xref: /third_party/skia/bench/SkSLBench.cpp (revision cb93a386)
1/*
2 * Copyright 2019 Google LLC
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7#include "bench/Benchmark.h"
8#include "bench/ResultsWriter.h"
9#include "bench/SkSLBench.h"
10#include "include/core/SkCanvas.h"
11#include "src/gpu/GrCaps.h"
12#include "src/gpu/GrRecordingContextPriv.h"
13#include "src/gpu/mock/GrMockCaps.h"
14#include "src/sksl/SkSLCompiler.h"
15#include "src/sksl/SkSLDSLParser.h"
16
17class SkSLCompilerStartupBench : public Benchmark {
18protected:
19    const char* onGetName() override {
20        return "sksl_compiler_startup";
21    }
22
23    bool isSuitableFor(Backend backend) override {
24        return backend == kNonRendering_Backend;
25    }
26
27    void onDraw(int loops, SkCanvas*) override {
28        GrShaderCaps caps;
29        for (int i = 0; i < loops; i++) {
30            SkSL::Compiler compiler(&caps);
31        }
32    }
33};
34
35DEF_BENCH(return new SkSLCompilerStartupBench();)
36
37enum class Output {
38    kNone,
39    kGLSL,
40    kMetal,
41    kSPIRV
42};
43
44class SkSLCompileBench : public Benchmark {
45public:
46    static const char* output_string(Output output) {
47        switch (output) {
48            case Output::kNone: return "";
49            case Output::kGLSL: return "glsl_";
50            case Output::kMetal: return "metal_";
51            case Output::kSPIRV: return "spirv_";
52        }
53        SkUNREACHABLE;
54    }
55
56    SkSLCompileBench(SkSL::String name, const char* src, bool optimize, Output output)
57        : fName(SkSL::String("sksl_") + (optimize ? "" : "unoptimized_") + output_string(output) +
58                name)
59        , fSrc(src)
60        , fCaps(GrContextOptions(), GrMockOptions())
61        , fCompiler(fCaps.shaderCaps())
62        , fOutput(output) {
63            fSettings.fOptimize = optimize;
64            fSettings.fDSLMangling = false;
65            // The test programs we compile don't follow Vulkan rules and thus produce invalid
66            // SPIR-V. This is harmless, so long as we don't try to validate them.
67            fSettings.fValidateSPIRV = false;
68        }
69
70protected:
71    const char* onGetName() override {
72        return fName.c_str();
73    }
74
75    bool isSuitableFor(Backend backend) override {
76        return backend == kNonRendering_Backend;
77    }
78
79    void onDraw(int loops, SkCanvas* canvas) override {
80        for (int i = 0; i < loops; i++) {
81            std::unique_ptr<SkSL::Program> program = SkSL::DSLParser(&fCompiler,
82                                                                     fSettings,
83                                                                     SkSL::ProgramKind::kFragment,
84                                                                     fSrc).program();
85            if (fCompiler.errorCount()) {
86                SK_ABORT("shader compilation failed: %s\n", fCompiler.errorText().c_str());
87            }
88            SkSL::String result;
89            switch (fOutput) {
90                case Output::kNone: break;
91                case Output::kGLSL:  SkAssertResult(fCompiler.toGLSL(*program,  &result)); break;
92                case Output::kMetal: SkAssertResult(fCompiler.toMetal(*program, &result)); break;
93                case Output::kSPIRV: SkAssertResult(fCompiler.toSPIRV(*program, &result)); break;
94            }
95        }
96    }
97
98private:
99    SkSL::String fName;
100    SkSL::String fSrc;
101    GrMockCaps fCaps;
102    SkSL::Compiler fCompiler;
103    SkSL::Program::Settings fSettings;
104    Output fOutput;
105
106    using INHERITED = Benchmark;
107};
108
109///////////////////////////////////////////////////////////////////////////////
110
111#define COMPILER_BENCH(name, text)                                                               \
112static constexpr char name ## _SRC[] = text;                                                     \
113DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/false, Output::kNone);)  \
114DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true,  Output::kNone);)  \
115DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true,  Output::kGLSL);)  \
116DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true,  Output::kMetal);) \
117DEF_BENCH(return new SkSLCompileBench(#name, name ## _SRC, /*optimize=*/true,  Output::kSPIRV);)
118
119// This fragment shader is from the third tile on the top row of GM_gradients_2pt_conical_outside.
