is the case, then
69        the object needs to have been allocated via new, and not on the stack.
70    */
71    void unref() const {
72        SkASSERT(this->getRefCnt() > 0);
73        // A release here acts in place of all releases we "should" have been doing in ref().
74        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
75            // Like unique(), the acquire is only needed on success, to make sure
76            // code in internal_dispose() doesn't happen before the decrement.
77            this->internal_dispose();
78        }
79    }
80
81private:
82
83#ifdef SK_DEBUG
84    /** Return the reference count. Use only for debugging. */
85    int32_t getRefCnt() const {
86        return fRefCnt.load(std::memory_order_relaxed);
87    }
88#endif
89
90    /**
91     *  Called when the ref count goes to 0.
92     */
93    virtual void internal_dispose() const {
94    #ifdef SK_DEBUG
95        SkASSERT(0 == this->getRefCnt());
96        fRefCnt.store(1, std::memory_order_relaxed);
97    #endif
98        delete this;
99    }
100
101    // The following friends are those which override internal_dispose()
102    // and conditionally call SkRefCnt::internal_dispose().
103    friend class SkWeakRefCnt;
104
105    mutable std::atomic<int32_t> fRefCnt;
106
107    SkRefCntBase(SkRefCntBase&&) = delete;
108    SkRefCntBase(const SkRefCntBase&) = delete;
109    SkRefCntBase& operator=(SkRefCntBase&&) = delete;
110    SkRefCntBase& operator=(const SkRefCntBase&) = delete;
111};
112
113#ifdef SK_REF_CNT_MIXIN_INCLUDE
114// It is the responsibility of the following include to define the type SkRefCnt.
115// This SkRefCnt should normally derive from SkRefCntBase.
116#include SK_REF_CNT_MIXIN_INCLUDE
117#else
118class SK_API SkRefCnt : public SkRefCntBase {
119    // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
120    #if defined(SK_BUILD_FOR_GOOGLE3)
121    public:
122        void deref() const { this->unref(); }
123    #endif
124};
125#endif
126
127///////////////////////////////////////////////////////////////////////////////
128
129/** Call obj->ref() and return obj. The obj must not be nullptr.
130 */
131template <typename T> static inline T* SkRef(T* obj) {
132    SkASSERT(obj);
133    obj->ref();
134    return obj;
135}
136
137/** Check if the argument is non-null, and if so, call obj->ref() and return obj.
138 */
139template <typename T> static inline T* SkSafeRef(T* obj) {
140    if (obj) {
141        obj->ref();
142    }
143    return obj;
144}
145
146/** Check if the argument is non-null, and if so, call obj->unref()
147 */
148template <typename T> static inline void SkSafeUnref(T* obj) {
149    if (obj) {
150        obj->unref();
151    }
152}
153
154///////////////////////////////////////////////////////////////////////////////
155
156// This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
157// There's only benefit to using this if the deriving class does not otherwise need a vtable.
158template <typename Derived>
159class SkNVRefCnt {
160public:
161    SkNVRefCnt() : fRefCnt(1) {}
162    ~SkNVRefCnt() {
163    #ifdef SK_DEBUG
164        int rc = fRefCnt.load(std::memory_order_relaxed);
165        SkASSERTF(rc == 1, "NVRefCnt was %d", rc);
166    #endif
167    }
168
169    // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
170    //   - unique() needs acquire when it returns true, and no barrier if it returns false;
171    //   - ref() doesn't need any barrier;
172    //   - unref() needs a release barrier, and an acquire if it's going to call delete.
173
174    bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
175    void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
176    void  unref() const {
177        if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
178            // restore the 1 for our destructor's assert
179            SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
180            delete (const Derived*)this;
181        }
182    }
183    void  deref() const { this->unref(); }
184
185    // This must be used with caution. It is only valid to call this when 'threadIsolatedTestCnt'
186    // refs are known to be isolated to the current thread. That is, it is known that there are at
187    // least 'threadIsolatedTestCnt' refs for which no other thread may make a balancing unref()
188    // call. Assuming the contract is followed, if this returns false then no other thread has
189    // ownership of this. If it returns true then another thread *may* have ownership.
190    bool refCntGreaterThan(int32_t threadIsolatedTestCnt) const {
191        int cnt = fRefCnt.load(std::memory_order_acquire);
192        // If this fails then the above contract has been violated.
193        SkASSERT(cnt >= threadIsolatedTestCnt);
194        return cnt > threadIsolatedTestCnt;
195    }
196
197private:
198    mutable std::atomic<int32_t> fRefCnt;
199
200    SkNVRefCnt(SkNVRefCnt&&) = delete;
201    SkNVRefCnt(const SkNVRefCnt&) = delete;
202    SkNVRefCnt& operator=(SkNVRefCnt&&) = delete;
203    SkNVRefCnt& operator=(const SkNVRefCnt&) = delete;
204};
205
206///////////////////////////////////////////////////////////////////////////////////////////////////
207
208/**
209 *  Shared pointer class to wrap classes that support a ref()/unref() interface.
