1cb93a386Sopenharmony_ci// Copyright 2020 Google LLC.
2cb93a386Sopenharmony_ci// Use of this source code is governed by a BSD-style license that can be found in the LICENSE file.
3cb93a386Sopenharmony_ci#include "tools/fiddle/examples.h"
4cb93a386Sopenharmony_ciREG_FIDDLE(SkPath_arcto_conic_parametric2, 512, 512, false, 0) {
5cb93a386Sopenharmony_ci/** Add a weighted quadratic bezier from the last point, approaching control point
6cb93a386Sopenharmony_ci    (x1,y1), and ending at (x2,y2). If no moveTo() call has been made for
7cb93a386Sopenharmony_ci    this contour, the first point is automatically set to (0,0).
8cb93a386Sopenharmony_ci    If the starting point is (x0, y0), then this curve is defined as the
9cb93a386Sopenharmony_ci    paramentric curve as `t` goes from 0 to 1:
10cb93a386Sopenharmony_ci      s := 1 - t
11cb93a386Sopenharmony_ci      x := ((s * s * x0) + (w * 2 * s * t * x1) + (t * t * x2)) /
12cb93a386Sopenharmony_ci           ((s * s) + (w * 2 * s * t) + (t * t))
13cb93a386Sopenharmony_ci      y := ((s * s * y0) + (w * 2 * s * t * y1) + (t * t * y2)) /
14cb93a386Sopenharmony_ci           ((s * s) + (w * 2 * s * t) + (t * t))
15cb93a386Sopenharmony_ci    @param x1   The x-coordinate of the control point on a quadratic curve
16cb93a386Sopenharmony_ci    @param y1   The y-coordinate of the control point on a quadratic curve
17cb93a386Sopenharmony_ci    @param x2   The x-coordinate of the end point on a quadratic curve
18cb93a386Sopenharmony_ci    @param y2   The y-coordinate of the end point on a quadratic curve
19cb93a386Sopenharmony_ci    @param w    The weight of the control point (x1,y1)
20cb93a386Sopenharmony_ci*/
21cb93a386Sopenharmony_ci
22cb93a386Sopenharmony_ciSkPoint conic(SkPoint p0, SkPoint p1, SkPoint p2, float w, float t) {
23cb93a386Sopenharmony_ci    float s = 1 - t;
24cb93a386Sopenharmony_ci    return {((s * s * p0.x()) + (2 * s * t * w * p1.x()) + (t * t * p2.x())) /
25cb93a386Sopenharmony_ci                    ((s * s) + (w * 2 * s * t) + (t * t)),
26cb93a386Sopenharmony_ci            ((s * s * p0.y()) + (2 * s * t * w * p1.y()) + (t * t * p2.y())) /
27cb93a386Sopenharmony_ci                    ((s * s) + (w * 2 * s * t) + (t * t))};
28cb93a386Sopenharmony_ci}
29cb93a386Sopenharmony_ci
30cb93a386Sopenharmony_civoid draw(SkCanvas* canvas) {
31cb93a386Sopenharmony_ci    canvas->clear(SkColorSetARGB(255, 255, 255, 255));
32cb93a386Sopenharmony_ci
33cb93a386Sopenharmony_ci    SkPaint paint;
34cb93a386Sopenharmony_ci    paint.setAntiAlias(true);
35cb93a386Sopenharmony_ci    paint.setStyle(SkPaint::kStroke_Style);
36cb93a386Sopenharmony_ci    paint.setStrokeWidth(1);
37cb93a386Sopenharmony_ci
38cb93a386Sopenharmony_ci    SkPoint center = {256, 256};
39cb93a386Sopenharmony_ci    float r = 192;
40cb93a386Sopenharmony_ci    SkRect oval = {center.x() - r, center.y() - r, center.x() + r, center.y() + r};
41cb93a386Sopenharmony_ci    canvas->drawOval(oval, paint);
42cb93a386Sopenharmony_ci    float startAngle = 15;
43cb93a386Sopenharmony_ci    float sweepAngle = 75;
44cb93a386Sopenharmony_ci