120COMPILER_BENCH(large, R"(
121layout(set=0, binding=0) uniform half urange_Stage1_c0;
122layout(set=0, binding=0) uniform half4 uleftBorderColor_Stage1_c0_c0_c0;
123layout(set=0, binding=0) uniform half4 urightBorderColor_Stage1_c0_c0_c0;
124layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0_c0_c0;
125layout(set=0, binding=0) uniform half2 ufocalParams_Stage1_c0_c0_c0_c0_c0;
126layout(set=0, binding=0) uniform float4 uscale0_1_Stage1_c0_c0_c0_c1;
127layout(set=0, binding=0) uniform float4 uscale2_3_Stage1_c0_c0_c0_c1;
128layout(set=0, binding=0) uniform float4 uscale4_5_Stage1_c0_c0_c0_c1;
129layout(set=0, binding=0) uniform float4 uscale6_7_Stage1_c0_c0_c0_c1;
130layout(set=0, binding=0) uniform float4 ubias0_1_Stage1_c0_c0_c0_c1;
131layout(set=0, binding=0) uniform float4 ubias2_3_Stage1_c0_c0_c0_c1;
132layout(set=0, binding=0) uniform float4 ubias4_5_Stage1_c0_c0_c0_c1;
133layout(set=0, binding=0) uniform float4 ubias6_7_Stage1_c0_c0_c0_c1;
134layout(set=0, binding=0) uniform half4 uthresholds1_7_Stage1_c0_c0_c0_c1;
135layout(set=0, binding=0) uniform half4 uthresholds9_13_Stage1_c0_c0_c0_c1;
136flat in half4 vcolor_Stage0;
137noperspective in float2 vTransformedCoords_0_Stage0;
138out half4 sk_FragColor;
139half4 TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0_c0(half4 _input)
140{
141    float t = -1.0;
142    half v = 1.0;
143    @switch (2)
144    {
145        case 1:
146        {
147            half r0_2 = ufocalParams_Stage1_c0_c0_c0_c0_c0.y;
148            t = float(r0_2) - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y;
149            if (t >= 0.0)
150            {
151                t = vTransformedCoords_0_Stage0.x + sqrt(t);
152            }
153            else
154            {
155                v = -1.0;
156            }
157        }
158        break;
159        case 0:
160        {
161            half r0 = ufocalParams_Stage1_c0_c0_c0_c0_c0.x;
162            @if (true)
163            {
164                t = length(vTransformedCoords_0_Stage0) - float(r0);
165            }
166            else
167            {
168                t = -length(vTransformedCoords_0_Stage0) - float(r0);
169            }
170        }
171        break;
172        case 2:
173        {
174            half invR1 = ufocalParams_Stage1_c0_c0_c0_c0_c0.x;
175            half fx = ufocalParams_Stage1_c0_c0_c0_c0_c0.y;
176            float x_t = -1.0;
177            @if (false)
178            {
179                x_t = dot(vTransformedCoords_0_Stage0, vTransformedCoords_0_Stage0) / vTransformedCoords_0_Stage0.x;
180            }
181            else if (false)
182            {
183                x_t = length(vTransformedCoords_0_Stage0) - vTransformedCoords_0_Stage0.x * float(invR1);
184            }
185            else
186            {
187                float temp = vTransformedCoords_0_Stage0.x * vTransformedCoords_0_Stage0.x - vTransformedCoords_0_Stage0.y * vTransformedCoords_0_Stage0.y;
188                if (temp >= 0.0)
189                {
190                    @if (false || !true)
191                    {
192                        x_t = -sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1);
193                    }
194                    else
195                    {
196                        x_t = sqrt(temp) - vTransformedCoords_0_Stage0.x * float(invR1);
197                    }
198                }
199            }
200            @if (!false)
201            {
202                if (x_t <= 0.0)
203                {
204                    v = -1.0;
205                }
206            }
207            @if (true)
208            {
209                @if (false)
210                {
211                    t = x_t;
212                }
213                else
214                {
215                    t = x_t + float(fx);
216                }
217            }
218            else
219            {
220                @if (false)
221                {
222                    t = -x_t;
223                }
224                else
225                {
226                    t = -x_t + float(fx);
227                }
228            }
229            @if (false)
230            {
231                t = 1.0 - t;
232            }
233        }
234        break;
235    }
236    return half4(half(t), v, 0.0, 0.0);
237}
238half4 MatrixEffect_Stage1_c0_c0_c0_c0(half4 _input)
