xref: /third_party/rust/crates/rustix/src/net/ip.rs (revision b8a62b91)
1//! The following is derived from Rust's
2//! library/std/src/net/ip_addr.rs at revision
3//! 14230a7f8e117aa049d3ae661fa00ded7edefc68.
4//!
5//! All code in this file is licensed MIT or Apache 2.0 at your option.
6//!
7//! This defines `IpAddr`, `Ipv4Addr`, and `Ipv6Addr`. Ideally, these should be
8//! defined in `core`. See [RFC 2832].
9//!
10//! [RFC 2832]: https://github.com/rust-lang/rfcs/pull/2832
11
12#![allow(unsafe_code)]
13
14use core::cmp::Ordering;
15use core::mem::transmute;
16
17/// An IP address, either IPv4 or IPv6.
18///
19/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
20/// respective documentation for more details.
21///
22/// # Examples
23///
24/// ```
25/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
26///
27/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
28/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
29///
30/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
31/// assert_eq!("::1".parse(), Ok(localhost_v6));
32///
33/// assert_eq!(localhost_v4.is_ipv6(), false);
34/// assert_eq!(localhost_v4.is_ipv4(), true);
35/// ```
36#[cfg_attr(staged_api, stable(feature = "ip_addr", since = "1.7.0"))]
37#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
38pub enum IpAddr {
39    /// An IPv4 address.
40    #[cfg_attr(staged_api, stable(feature = "ip_addr", since = "1.7.0"))]
41    V4(#[cfg_attr(staged_api, stable(feature = "ip_addr", since = "1.7.0"))] Ipv4Addr),
42    /// An IPv6 address.
43    #[cfg_attr(staged_api, stable(feature = "ip_addr", since = "1.7.0"))]
44    V6(#[cfg_attr(staged_api, stable(feature = "ip_addr", since = "1.7.0"))] Ipv6Addr),
45}
46
47/// An IPv4 address.
48///
49/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
50/// They are usually represented as four octets.
51///
52/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
53///
54/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
55///
56/// # Textual representation
57///
58/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
59/// notation, divided by `.` (this is called "dot-decimal notation").
60/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
61/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
62///
63/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
64/// [`FromStr`]: core::str::FromStr
65///
66/// # Examples
67///
68/// ```
69/// use std::net::Ipv4Addr;
70///
71/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
72/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
73/// assert_eq!(localhost.is_loopback(), true);
74/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
75/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
76/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
77/// ```
78#[derive(Copy, Clone, PartialEq, Eq, Hash)]
79#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
80pub struct Ipv4Addr {
81    octets: [u8; 4],
82}
83
84/// An IPv6 address.
85///
86/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
87/// They are usually represented as eight 16-bit segments.
88///
89/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
90///
91/// # Embedding IPv4 Addresses
92///
93/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
94///
95/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
96/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
97///
98/// Both types of addresses are not assigned any special meaning by this implementation,
99/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
100/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
101/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
102///
103/// ### IPv4-Compatible IPv6 Addresses
104///
105/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
106/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
107///
108/// ```text
109/// |                80 bits               | 16 |      32 bits        |
110/// +--------------------------------------+--------------------------+
111/// |0000..............................0000|0000|    IPv4 address     |
112/// +--------------------------------------+----+---------------------+
113/// ```
114/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
115///
116/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
117/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
118///
119/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
120///
121/// ### IPv4-Mapped IPv6 Addresses
122///
123/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
124/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
125///
126/// ```text
127/// |                80 bits               | 16 |      32 bits        |
128/// +--------------------------------------+--------------------------+
129/// |0000..............................0000|FFFF|    IPv4 address     |
130/// +--------------------------------------+----+---------------------+
131/// ```
132/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
133///
134/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
135/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
136/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
137/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
138///
139/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
140///
141/// # Textual representation
142///
143/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
144/// an IPv6 address in text, but in general, each segments is written in hexadecimal
145/// notation, and segments are separated by `:`. For more information, see
146/// [IETF RFC 5952].
147///
148/// [`FromStr`]: core::str::FromStr
149/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
150///
151/// # Examples
152///
153/// ```
154/// use std::net::Ipv6Addr;
155///
156/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
157/// assert_eq!("::1".parse(), Ok(localhost));
158/// assert_eq!(localhost.is_loopback(), true);
159/// ```
160#[derive(Copy, Clone, PartialEq, Eq, Hash)]
161#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
162pub struct Ipv6Addr {
163    octets: [u8; 16],
164}
165
166/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
167///
168/// # Stability Guarantees
169///
170/// Not all possible values for a multicast scope have been assigned.
171/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
172/// because of this the enum is marked as `#[non_exhaustive]`.
173///
174/// # Examples
175/// ```
176/// #![feature(ip)]
177///
178/// use std::net::Ipv6Addr;
179/// use std::net::Ipv6MulticastScope::*;
180///
181/// // An IPv6 multicast address with global scope (`ff0e::`).
182/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
183///
184/// // Will print "Global scope".
185/// match address.multicast_scope() {
186///     Some(InterfaceLocal) => println!("Interface-Local scope"),
187///     Some(LinkLocal) => println!("Link-Local scope"),
188///     Some(RealmLocal) => println!("Realm-Local scope"),
189///     Some(AdminLocal) => println!("Admin-Local scope"),
190///     Some(SiteLocal) => println!("Site-Local scope"),
191///     Some(OrganizationLocal) => println!("Organization-Local scope"),
192///     Some(Global) => println!("Global scope"),
193///     Some(_) => println!("Unknown scope"),
194///     None => println!("Not a multicast address!")
195/// }
196///
197/// ```
198///
199/// [IPv6 multicast address]: Ipv6Addr
200/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
201#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
202#[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
203#[non_exhaustive]
204pub enum Ipv6MulticastScope {
205    /// Interface-Local scope.
206    InterfaceLocal,
207    /// Link-Local scope.
208    LinkLocal,
209    /// Realm-Local scope.
210    RealmLocal,
211    /// Admin-Local scope.
212    AdminLocal,
213    /// Site-Local scope.
214    SiteLocal,
215    /// Organization-Local scope.
216    OrganizationLocal,
217    /// Global scope.
218    Global,
219}
220
221impl IpAddr {
222    /// Returns [`true`] for the special 'unspecified' address.
223    ///
224    /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
225    /// [`Ipv6Addr::is_unspecified()`] for more details.
226    ///
227    /// # Examples
228    ///
229    /// ```
230    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
231    ///
232    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
233    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
234    /// ```
235    #[cfg_attr(
236        staged_api,
237        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
238    )]
239    #[cfg_attr(staged_api, stable(feature = "ip_shared", since = "1.12.0"))]
240    #[must_use]
241    #[inline]
242    pub const fn is_unspecified(&self) -> bool {
243        match self {
244            IpAddr::V4(ip) => ip.is_unspecified(),
245            IpAddr::V6(ip) => ip.is_unspecified(),
246        }
247    }
248
249    /// Returns [`true`] if this is a loopback address.
250    ///
251    /// See the documentation for [`Ipv4Addr::is_loopback()`] and
252    /// [`Ipv6Addr::is_loopback()`] for more details.