45cb93a386Sopenharmony_ci    SkPath arc;
46cb93a386Sopenharmony_ci    arc.arcTo(oval, startAngle, sweepAngle, false);
47cb93a386Sopenharmony_ci
48cb93a386Sopenharmony_ci    SkPaint arcPaint(paint);
49cb93a386Sopenharmony_ci    arcPaint.setStrokeWidth(5);
50cb93a386Sopenharmony_ci    arcPaint.setColor(SkColorSetARGB(255, 0, 0, 255));
51cb93a386Sopenharmony_ci    canvas->drawPath(arc, arcPaint);
52cb93a386Sopenharmony_ci
53cb93a386Sopenharmony_ci    SkPaint pointPaint;
54cb93a386Sopenharmony_ci    pointPaint.setAntiAlias(true);
55cb93a386Sopenharmony_ci    pointPaint.setStrokeWidth(8);
56cb93a386Sopenharmony_ci    pointPaint.setStrokeCap(SkPaint::kRound_Cap);
57cb93a386Sopenharmony_ci    pointPaint.setColor(SkColorSetARGB(255, 0, 255, 0));
58cb93a386Sopenharmony_ci
59cb93a386Sopenharmony_ci    float finalAngle = startAngle + sweepAngle;
60cb93a386Sopenharmony_ci    float middleAngle = startAngle + 0.5f * sweepAngle;
61cb93a386Sopenharmony_ci    float weight = cos(SkDegreesToRadians(sweepAngle) / 2);
62cb93a386Sopenharmony_ci    SkPoint p0 = {r * SkScalarCos(SkDegreesToRadians(startAngle)),
63cb93a386Sopenharmony_ci                  r * SkScalarSin(SkDegreesToRadians(startAngle))};
64cb93a386Sopenharmony_ci    float d = r / weight;
65cb93a386Sopenharmony_ci    SkPoint p1 = {d * SkScalarCos(SkDegreesToRadians(middleAngle)),
66cb93a386Sopenharmony_ci                  d * SkScalarSin(SkDegreesToRadians(middleAngle))};
67cb93a386Sopenharmony_ci    SkPoint p2 = {r * SkScalarCos(SkDegreesToRadians(finalAngle)),
68cb93a386Sopenharmony_ci                  r * SkScalarSin(SkDegreesToRadians(finalAngle))};
69cb93a386Sopenharmony_ci    p0 += center;
70cb93a386Sopenharmony_ci    p1 += center;
71cb93a386Sopenharmony_ci    p2 += center;
72cb93a386Sopenharmony_ci
73cb93a386Sopenharmony_ci    canvas->drawLine(p0.x(), p0.y(), p1.x(), p1.y(), paint);
74cb93a386Sopenharmony_ci    canvas->drawLine(p1.x(), p1.y(), p2.x(), p2.y(), paint);
75cb93a386Sopenharmony_ci
76cb93a386Sopenharmony_ci    const int N = 16;
77cb93a386Sopenharmony_ci    for (int i = 0; i <= N; ++i) {
78cb93a386Sopenharmony_ci        SkPoint p = conic(p0, p1, p2, weight, (float)i / N);
79cb93a386Sopenharmony_ci        canvas->drawPoint(p.x(), p.y(), pointPaint);
80cb93a386Sopenharmony_ci    }
81cb93a386Sopenharmony_ci    pointPaint.setColor(SkColorSetARGB(255, 255, 0, 0));
82cb93a386Sopenharmony_ci    canvas->drawPoint(p0.x(), p0.y(), pointPaint);
83cb93a386Sopenharmony_ci    canvas->drawPoint(p1.x(), p1.y(), pointPaint);
84cb93a386Sopenharmony_ci    canvas->drawPoint(p2.x(), p2.y(), pointPaint);
85cb93a386Sopenharmony_ci
86cb93a386Sopenharmony_ci    SkPath weightedQuadratic;
87cb93a386Sopenharmony_ci    weightedQuadratic.moveTo(p0);
88cb93a386Sopenharmony_ci    weightedQuadratic.conicTo(p1, p2, weight);
89cb93a386Sopenharmony_ci    paint.setColor(SK_ColorYELLOW);
90cb93a386Sopenharmony_ci    paint.setStrokeWidth(2.5);
91cb93a386Sopenharmony_ci    canvas->drawPath(weightedQuadratic, paint);
92cb93a386Sopenharmony_ci}
93cb93a386Sopenharmony_ci}  // END FIDDLE
94