239{
240    return TwoPointConicalGradientLayout_Stage1_c0_c0_c0_c0_c0(_input);
241}
242half4 UnrolledBinaryGradientColorizer_Stage1_c0_c0_c0_c1(half4 _input, float2 _coords)
243{
244    half t = half(_coords.x);
245    float4 scale;
246    float4 bias;
247    if (4 <= 4 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.w)
248    {
249        if (4 <= 2 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.y)
250        {
251            if (4 <= 1 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.x)
252            {
253                scale = uscale0_1_Stage1_c0_c0_c0_c1;
254                bias = ubias0_1_Stage1_c0_c0_c0_c1;
255            }
256            else
257            {
258                scale = uscale2_3_Stage1_c0_c0_c0_c1;
259                bias = ubias2_3_Stage1_c0_c0_c0_c1;
260            }
261        }
262        else
263        {
264            if (4 <= 3 || t < uthresholds1_7_Stage1_c0_c0_c0_c1.z)
265            {
266                scale = uscale4_5_Stage1_c0_c0_c0_c1;
267                bias = ubias4_5_Stage1_c0_c0_c0_c1;
268            }
269            else
270            {
271                scale = uscale6_7_Stage1_c0_c0_c0_c1;
272                bias = ubias6_7_Stage1_c0_c0_c0_c1;
273            }
274        }
275    }
276    else
277    {
278        if (4 <= 6 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.y)
279        {
280            if (4 <= 5 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.x)
281            {
282                scale = float4(0);
283                bias = float4(0);
284            }
285            else
286            {
287                scale = float4(0);
288                bias = float4(0);
289            }
290        }
291        else
292        {
293            if (4 <= 7 || t < uthresholds9_13_Stage1_c0_c0_c0_c1.z)
294            {
295                scale = float4(0);
296                bias = float4(0);
297            }
298            else
299            {
300                scale = float4(0);
301                bias = float4(0);
302            }
303        }
304    }
305    return half4(float(t) * scale + bias);
306}
307half4 ClampedGradientEffect_Stage1_c0_c0_c0(half4 _input)
308{
309    half4 t = MatrixEffect_Stage1_c0_c0_c0_c0(_input);
310    half4 outColor;
311    if (!false && t.y < 0.0)
312    {
313        outColor = half4(0.0);
314    }
315    else if (t.x < 0.0)
316    {
317        outColor = uleftBorderColor_Stage1_c0_c0_c0;
318    }
319    else if (t.x > 1.0)
320    {
321        outColor = urightBorderColor_Stage1_c0_c0_c0;
322    }
323    else
324    {
325        outColor = UnrolledBinaryGradientColorizer_Stage1_c0_c0_c0_c1(_input, float2(half2(t.x, 0.0)));
326    }
327    @if (false)
328    {
329        outColor.xyz *= outColor.w;
330    }
331    return outColor;
332}
333half4 OverrideInputFragmentProcessor_Stage1_c0_c0(half4 _input)
334{
335    return ClampedGradientEffect_Stage1_c0_c0_c0(false ? half4(0) : half4(1.000000, 1.000000, 1.000000, 1.000000));
336}
337half4 DitherEffect_Stage1_c0(half4 _input)
338{
339    half4 color = OverrideInputFragmentProcessor_Stage1_c0_c0(_input);
340    half value;
341    @if (sk_Caps.integerSupport)
342    {
343        uint x = uint(sk_FragCoord.x);
344        uint y = uint(sk_FragCoord.y) ^ x;
345        uint m = (((((y & 1) << 5 | (x & 1) << 4) | (y & 2) << 2) | (x & 2) << 1) | (y & 4) >> 1) | (x & 4) >> 2;
346        value = half(m) / 64.0 - 0.4921875;
347    }
348    else
349    {
350        half4 bits = mod(half4(sk_FragCoord.yxyx), half4(2.0, 2.0, 4.0, 4.0));
351        bits.zw = step(2.0, bits.zw);
352        bits.xz = abs(bits.xz - bits.yw);
353        value = dot(bits, half4(0.5, 0.25, 0.125, 0.0625)) - 0.46875;
354    }
355    return half4(clamp(color.xyz + value * urange_Stage1_c0, 0.0, color.w), color.w);
356}
357void main()
358{
359    // Stage 0, QuadPerEdgeAAGeometryProcessor
360    half4 outputColor_Stage0;
361    outputColor_Stage0 = vcolor_Stage0;
362    const half4 outputCoverage_Stage0 = half4(1);
363    half4 output_Stage1;
364    output_Stage1 = DitherEffect_Stage1_c0(outputColor_Stage0);
365    {
366        // Xfer Processor: Porter Duff
367        sk_FragColor = output_Stage1 * outputCoverage_Stage0;
368    }
369}
370)");
371
372// This fragment shader is taken from GM_BlurDrawImage.