253    ///
254    /// # Examples
255    ///
256    /// ```
257    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
258    ///
259    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
260    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
261    /// ```
262    #[cfg_attr(
263        staged_api,
264        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
265    )]
266    #[cfg_attr(staged_api, stable(feature = "ip_shared", since = "1.12.0"))]
267    #[must_use]
268    #[inline]
269    pub const fn is_loopback(&self) -> bool {
270        match self {
271            IpAddr::V4(ip) => ip.is_loopback(),
272            IpAddr::V6(ip) => ip.is_loopback(),
273        }
274    }
275
276    /// Returns [`true`] if the address appears to be globally routable.
277    ///
278    /// See the documentation for [`Ipv4Addr::is_global()`] and
279    /// [`Ipv6Addr::is_global()`] for more details.
280    ///
281    /// # Examples
282    ///
283    /// ```
284    /// #![feature(ip)]
285    ///
286    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
287    ///
288    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
289    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
290    /// ```
291    #[cfg_attr(
292        staged_api,
293        rustc_const_unstable(feature = "const_ip", issue = "76205")
294    )]
295    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
296    #[must_use]
297    #[inline]
298    pub const fn is_global(&self) -> bool {
299        match self {
300            IpAddr::V4(ip) => ip.is_global(),
301            IpAddr::V6(ip) => ip.is_global(),
302        }
303    }
304
305    /// Returns [`true`] if this is a multicast address.
306    ///
307    /// See the documentation for [`Ipv4Addr::is_multicast()`] and
308    /// [`Ipv6Addr::is_multicast()`] for more details.
309    ///
310    /// # Examples
311    ///
312    /// ```
313    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
314    ///
315    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
316    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
317    /// ```
318    #[cfg_attr(
319        staged_api,
320        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
321    )]
322    #[cfg_attr(staged_api, stable(feature = "ip_shared", since = "1.12.0"))]
323    #[must_use]
324    #[inline]
325    pub const fn is_multicast(&self) -> bool {
326        match self {
327            IpAddr::V4(ip) => ip.is_multicast(),
328            IpAddr::V6(ip) => ip.is_multicast(),
329        }
330    }
331
332    /// Returns [`true`] if this address is in a range designated for documentation.
333    ///
334    /// See the documentation for [`Ipv4Addr::is_documentation()`] and
335    /// [`Ipv6Addr::is_documentation()`] for more details.
336    ///
337    /// # Examples
338    ///
339    /// ```
340    /// #![feature(ip)]
341    ///
342    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
343    ///
344    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
345    /// assert_eq!(
346    ///     IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
347    ///     true
348    /// );
349    /// ```
350    #[cfg_attr(
351        staged_api,
352        rustc_const_unstable(feature = "const_ip", issue = "76205")
353    )]
354    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
355    #[must_use]
356    #[inline]
357    pub const fn is_documentation(&self) -> bool {
358        match self {
359            IpAddr::V4(ip) => ip.is_documentation(),
360            IpAddr::V6(ip) => ip.is_documentation(),
361        }
362    }
363
364    /// Returns [`true`] if this address is in a range designated for benchmarking.
365    ///
366    /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
367    /// [`Ipv6Addr::is_benchmarking()`] for more details.
368    ///
369    /// # Examples
370    ///
371    /// ```
372    /// #![feature(ip)]
373    ///
374    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
375    ///
376    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
377    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
378    /// ```
379    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
380    #[must_use]
381    #[inline]
382    pub const fn is_benchmarking(&self) -> bool {
383        match self {
384            IpAddr::V4(ip) => ip.is_benchmarking(),
385            IpAddr::V6(ip) => ip.is_benchmarking(),
386        }
387    }
388
389    /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
390    /// otherwise.
391    ///
392    /// [`IPv4` address]: IpAddr::V4
393    ///
394    /// # Examples
395    ///
396    /// ```
397    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
398    ///
399    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
400    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
401    /// ```
402    #[cfg_attr(
403        staged_api,
404        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
405    )]
406    #[cfg_attr(staged_api, stable(feature = "ipaddr_checker", since = "1.16.0"))]
407    #[must_use]
408    #[inline]
409    pub const fn is_ipv4(&self) -> bool {
410        matches!(self, IpAddr::V4(_))
411    }
412
413    /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
414    /// otherwise.
415    ///
416    /// [`IPv6` address]: IpAddr::V6
417    ///
418    /// # Examples
419    ///
420    /// ```
421    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
422    ///
423    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
424    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
425    /// ```
426    #[cfg_attr(
427        staged_api,
428        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
429    )]
430    #[cfg_attr(staged_api, stable(feature = "ipaddr_checker", since = "1.16.0"))]
431    #[must_use]
432    #[inline]
433    pub const fn is_ipv6(&self) -> bool {
434        matches!(self, IpAddr::V6(_))
435    }
436
437    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6 addresses, otherwise it
438    /// return `self` as-is.
439    ///
440    /// # Examples
441    ///
442    /// ```
443    /// #![feature(ip)]
444    /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
445    ///
446    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
447    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
448    /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
449    /// ```
450    #[inline]
451    #[must_use = "this returns the result of the operation, \
452                  without modifying the original"]
453    #[cfg_attr(
454        staged_api,
455        rustc_const_unstable(feature = "const_ip", issue = "76205")
456    )]
457    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
458    pub const fn to_canonical(&self) -> IpAddr {
459        match self {
460            &v4 @ IpAddr::V4(_) => v4,
461            IpAddr::V6(v6) => v6.to_canonical(),
462        }
463    }
464}
465
466impl Ipv4Addr {
467    /// Creates a new IPv4 address from four eight-bit octets.
468    ///
469    /// The result will represent the IP address `a`.`b`.`c`.`d`.
470    ///
471    /// # Examples
472    ///
473    /// ```
474    /// use std::net::Ipv4Addr;
475    ///
476    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
477    /// ```
478    #[cfg_attr(
479        staged_api,
480        rustc_const_stable(feature = "const_ip_32", since = "1.32.0")
481    )]
482    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
483    #[must_use]
484    #[inline]
485    pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
486        Ipv4Addr {
487            octets: [a, b, c, d],
488        }
489    }
490
491    /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// use std::net::Ipv4Addr;
497    ///
498    /// let addr = Ipv4Addr::LOCALHOST;
499    /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
500    /// ```
501    #[cfg_attr(staged_api, stable(feature = "ip_constructors", since = "1.30.0"))]
502    pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
503
504    /// An IPv4 address representing an unspecified address: `0.0.0.0`
505    ///
506    /// This corresponds to the constant `INADDR_ANY` in other languages.