210 *
211 *  This can be used for classes inheriting from SkRefCnt, but it also works for other
212 *  classes that match the interface, but have different internal choices: e.g. the hosted class
213 *  may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
214 */
215template <typename T> class sk_sp {
216public:
217    using element_type = T;
218
219    constexpr sk_sp() : fPtr(nullptr) {}
220    constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
221
222    /**
223     *  Shares the underlying object by calling ref(), so that both the argument and the newly
224     *  created sk_sp both have a reference to it.
225     */
226    sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
227    template <typename U,
228              typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
229    sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
230
231    /**
232     *  Move the underlying object from the argument to the newly created sk_sp. Afterwards only
233     *  the new sk_sp will have a reference to the object, and the argument will point to null.
234     *  No call to ref() or unref() will be made.
235     */
236    sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
237    template <typename U,
238              typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
239    sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
240
241    /**
242     *  Adopt the bare pointer into the newly created sk_sp.
243     *  No call to ref() or unref() will be made.
244     */
245    explicit sk_sp(T* obj) : fPtr(obj) {}
246
247    /**
248     *  Calls unref() on the underlying object pointer.
249     */
250    ~sk_sp() {
251        SkSafeUnref(fPtr);
252        SkDEBUGCODE(fPtr = nullptr);
253    }
254
255    sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
256
257    /**
258     *  Shares the underlying object referenced by the argument by calling ref() on it. If this
259     *  sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
260     *  object.
261     */
262    sk_sp<T>& operator=(const sk_sp<T>& that) {
263        if (this != &that) {
264            this->reset(SkSafeRef(that.get()));
265        }
266        return *this;
267    }
268    template <typename U,
269              typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
270    sk_sp<T>& operator=(const sk_sp<U>& that) {
271        this->reset(SkSafeRef(that.get()));
272        return *this;
273    }
274
275    /**
276     *  Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
277     *  a reference to another object, unref() will be called on that object. No call to ref()
278     *  will be made.
279     */
280    sk_sp<T>& operator=(sk_sp<T>&& that) {
281        this->reset(that.release());
282        return *this;
283    }
284    template <typename U,
285              typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
286    sk_sp<T>& operator=(sk_sp<U>&& that) {
287        this->reset(that.release());
288        return *this;
289    }
290
291    T& operator*() const {
292        SkASSERT(this->get() != nullptr);
293        return *this->get();
294    }
295
296    explicit operator bool() const { return this->get() != nullptr; }
297
298    T* get() const { return fPtr; }
299    T* operator->() const { return fPtr; }
300
301    /**
302     *  Adopt the new bare pointer, and call unref() on any previously held object (if not null).
303     *  No call to ref() will be made.
304     */
305    void reset(T* ptr = nullptr) {
306        // Calling fPtr->unref() may call this->~() or this->reset(T*).
307        // http://wg21.cmeerw.net/lwg/issue998
308        // http://wg21.cmeerw.net/lwg/issue2262
309        T* oldPtr = fPtr;
310        fPtr = ptr;
311        SkSafeUnref(oldPtr);
312    }
313
314    /**
315     *  Return the bare pointer, and set the internal object pointer to nullptr.
316     *  The caller must assume ownership of the object, and manage its reference count directly.
317     *  No call to unref() will be made.
318     */
319    T* SK_WARN_UNUSED_RESULT release() {
320        T* ptr = fPtr;
321        fPtr = nullptr;
322        return ptr;
323    }
324
325    void swap(sk_sp<T>& that) /*noexcept*/ {
326        using std::swap;
327        swap(fPtr, that.fPtr);
328    }
329
330private:
331    T*  fPtr;
332};
333
334template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
335    a.swap(b);
336}
337
338template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
339    return a.get() == b.get();
340}
341template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
342    return !a;
343}
344template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
345    return !b;
346}
347
348template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
349    return a.get() != b.get();
350}
351template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
352    return static_cast<bool>(a);
353}
354template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
355    return static_cast<bool>(b);
356}
357
358template <typename C, typename CT, typename T>
359auto operator<<(std::basic_ostream<C, CT>& os, const sk_sp<T>& sp) -> decltype(os << sp.get()) {
360    return os << sp.get();
361}
362
363template <typename T, typename... Args>
364sk_sp<T> sk_make_sp(Args&&... args) {
365    return sk_sp<T>(new T(std::forward<Args>(args)...));
366}
367
368/*
369 *  Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
370 *
371 *  This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
372 *  effectively "adopting" it.
373 */
374template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
375    return sk_sp<T>(SkSafeRef(obj));
376}
377
378template <typename T> sk_sp<T> sk_ref_sp(const T* obj) {
379    return sk_sp<T>(const_cast<T*>(SkSafeRef(obj)));
380}
381
382#endif
383