373COMPILER_BENCH(medium, R"(
374layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0_c0;
375layout(set=0, binding=0) uniform half4 urectH_Stage2_c1;
376layout(set=0, binding=0) uniform float3x3 umatrix_Stage2_c1_c0;
377layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage1;
378layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage2;
379flat in half4 vcolor_Stage0;
380noperspective in float2 vTransformedCoords_0_Stage0;
381out half4 sk_FragColor;
382half4 TextureEffect_Stage1_c0_c0_c0_c0(half4 _input)
383{
384    return sample(uTextureSampler_0_Stage1, vTransformedCoords_0_Stage0);
385}
386half4 MatrixEffect_Stage1_c0_c0_c0(half4 _input)
387{
388    return TextureEffect_Stage1_c0_c0_c0_c0(_input);
389}
390half4 Blend_Stage1_c0_c0(half4 _input)
391{
392    // Blend mode: SrcIn (Compose-One behavior)
393    return blend_src_in(MatrixEffect_Stage1_c0_c0_c0(half4(1)), _input);
394}
395half4 OverrideInputFragmentProcessor_Stage1_c0(half4 _input)
396{
397    return Blend_Stage1_c0_c0(false ? half4(0) : half4(1.000000, 1.000000, 1.000000, 1.000000));
398}
399half4 TextureEffect_Stage2_c1_c0_c0(half4 _input, float2 _coords)
400{
401    return sample(uTextureSampler_0_Stage2, _coords).000r;
402}
403half4 MatrixEffect_Stage2_c1_c0(half4 _input, float2 _coords)
404{
405    return TextureEffect_Stage2_c1_c0_c0(_input, ((umatrix_Stage2_c1_c0) * _coords.xy1).xy);
406}
407half4 RectBlurEffect_Stage2_c1(half4 _input)
408{
409    /* key */ const bool highPrecision = false;
410    half xCoverage;
411    half yCoverage;
412    float2 pos = sk_FragCoord.xy;
413    @if (false)
414    {
415        pos = (float3x3(1) * float3(pos, 1.0)).xy;
416    }
417    @if (true)
418    {
419        half2 xy;
420        @if (highPrecision)
421        {
422            xy = max(half2(float4(0).xy - pos), half2(pos - float4(0).zw));
423        }
424        else
425        {
426            xy = max(half2(float2(urectH_Stage2_c1.xy) - pos), half2(pos - float2(urectH_Stage2_c1.zw)));
427        }
428        xCoverage = MatrixEffect_Stage2_c1_c0(_input, float2(half2(xy.x, 0.5))).w;
429        yCoverage = MatrixEffect_Stage2_c1_c0(_input, float2(half2(xy.y, 0.5))).w;
430    }
431    else
432    {
433        half4 rect;
434        @if (highPrecision)
435        {
436            rect.xy = half2(float4(0).xy - pos);
437            rect.zw = half2(pos - float4(0).zw);
438        }
439        else
440        {
441            rect.xy = half2(float2(urectH_Stage2_c1.xy) - pos);
442            rect.zw = half2(pos - float2(urectH_Stage2_c1.zw));
443        }
444        xCoverage = (1.0 - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.x, 0.5))).w) - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.z, 0.5))).w;
445        yCoverage = (1.0 - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.y, 0.5))).w) - MatrixEffect_Stage2_c1_c0(_input, float2(half2(rect.w, 0.5))).w;
446    }
447    return (_input * xCoverage) * yCoverage;
448}
449void main()
450{
451    // Stage 0, QuadPerEdgeAAGeometryProcessor
452    half4 outputColor_Stage0;
453    outputColor_Stage0 = vcolor_Stage0;
454    const half4 outputCoverage_Stage0 = half4(1);
455    half4 output_Stage1;
456    output_Stage1 = OverrideInputFragmentProcessor_Stage1_c0(outputColor_Stage0);
457    half4 output_Stage2;
458    output_Stage2 = RectBlurEffect_Stage2_c1(outputCoverage_Stage0);
459    {
460        // Xfer Processor: Porter Duff
461        sk_FragColor = output_Stage1 * output_Stage2;
462    }
463}
464)");
465
466// This is the fragment shader used to blit the Viewer window when running the software rasterizer.