507    ///
508    /// # Examples
509    ///
510    /// ```
511    /// use std::net::Ipv4Addr;
512    ///
513    /// let addr = Ipv4Addr::UNSPECIFIED;
514    /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
515    /// ```
516    #[doc(alias = "INADDR_ANY")]
517    #[cfg_attr(staged_api, stable(feature = "ip_constructors", since = "1.30.0"))]
518    pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
519
520    /// An IPv4 address representing the broadcast address: `255.255.255.255`
521    ///
522    /// # Examples
523    ///
524    /// ```
525    /// use std::net::Ipv4Addr;
526    ///
527    /// let addr = Ipv4Addr::BROADCAST;
528    /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
529    /// ```
530    #[cfg_attr(staged_api, stable(feature = "ip_constructors", since = "1.30.0"))]
531    pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
532
533    /// Returns the four eight-bit integers that make up this address.
534    ///
535    /// # Examples
536    ///
537    /// ```
538    /// use std::net::Ipv4Addr;
539    ///
540    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
541    /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
542    /// ```
543    #[cfg_attr(
544        staged_api,
545        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
546    )]
547    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
548    #[must_use]
549    #[inline]
550    pub const fn octets(&self) -> [u8; 4] {
551        self.octets
552    }
553
554    /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
555    ///
556    /// This property is defined in _UNIX Network Programming, Second Edition_,
557    /// W. Richard Stevens, p. 891; see also [ip7].
558    ///
559    /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
560    ///
561    /// # Examples
562    ///
563    /// ```
564    /// use std::net::Ipv4Addr;
565    ///
566    /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
567    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
568    /// ```
569    #[cfg_attr(
570        staged_api,
571        rustc_const_stable(feature = "const_ip_32", since = "1.32.0")
572    )]
573    #[cfg_attr(staged_api, stable(feature = "ip_shared", since = "1.12.0"))]
574    #[must_use]
575    #[inline]
576    pub const fn is_unspecified(&self) -> bool {
577        u32::from_be_bytes(self.octets) == 0
578    }
579
580    /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
581    ///
582    /// This property is defined by [IETF RFC 1122].
583    ///
584    /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
585    ///
586    /// # Examples
587    ///
588    /// ```
589    /// use std::net::Ipv4Addr;
590    ///
591    /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
592    /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
593    /// ```
594    #[cfg_attr(
595        staged_api,
596        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
597    )]
598    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
599    #[must_use]
600    #[inline]
601    pub const fn is_loopback(&self) -> bool {
602        self.octets()[0] == 127
603    }
604
605    /// Returns [`true`] if this is a private address.
606    ///
607    /// The private address ranges are defined in [IETF RFC 1918] and include:
608    ///
609    ///  - `10.0.0.0/8`
610    ///  - `172.16.0.0/12`
611    ///  - `192.168.0.0/16`
612    ///
613    /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
614    ///
615    /// # Examples
616    ///
617    /// ```
618    /// use std::net::Ipv4Addr;
619    ///
620    /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
621    /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
622    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
623    /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
624    /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
625    /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
626    /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
627    /// ```
628    #[cfg_attr(
629        staged_api,
630        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
631    )]
632    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
633    #[must_use]
634    #[inline]
635    pub const fn is_private(&self) -> bool {
636        match self.octets() {
637            [10, ..] => true,
638            [172, b, ..] if b >= 16 && b <= 31 => true,
639            [192, 168, ..] => true,
640            _ => false,
641        }
642    }
643
644    /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
645    ///
646    /// This property is defined by [IETF RFC 3927].
647    ///
648    /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
649    ///
650    /// # Examples
651    ///
652    /// ```
653    /// use std::net::Ipv4Addr;
654    ///
655    /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
656    /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
657    /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
658    /// ```
659    #[cfg_attr(
660        staged_api,
661        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
662    )]
663    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
664    #[must_use]
665    #[inline]
666    pub const fn is_link_local(&self) -> bool {
667        matches!(self.octets(), [169, 254, ..])
668    }
669
670    /// Returns [`true`] if the address appears to be globally reachable
671    /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
672    /// Whether or not an address is practically reachable will depend on your network configuration.
673    ///
674    /// Most IPv4 addresses are globally reachable;
675    /// unless they are specifically defined as *not* globally reachable.
676    ///
677    /// Non-exhaustive list of notable addresses that are not globally reachable:
678    ///
679    /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
680    /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
681    /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
682    /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
683    /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
684    /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
685    /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
686    /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
687    /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
688    ///
689    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
690    ///
691    /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
692    /// [unspecified address]: Ipv4Addr::UNSPECIFIED
693    /// [broadcast address]: Ipv4Addr::BROADCAST
694
695    ///
696    /// # Examples
697    ///
698    /// ```
699    /// #![feature(ip)]
700    ///
701    /// use std::net::Ipv4Addr;
702    ///
703    /// // Most IPv4 addresses are globally reachable:
704    /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
705    ///
706    /// // However some addresses have been assigned a special meaning
707    /// // that makes them not globally reachable. Some examples are:
708    ///
709    /// // The unspecified address (`0.0.0.0`)
710    /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
711    ///
712    /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
713    /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
714    /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
715    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
716    ///
717    /// // Addresses in the shared address space (`100.64.0.0/10`)
718    /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
719    ///
720    /// // The loopback addresses (`127.0.0.0/8`)
721    /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
722    ///
723    /// // Link-local addresses (`169.254.0.0/16`)
724    /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
725    ///
726    /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
727    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
728    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
729    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
730    ///
731    /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
732    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
733    ///
734    /// // Reserved addresses (`240.0.0.0/4`)
735    /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
736    ///
737    /// // The broadcast address (`255.255.255.255`)
738    /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
739    ///
740    /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
741    /// ```
742    #[cfg_attr(
743        staged_api,
744        rustc_const_unstable(feature = "const_ipv4", issue = "76205")
745    )]
746    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
747    #[must_use]
748    #[inline]
749    pub const fn is_global(&self) -> bool {
750        !(self.octets()[0] == 0 // "This network"
751            || self.is_private()
752            || self.is_shared()
753            || self.is_loopback()
754            || self.is_link_local()
755            // addresses reserved for future protocols (`192.0.0.0/24`)
756            ||(self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0)
757            || self.is_documentation()
758            || self.is_benchmarking()
759            || self.is_reserved()
760            || self.is_broadcast())
761    }
762
763    /// Returns [`true`] if this address is part of the Shared Address Space defined in
764    /// [IETF RFC 6598] (`100.64.0.0/10`).
765    ///
766    /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
767    ///
768    /// # Examples
769    ///
770    /// ```
771    /// #![feature(ip)]
772    /// use std::net::Ipv4Addr;
773    ///
774    /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
775    /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
776    /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
777    /// ```
778    #[cfg_attr(
779        staged_api,
780        rustc_const_unstable(feature = "const_ipv4", issue = "76205")
781    )]
782    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
783    #[must_use]
784    #[inline]
785    pub const fn is_shared(&self) -> bool {
786        self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
787    }
788
789    /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
790    /// network devices benchmarking. This range is defined in [IETF RFC 2544] as `192.18.0.0`
791    /// through `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
792    ///
793    /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
794    /// [errata 423]: https://www.rfc-editor.org/errata/eid423
795    ///
796    /// # Examples
797    ///
798    /// ```
799    /// #![feature(ip)]
800    /// use std::net::Ipv4Addr;
801    ///
802    /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
803    /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
804    /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
805    /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
806    /// ```
807    #[cfg_attr(
808        staged_api,
809        rustc_const_unstable(feature = "const_ipv4", issue = "76205")
810    )]
811    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
812    #[must_use]
813    #[inline]
814    pub const fn is_benchmarking(&self) -> bool {
815        self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
816    }
817
818    /// Returns [`true`] if this address is reserved by IANA for future use. [IETF RFC 1112]
819    /// defines the block of reserved addresses as `240.0.0.0/4`. This range normally includes the
820    /// broadcast address `255.255.255.255`, but this implementation explicitly excludes it, since
821    /// it is obviously not reserved for future use.
822    ///
823    /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
824    ///
825    /// # Warning
826    ///
827    /// As IANA assigns new addresses, this method will be
828    /// updated. This may result in non-reserved addresses being
829    /// treated as reserved in code that relies on an outdated version
830    /// of this method.
831    ///
832    /// # Examples
833    ///
834    /// ```
835    /// #![feature(ip)]
836    /// use std::net::Ipv4Addr;
837    ///
838    /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
839    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
840    ///
841    /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
842    /// // The broadcast address is not considered as reserved for future use by this implementation
843    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
844    /// ```
845    #[cfg_attr(
846        staged_api,
847        rustc_const_unstable(feature = "const_ipv4", issue = "76205")
848    )]
849    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
850    #[must_use]
851    #[inline]
852    pub const fn is_reserved(&self) -> bool {
853        self.octets()[0] & 240 == 240 && !self.is_broadcast()
854    }
855
856    /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
857    ///
858    /// Multicast addresses have a most significant octet between `224` and `239`,
859    /// and is defined by [IETF RFC 5771].
860    ///
861    /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
862    ///
863    /// # Examples
864    ///
865    /// ```
866    /// use std::net::Ipv4Addr;
867    ///
868    /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
869    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
870    /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
871    /// ```
872    #[cfg_attr(
873        staged_api,
874        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
875    )]
876    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
877    #[must_use]
878    #[inline]
879    pub const fn is_multicast(&self) -> bool {
880        self.octets()[0] >= 224 && self.octets()[0] <= 239
881    }
882
883    /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
884    ///
885    /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
886    ///
887    /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
888    ///
889    /// # Examples
890    ///
891    /// ```
892    /// use std::net::Ipv4Addr;
893    ///
894    /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
895    /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
896    /// ```
897    #[cfg_attr(
898        staged_api,
899        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
900    )]
901    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
902    #[must_use]
903    #[inline]
904    pub const fn is_broadcast(&self) -> bool {
905        u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
906    }
907
908    /// Returns [`true`] if this address is in a range designated for documentation.
909    ///
910    /// This is defined in [IETF RFC 5737]:
911    ///
912    /// - `192.0.2.0/24` (TEST-NET-1)
913    /// - `198.51.100.0/24` (TEST-NET-2)
914    /// - `203.0.113.0/24` (TEST-NET-3)
915    ///
916    /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
917    ///
918    /// # Examples
919    ///
920    /// ```
921    /// use std::net::Ipv4Addr;
922    ///
923    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
924    /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
925    /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
926    /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
927    /// ```
928    #[cfg_attr(
929        staged_api,
930        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
931    )]
932    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
933    #[must_use]
934    #[inline]
935    pub const fn is_documentation(&self) -> bool {
936        matches!(
937            self.octets(),
938            [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _]
939        )
940    }
941
942    /// Converts this address to an [IPv4-compatible] [`IPv6` address].
943    ///
944    /// `a.b.c.d` becomes `::a.b.c.d`
945    ///
946    /// Note that IPv4-compatible addresses have been officially deprecated.
947    /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
948    ///
949    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
950    /// [`IPv6` address]: Ipv6Addr
951    ///
952    /// # Examples
953    ///
954    /// ```
955    /// use std::net::{Ipv4Addr, Ipv6Addr};
956    ///
957    /// assert_eq!(
958    ///     Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
959    ///     Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
960    /// );
961    /// ```
962    #[cfg_attr(
963        staged_api,
964        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
965    )]
966    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
967    #[must_use = "this returns the result of the operation, \
968                  without modifying the original"]
969    #[inline]
970    pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
971        let [a, b, c, d] = self.octets();
972        Ipv6Addr {
973            octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d],
974        }
975    }
976
977    /// Converts this address to an [IPv4-mapped] [`IPv6` address].
978    ///
979    /// `a.b.c.d` becomes `::ffff:a.b.c.d`
980    ///
981    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
982    /// [`IPv6` address]: Ipv6Addr
983    ///
984    /// # Examples
985    ///
986    /// ```
987    /// use std::net::{Ipv4Addr, Ipv6Addr};
988    ///
989    /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
990    ///            Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
991    /// ```
992    #[cfg_attr(
993        staged_api,
994        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
995    )]
996    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
997    #[must_use = "this returns the result of the operation, \
998                  without modifying the original"]
999    #[inline]
1000    pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
1001        let [a, b, c, d] = self.octets();
1002        Ipv6Addr {
1003            octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d],
1004        }
1005    }
1006}
1007
1008#[cfg_attr(staged_api, stable(feature = "ip_from_ip", since = "1.16.0"))]
1009impl From<Ipv4Addr> for IpAddr {
1010    /// Copies this address to a new `IpAddr::V4`.
1011    ///
1012    /// # Examples
1013    ///
1014    /// ```
1015    /// use std::net::{IpAddr, Ipv4Addr};
1016    ///
1017    /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1018    ///
1019    /// assert_eq!(
1020    ///     IpAddr::V4(addr),
1021    ///     IpAddr::from(addr)
1022    /// )
1023    /// ```
1024    #[inline]
1025    fn from(ipv4: Ipv4Addr) -> IpAddr {
1026        IpAddr::V4(ipv4)
1027    }
1028}
1029
1030#[cfg_attr(staged_api, stable(feature = "ip_from_ip", since = "1.16.0"))]
1031impl From<Ipv6Addr> for IpAddr {
1032    /// Copies this address to a new `IpAddr::V6`.