467COMPILER_BENCH(small, R"(
468layout(set=0, binding=0) uniform float3x3 umatrix_Stage1_c0_c0;
469layout(set=0, binding=0) uniform sampler2D uTextureSampler_0_Stage1;
470noperspective in float2 vTransformedCoords_0_Stage0;
471out half4 sk_FragColor;
472half4 TextureEffect_Stage1_c0_c0_c0(half4 _input)
473{
474    return sample(uTextureSampler_0_Stage1, vTransformedCoords_0_Stage0);
475}
476half4 MatrixEffect_Stage1_c0_c0(half4 _input)
477{
478    return TextureEffect_Stage1_c0_c0_c0(_input);
479}
480half4 Blend_Stage1_c0(half4 _input)
481{
482    // Blend mode: Modulate (Compose-One behavior)
483    return blend_modulate(MatrixEffect_Stage1_c0_c0(half4(1)), _input);
484}
485void main()
486{
487    // Stage 0, QuadPerEdgeAAGeometryProcessor
488    half4 outputColor_Stage0 = half4(1);
489    const half4 outputCoverage_Stage0 = half4(1);
490    half4 output_Stage1;
491    output_Stage1 = Blend_Stage1_c0(outputColor_Stage0);
492    {
493        // Xfer Processor: Porter Duff
494        sk_FragColor = output_Stage1 * outputCoverage_Stage0;
495    }
496}
497)");
498
499COMPILER_BENCH(tiny, "void main() { sk_FragColor = half4(1); }");
500
501#if defined(SK_BUILD_FOR_UNIX)
502
503#include <malloc.h>
504
505// These benchmarks aren't timed, they produce memory usage statistics. They run standalone, and
506// directly add their results to the nanobench log.
507void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter* log) {
508    auto heap_bytes_used = []() { return mallinfo().uordblks; };
509    auto bench = [log](const char* name, int bytes) {
510        log->beginObject(name);          // test
511        log->beginObject("meta");        //   config
512        log->appendS32("bytes", bytes);  //     sub_result
513        log->endObject();                //   config
514        log->endObject();                // test
515    };
516
517    // Heap used by a default compiler (with no modules loaded)
518    {
519        int before = heap_bytes_used();
520        GrShaderCaps caps;
521        SkSL::Compiler compiler(&caps);
522        int after = heap_bytes_used();
523        bench("sksl_compiler_baseline", after - before);
524    }
525
526    // Heap used by a compiler with the two main GPU modules (fragment + vertex) loaded
527    {
528        int before = heap_bytes_used();
529        GrShaderCaps caps;
530        SkSL::Compiler compiler(&caps);
531        compiler.moduleForProgramKind(SkSL::ProgramKind::kVertex);
532        compiler.moduleForProgramKind(SkSL::ProgramKind::kFragment);
533        int after = heap_bytes_used();
534        bench("sksl_compiler_gpu", after - before);
535    }
536
537    // Heap used by a compiler with the runtime shader, color filter and blending modules loaded
538    {
539        int before = heap_bytes_used();
540        GrShaderCaps caps;
541        SkSL::Compiler compiler(&caps);
542        compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeColorFilter);
543        compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeShader);
544        compiler.moduleForProgramKind(SkSL::ProgramKind::kRuntimeBlender);
545        int after = heap_bytes_used();
546        bench("sksl_compiler_runtimeeffect", after - before);
547    }
548}
549
550#else
551
552void RunSkSLMemoryBenchmarks(NanoJSONResultsWriter*) {}
553
554#endif
555