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```
1037    /// use std::net::{IpAddr, Ipv6Addr};
1038    ///
1039    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1040    ///
1041    /// assert_eq!(
1042    ///     IpAddr::V6(addr),
1043    ///     IpAddr::from(addr)
1044    /// );
1045    /// ```
1046    #[inline]
1047    fn from(ipv6: Ipv6Addr) -> IpAddr {
1048        IpAddr::V6(ipv6)
1049    }
1050}
1051
1052#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1053impl PartialEq<Ipv4Addr> for IpAddr {
1054    #[inline]
1055    fn eq(&self, other: &Ipv4Addr) -> bool {
1056        match self {
1057            IpAddr::V4(v4) => v4 == other,
1058            IpAddr::V6(_) => false,
1059        }
1060    }
1061}
1062
1063#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1064impl PartialEq<IpAddr> for Ipv4Addr {
1065    #[inline]
1066    fn eq(&self, other: &IpAddr) -> bool {
1067        match other {
1068            IpAddr::V4(v4) => self == v4,
1069            IpAddr::V6(_) => false,
1070        }
1071    }
1072}
1073
1074#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1075impl PartialOrd for Ipv4Addr {
1076    #[inline]
1077    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1078        Some(self.cmp(other))
1079    }
1080}
1081
1082#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1083impl PartialOrd<Ipv4Addr> for IpAddr {
1084    #[inline]
1085    fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1086        match self {
1087            IpAddr::V4(v4) => v4.partial_cmp(other),
1088            IpAddr::V6(_) => Some(Ordering::Greater),
1089        }
1090    }
1091}
1092
1093#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1094impl PartialOrd<IpAddr> for Ipv4Addr {
1095    #[inline]
1096    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1097        match other {
1098            IpAddr::V4(v4) => self.partial_cmp(v4),
1099            IpAddr::V6(_) => Some(Ordering::Less),
1100        }
1101    }
1102}
1103
1104#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1105impl Ord for Ipv4Addr {
1106    #[inline]
1107    fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1108        self.octets.cmp(&other.octets)
1109    }
1110}
1111
1112#[cfg_attr(staged_api, stable(feature = "ip_u32", since = "1.1.0"))]
1113impl From<Ipv4Addr> for u32 {
1114    /// Converts an `Ipv4Addr` into a host byte order `u32`.
1115    ///
1116    /// # Examples
1117    ///
1118    /// ```
1119    /// use std::net::Ipv4Addr;
1120    ///
1121    /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
1122    /// assert_eq!(0x12345678, u32::from(addr));
1123    /// ```
1124    #[inline]
1125    fn from(ip: Ipv4Addr) -> u32 {
1126        u32::from_be_bytes(ip.octets)
1127    }
1128}
1129
1130#[cfg_attr(staged_api, stable(feature = "ip_u32", since = "1.1.0"))]
1131impl From<u32> for Ipv4Addr {
1132    /// Converts a host byte order `u32` into an `Ipv4Addr`.
1133    ///
1134    /// # Examples
1135    ///
1136    /// ```
1137    /// use std::net::Ipv4Addr;
1138    ///
1139    /// let addr = Ipv4Addr::from(0x12345678);
1140    /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
1141    /// ```
1142    #[inline]
1143    fn from(ip: u32) -> Ipv4Addr {
1144        Ipv4Addr {
1145            octets: ip.to_be_bytes(),
1146        }
1147    }
1148}
1149
1150#[cfg_attr(staged_api, stable(feature = "from_slice_v4", since = "1.9.0"))]
1151impl From<[u8; 4]> for Ipv4Addr {
1152    /// Creates an `Ipv4Addr` from a four element byte array.
1153    ///
1154    /// # Examples
1155    ///
1156    /// ```
1157    /// use std::net::Ipv4Addr;
1158    ///
1159    /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1160    /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1161    /// ```
1162    #[inline]
1163    fn from(octets: [u8; 4]) -> Ipv4Addr {
1164        Ipv4Addr { octets }
1165    }
1166}
1167
1168#[cfg_attr(staged_api, stable(feature = "ip_from_slice", since = "1.17.0"))]
1169impl From<[u8; 4]> for IpAddr {
1170    /// Creates an `IpAddr::V4` from a four element byte array.
1171    ///
1172    /// # Examples
1173    ///
1174    /// ```
1175    /// use std::net::{IpAddr, Ipv4Addr};
1176    ///
1177    /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1178    /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1179    /// ```
1180    #[inline]
1181    fn from(octets: [u8; 4]) -> IpAddr {
1182        IpAddr::V4(Ipv4Addr::from(octets))
1183    }
1184}
1185
1186impl Ipv6Addr {
1187    /// Creates a new IPv6 address from eight 16-bit segments.
1188    ///
1189    /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1190    ///
1191    /// # Examples
1192    ///
1193    /// ```
1194    /// use std::net::Ipv6Addr;
1195    ///
1196    /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1197    /// ```
1198    #[cfg_attr(
1199        staged_api,
1200        rustc_const_stable(feature = "const_ip_32", since = "1.32.0")
1201    )]
1202    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1203    #[must_use]
1204    #[inline]
1205    pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1206        let addr16 = [
1207            a.to_be(),
1208            b.to_be(),
1209            c.to_be(),
1210            d.to_be(),
1211            e.to_be(),
1212            f.to_be(),
1213            g.to_be(),
1214            h.to_be(),
1215        ];
1216        Ipv6Addr {
1217            // All elements in `addr16` are big endian.
1218            // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1219            octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1220        }
1221    }
1222
1223    /// An IPv6 address representing localhost: `::1`.
1224    ///
1225    /// # Examples
1226    ///
1227    /// ```
1228    /// use std::net::Ipv6Addr;
1229    ///
1230    /// let addr = Ipv6Addr::LOCALHOST;
1231    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1232    /// ```
1233    #[cfg_attr(staged_api, stable(feature = "ip_constructors", since = "1.30.0"))]
1234    pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1235
1236    /// An IPv6 address representing the unspecified address: `::`
1237    ///
1238    /// # Examples
1239    ///
1240    /// ```
1241    /// use std::net::Ipv6Addr;
1242    ///
1243    /// let addr = Ipv6Addr::UNSPECIFIED;
1244    /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1245    /// ```
1246    #[cfg_attr(staged_api, stable(feature = "ip_constructors", since = "1.30.0"))]
1247    pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1248
1249    /// Returns the eight 16-bit segments that make up this address.
1250    ///
1251    /// # Examples
1252    ///
1253    /// ```
1254    /// use std::net::Ipv6Addr;
1255    ///
1256    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1257    ///            [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1258    /// ```
1259    #[cfg_attr(
1260        staged_api,
1261        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
1262    )]
1263    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1264    #[must_use]
1265    #[inline]
1266    pub const fn segments(&self) -> [u16; 8] {
1267        // All elements in `self.octets` must be big endian.
1268        // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1269        let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1270        // We want native endian u16
1271        [
1272            u16::from_be(a),
1273            u16::from_be(b),
1274            u16::from_be(c),
1275            u16::from_be(d),
1276            u16::from_be(e),
1277            u16::from_be(f),
1278            u16::from_be(g),
1279            u16::from_be(h),
1280        ]
1281    }
1282
1283    /// Returns [`true`] for the special 'unspecified' address (`::`).
1284    ///
1285    /// This property is defined in [IETF RFC 4291].
1286    ///
1287    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1288    ///
1289    /// # Examples
1290    ///
1291    /// ```
1292    /// use std::net::Ipv6Addr;
1293    ///
1294    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1295    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1296    /// ```
1297    #[cfg_attr(
1298        staged_api,
1299        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
1300    )]
1301    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
1302    #[must_use]
1303    #[inline]
1304    pub const fn is_unspecified(&self) -> bool {
1305        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1306    }
1307
1308    /// Returns [`true`] if this is the [loopback address] (`::1`),
1309    /// as defined in [IETF RFC 4291 section 2.5.3].
1310    ///
1311    /// Contrary to IPv4, in IPv6 there is only one loopback address.
1312    ///
1313    /// [loopback address]: Ipv6Addr::LOCALHOST
1314    /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1315    ///
1316    /// # Examples
1317    ///
1318    /// ```
1319    /// use std::net::Ipv6Addr;
1320    ///
1321    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1322    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1323    /// ```
1324    #[cfg_attr(
1325        staged_api,
1326        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
1327    )]
1328    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
1329    #[must_use]
1330    #[inline]
1331    pub const fn is_loopback(&self) -> bool {
1332        u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1333    }
1334
1335    /// Returns [`true`] if the address appears to be globally reachable
1336    /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1337    /// Whether or not an address is practically reachable will depend on your network configuration.
1338    ///
1339    /// Most IPv6 addresses are globally reachable;
1340    /// unless they are specifically defined as *not* globally reachable.
1341    ///
1342    /// Non-exhaustive list of notable addresses that are not globally reachable:
1343    /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1344    /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1345    /// - IPv4-mapped addresses
1346    /// - Addresses reserved for benchmarking
1347    /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1348    /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1349    /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1350    ///
1351    /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1352    ///
1353    /// Note that an address having global scope is not the same as being globally reachable,
1354    /// and there is no direct relation between the two concepts: There exist addresses with global scope
1355    /// that are not globally reachable (for example unique local addresses),
1356    /// and addresses that are globally reachable without having global scope
1357    /// (multicast addresses with non-global scope).
1358    ///
1359    /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1360    /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1361    /// [loopback address]: Ipv6Addr::LOCALHOST
1362    ///
1363    /// # Examples
1364    ///
1365    /// ```
1366    /// #![feature(ip)]
1367    ///
1368    /// use std::net::Ipv6Addr;
1369    ///
1370    /// // Most IPv6 addresses are globally reachable:
1371    /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1372    ///
1373    /// // However some addresses have been assigned a special meaning
1374    /// // that makes them not globally reachable. Some examples are:
1375    ///
1376    /// // The unspecified address (`::`)
1377    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1378    ///
1379    /// // The loopback address (`::1`)
1380    /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1381    ///
1382    /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1383    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1384    ///
1385    /// // Addresses reserved for benchmarking (`2001:2::/48`)
1386    /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1387    ///
1388    /// // Addresses reserved for documentation (`2001:db8::/32`)
1389    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1390    ///
1391    /// // Unique local addresses (`fc00::/7`)
1392    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1393    ///
1394    /// // Unicast addresses with link-local scope (`fe80::/10`)
1395    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1396    ///
1397    /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1398    /// ```
1399    #[cfg_attr(
1400        staged_api,
1401        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1402    )]
1403    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1404    #[must_use]
1405    #[inline]
1406    pub const fn is_global(&self) -> bool {
1407        !(self.is_unspecified()
1408            || self.is_loopback()
1409            // IPv4-mapped Address (`::ffff:0:0/96`)
1410            || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1411            // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1412            || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1413            // Discard-Only Address Block (`100::/64`)
1414            || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1415            // IETF Protocol Assignments (`2001::/23`)
1416            || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1417                && !(
1418                    // Port Control Protocol Anycast (`2001:1::1`)
1419                    u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1420                    // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1421                    || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1422                    // AMT (`2001:3::/32`)
1423                    || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1424                    // AS112-v6 (`2001:4:112::/48`)
1425                    || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1426                    // ORCHIDv2 (`2001:20::/28`)
1427                    || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x2F)
1428                ))
1429            || self.is_documentation()
1430            || self.is_unique_local()
1431            || self.is_unicast_link_local())
1432    }
1433
1434    /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1435    ///
1436    /// This property is defined in [IETF RFC 4193].
1437    ///
1438    /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1439    ///
1440    /// # Examples
1441    ///
1442    /// ```
1443    /// #![feature(ip)]
1444    ///
1445    /// use std::net::Ipv6Addr;
1446    ///
1447    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1448    /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1449    /// ```
1450    #[cfg_attr(
1451        staged_api,
1452        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1453    )]
1454    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1455    #[must_use]
1456    #[inline]
1457    pub const fn is_unique_local(&self) -> bool {
1458        (self.segments()[0] & 0xfe00) == 0xfc00
1459    }
1460
1461    /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1462    /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1463    ///
1464    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1465    /// [multicast address]: Ipv6Addr::is_multicast
1466    ///
1467    /// # Examples
1468    ///
1469    /// ```
1470    /// #![feature(ip)]
1471    ///
1472    /// use std::net::Ipv6Addr;
1473    ///
1474    /// // The unspecified and loopback addresses are unicast.
1475    /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1476    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1477    ///
1478    /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1479    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1480    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1481    /// ```
1482    #[cfg_attr(
1483        staged_api,
1484        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1485    )]
1486    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1487    #[must_use]
1488    #[inline]
1489    pub const fn is_unicast(&self) -> bool {
1490        !self.is_multicast()
1491    }
1492
1493    /// Returns `true` if the address is a unicast address with link-local scope,
1494    /// as defined in [RFC 4291].
1495    ///
1496    /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1497    /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1498    /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1499    ///
1500    /// ```text
1501    /// | 10 bits  |         54 bits         |          64 bits           |
1502    /// +----------+-------------------------+----------------------------+
1503    /// |1111111010|           0             |       interface ID         |
1504    /// +----------+-------------------------+----------------------------+
1505    /// ```
1506    /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1507    /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1508    /// and those addresses will have link-local scope.
1509    ///
1510    /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1511    /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1512    ///
1513    /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1514    /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1515    /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1516    /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1517    /// [loopback address]: Ipv6Addr::LOCALHOST
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// #![feature(ip)]
1523    ///
1524    /// use std::net::Ipv6Addr;
1525    ///
1526    /// // The loopback address (`::1`) does not actually have link-local scope.
1527    /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1528    ///
1529    /// // Only addresses in `fe80::/10` have link-local scope.
1530    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1531    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1532    ///
1533    /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1534    /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1535    /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1536    /// ```
1537    #[cfg_attr(
1538        staged_api,
1539        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1540    )]
1541    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1542    #[must_use]
1543    #[inline]
1544    pub const fn is_unicast_link_local(&self) -> bool {
1545        (self.segments()[0] & 0xffc0) == 0xfe80
1546    }
1547
1548    /// Returns [`true`] if this is an address reserved for documentation
1549    /// (`2001:db8::/32`).
1550    ///
1551    /// This property is defined in [IETF RFC 3849].
1552    ///
1553    /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1554    ///
1555    /// # Examples
1556    ///
1557    /// ```
1558    /// #![feature(ip)]
1559    ///
1560    /// use std::net::Ipv6Addr;
1561    ///
1562    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1563    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1564    /// ```
1565    #[cfg_attr(
1566        staged_api,
1567        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1568    )]
1569    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1570    #[must_use]
1571    #[inline]
1572    pub const fn is_documentation(&self) -> bool {
1573        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0xdb8)
1574    }
1575
1576    /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1577    ///
1578    /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1579    /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1580    ///
1581    /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1582    /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1583    ///
1584    /// ```
1585    /// #![feature(ip)]
1586    ///
1587    /// use std::net::Ipv6Addr;
1588    ///
1589    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1590    /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1591    /// ```
1592    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1593    #[must_use]
1594    #[inline]
1595    pub const fn is_benchmarking(&self) -> bool {
1596        (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1597    }
1598
1599    /// Returns [`true`] if the address is a globally routable unicast address.
1600    ///
1601    /// The following return false:
1602    ///
1603    /// - the loopback address
1604    /// - the link-local addresses
1605    /// - unique local addresses
1606    /// - the unspecified address
1607    /// - the address range reserved for documentation
1608    ///
1609    /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1610    ///
1611    /// ```no_rust
1612    /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1613    /// be supported in new implementations (i.e., new implementations must treat this prefix as
1614    /// Global Unicast).
1615    /// ```
1616    ///
1617    /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1618    ///
1619    /// # Examples
1620    ///
1621    /// ```
1622    /// #![feature(ip)]
1623    ///
1624    /// use std::net::Ipv6Addr;
1625    ///
1626    /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1627    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1628    /// ```
1629    #[cfg_attr(
1630        staged_api,
1631        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1632    )]
1633    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1634    #[must_use]
1635    #[inline]
1636    pub const fn is_unicast_global(&self) -> bool {
1637        self.is_unicast()
1638            && !self.is_loopback()
1639            && !self.is_unicast_link_local()
1640            && !self.is_unique_local()
1641            && !self.is_unspecified()
1642            && !self.is_documentation()
1643            && !self.is_benchmarking()
1644    }
1645
1646    /// Returns the address's multicast scope if the address is multicast.
1647    ///
1648    /// # Examples
1649    ///
1650    /// ```
1651    /// #![feature(ip)]
1652    ///
1653    /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1654    ///
1655    /// assert_eq!(
1656    ///     Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1657    ///     Some(Ipv6MulticastScope::Global)
1658    /// );
1659    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1660    /// ```
1661    #[cfg_attr(
1662        staged_api,
1663        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1664    )]
1665    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1666    #[must_use]
1667    #[inline]
1668    pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1669        if self.is_multicast() {
1670            match self.segments()[0] & 0x000f {
1671                1 => Some(Ipv6MulticastScope::InterfaceLocal),
1672                2 => Some(Ipv6MulticastScope::LinkLocal),
1673                3 => Some(Ipv6MulticastScope::RealmLocal),
1674                4 => Some(Ipv6MulticastScope::AdminLocal),
1675                5 => Some(Ipv6MulticastScope::SiteLocal),
1676                8 => Some(Ipv6MulticastScope::OrganizationLocal),
1677                14 => Some(Ipv6MulticastScope::Global),
1678                _ => None,
1679            }
1680        } else {
1681            None
1682        }
1683    }
1684
1685    /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1686    ///
1687    /// This property is defined by [IETF RFC 4291].
1688    ///
1689    /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1690    ///
1691    /// # Examples
1692    ///
1693    /// ```
1694    /// use std::net::Ipv6Addr;
1695    ///
1696    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1697    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1698    /// ```
1699    #[cfg_attr(
1700        staged_api,
1701        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
1702    )]
1703    #[cfg_attr(staged_api, stable(since = "1.7.0", feature = "ip_17"))]
1704    #[must_use]
1705    #[inline]
1706    pub const fn is_multicast(&self) -> bool {
1707        (self.segments()[0] & 0xff00) == 0xff00
1708    }
1709
1710    /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1711    /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1712    ///
1713    /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1714    /// All addresses *not* starting with `::ffff` will return `None`.
1715    ///
1716    /// [`IPv4` address]: Ipv4Addr
1717    /// [IPv4-mapped]: Ipv6Addr
1718    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1719    ///
1720    /// # Examples
1721    ///
1722    /// ```
1723    /// use std::net::{Ipv4Addr, Ipv6Addr};
1724    ///
1725    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1726    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1727    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1728    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1729    /// ```
1730    #[cfg_attr(
1731        staged_api,
1732        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1733    )]
1734    #[cfg_attr(staged_api, stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0"))]
1735    #[must_use = "this returns the result of the operation, \
1736                  without modifying the original"]
1737    #[inline]
1738    pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1739        match self.octets() {
1740            [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1741                Some(Ipv4Addr::new(a, b, c, d))
1742            }
1743            _ => None,
1744        }
1745    }
1746
1747    /// Converts this address to an [`IPv4` address] if it is either
1748    /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1749    /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1750    /// otherwise returns [`None`].
1751    ///
1752    /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1753    /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1754    ///
1755    /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1756    /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1757    ///
1758    /// [`IPv4` address]: Ipv4Addr
1759    /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1760    /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1761    /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1762    /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1763    ///
1764    /// # Examples
1765    ///
1766    /// ```
1767    /// use std::net::{Ipv4Addr, Ipv6Addr};
1768    ///
1769    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1770    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1771    ///            Some(Ipv4Addr::new(192, 10, 2, 255)));
1772    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1773    ///            Some(Ipv4Addr::new(0, 0, 0, 1)));
1774    /// ```
1775    #[cfg_attr(
1776        staged_api,
1777        rustc_const_stable(feature = "const_ip_50", since = "1.50.0")
1778    )]
1779    #[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1780    #[must_use = "this returns the result of the operation, \
1781                  without modifying the original"]
1782    #[inline]
1783    pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1784        if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1785            let [a, b] = ab.to_be_bytes();
1786            let [c, d] = cd.to_be_bytes();
1787            Some(Ipv4Addr::new(a, b, c, d))
1788        } else {
1789            None
1790        }
1791    }
1792
1793    /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped addresses, otherwise it
1794    /// returns self wrapped in an `IpAddr::V6`.
1795    ///
1796    /// # Examples
1797    ///
1798    /// ```
1799    /// #![feature(ip)]
1800    /// use std::net::Ipv6Addr;
1801    ///
1802    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1803    /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1804    /// ```
1805    #[cfg_attr(
1806        staged_api,
1807        rustc_const_unstable(feature = "const_ipv6", issue = "76205")
1808    )]
1809    #[cfg_attr(staged_api, unstable(feature = "ip", issue = "27709"))]
1810    #[must_use = "this returns the result of the operation, \
1811                  without modifying the original"]
1812    #[inline]
1813    pub const fn to_canonical(&self) -> IpAddr {
1814        if let Some(mapped) = self.to_ipv4_mapped() {
1815            return IpAddr::V4(mapped);
1816        }
1817        IpAddr::V6(*self)
1818    }
1819
1820    /// Returns the sixteen eight-bit integers the IPv6 address consists of.
1821    ///
1822    /// ```
1823    /// use std::net::Ipv6Addr;
1824    ///
1825    /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
1826    ///            [255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
1827    /// ```
1828    #[cfg_attr(
1829        staged_api,
1830        rustc_const_stable(feature = "const_ip_32", since = "1.32.0")
1831    )]
1832    #[cfg_attr(staged_api, stable(feature = "ipv6_to_octets", since = "1.12.0"))]
1833    #[must_use]
1834    #[inline]
1835    pub const fn octets(&self) -> [u8; 16] {
1836        self.octets
1837    }
1838}
1839
1840#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1841impl PartialEq<IpAddr> for Ipv6Addr {
1842    #[inline]
1843    fn eq(&self, other: &IpAddr) -> bool {
1844        match other {
1845            IpAddr::V4(_) => false,
1846            IpAddr::V6(v6) => self == v6,
1847        }
1848    }
1849}
1850
1851#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1852impl PartialEq<Ipv6Addr> for IpAddr {
1853    #[inline]
1854    fn eq(&self, other: &Ipv6Addr) -> bool {
1855        match self {
1856            IpAddr::V4(_) => false,
1857            IpAddr::V6(v6) => v6 == other,
1858        }
1859    }
1860}
1861
1862#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1863impl PartialOrd for Ipv6Addr {
1864    #[inline]
1865    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
1866        Some(self.cmp(other))
1867    }
1868}
1869
1870#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1871impl PartialOrd<Ipv6Addr> for IpAddr {
1872    #[inline]
1873    fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
1874        match self {
1875            IpAddr::V4(_) => Some(Ordering::Less),
1876            IpAddr::V6(v6) => v6.partial_cmp(other),
1877        }
1878    }
1879}
1880
1881#[cfg_attr(staged_api, stable(feature = "ip_cmp", since = "1.16.0"))]
1882impl PartialOrd<IpAddr> for Ipv6Addr {
1883    #[inline]
1884    fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1885        match other {
1886            IpAddr::V4(_) => Some(Ordering::Greater),
1887            IpAddr::V6(v6) => self.partial_cmp(v6),
1888        }
1889    }
1890}
1891
1892#[cfg_attr(staged_api, stable(feature = "rust1", since = "1.0.0"))]
1893impl Ord for Ipv6Addr {
1894    #[inline]
1895    fn cmp(&self, other: &Ipv6Addr) -> Ordering {
1896        self.segments().cmp(&other.segments())
1897    }
1898}
1899
1900#[cfg_attr(staged_api, stable(feature = "i128", since = "1.26.0"))]
1901impl From<Ipv6Addr> for u128 {
1902    /// Convert an `Ipv6Addr` into a host byte order `u128`.
1903    ///
1904    /// # Examples
1905    ///
1906    /// ```
1907    /// use std::net::Ipv6Addr;
1908    ///
1909    /// let addr = Ipv6Addr::new(
1910    ///     0x1020, 0x3040, 0x5060, 0x7080,
1911    ///     0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1912    /// );
1913    /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, u128::from(addr));
1914    /// ```
1915    #[inline]
1916    fn from(ip: Ipv6Addr) -> u128 {
1917        u128::from_be_bytes(ip.octets)
1918    }
1919}
1920#[cfg_attr(staged_api, stable(feature = "i128", since = "1.26.0"))]
1921impl From<u128> for Ipv6Addr {
1922    /// Convert a host byte order `u128` into an `Ipv6Addr`.
1923    ///
1924    /// # Examples
1925    ///
1926    /// ```
1927    /// use std::net::Ipv6Addr;
1928    ///
1929    /// let addr = Ipv6Addr::from(0x102030405060708090A0B0C0D0E0F00D_u128);
1930    /// assert_eq!(
1931    ///     Ipv6Addr::new(
1932    ///         0x1020, 0x3040, 0x5060, 0x7080,
1933    ///         0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1934    ///     ),
1935    ///     addr);
1936    /// ```
1937    #[inline]
1938    fn from(ip: u128) -> Ipv6Addr {
1939        Ipv6Addr::from(ip.to_be_bytes())
1940    }
1941}
1942
1943#[cfg_attr(staged_api, stable(feature = "ipv6_from_octets", since = "1.9.0"))]
1944impl From<[u8; 16]> for Ipv6Addr {
1945    /// Creates an `Ipv6Addr` from a sixteen element byte array.
1946    ///
1947    /// # Examples
1948    ///
1949    /// ```
1950    /// use std::net::Ipv6Addr;
1951    ///
1952    /// let addr = Ipv6Addr::from([
1953    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
1954    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
1955    /// ]);
1956    /// assert_eq!(
1957    ///     Ipv6Addr::new(
1958    ///         0x1918, 0x1716,
1959    ///         0x1514, 0x1312,
1960    ///         0x1110, 0x0f0e,
1961    ///         0x0d0c, 0x0b0a
1962    ///     ),
1963    ///     addr
1964    /// );
1965    /// ```
1966    #[inline]
1967    fn from(octets: [u8; 16]) -> Ipv6Addr {
1968        Ipv6Addr { octets }
1969    }
1970}
1971
1972#[cfg_attr(staged_api, stable(feature = "ipv6_from_segments", since = "1.16.0"))]
1973impl From<[u16; 8]> for Ipv6Addr {
1974    /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1975    ///
1976    /// # Examples
1977    ///
1978    /// ```
1979    /// use std::net::Ipv6Addr;
1980    ///
1981    /// let addr = Ipv6Addr::from([
1982    ///     525u16, 524u16, 523u16, 522u16,
1983    ///     521u16, 520u16, 519u16, 518u16,
1984    /// ]);
1985    /// assert_eq!(
1986    ///     Ipv6Addr::new(
1987    ///         0x20d, 0x20c,
1988    ///         0x20b, 0x20a,
1989    ///         0x209, 0x208,
1990    ///         0x207, 0x206
1991    ///     ),
1992    ///     addr
1993    /// );
1994    /// ```
1995    #[inline]
1996    fn from(segments: [u16; 8]) -> Ipv6Addr {
1997        let [a, b, c, d, e, f, g, h] = segments;
1998        Ipv6Addr::new(a, b, c, d, e, f, g, h)
1999    }
2000}
2001
2002#[cfg_attr(staged_api, stable(feature = "ip_from_slice", since = "1.17.0"))]
2003impl From<[u8; 16]> for IpAddr {
2004    /// Creates an `IpAddr::V6` from a sixteen element byte array.
2005    ///
2006    /// # Examples
2007    ///
2008    /// ```
2009    /// use std::net::{IpAddr, Ipv6Addr};
2010    ///
2011    /// let addr = IpAddr::from([
2012    ///     25u8, 24u8, 23u8, 22u8, 21u8, 20u8, 19u8, 18u8,
2013    ///     17u8, 16u8, 15u8, 14u8, 13u8, 12u8, 11u8, 10u8,
2014    /// ]);
2015    /// assert_eq!(
2016    ///     IpAddr::V6(Ipv6Addr::new(
2017    ///         0x1918, 0x1716,
2018    ///         0x1514, 0x1312,
2019    ///         0x1110, 0x0f0e,
2020    ///         0x0d0c, 0x0b0a
2021    ///     )),
2022    ///     addr
2023    /// );
2024    /// ```
2025    #[inline]
2026    fn from(octets: [u8; 16]) -> IpAddr {
2027        IpAddr::V6(Ipv6Addr::from(octets))
2028    }
2029}
2030
2031#[cfg_attr(staged_api, stable(feature = "ip_from_slice", since = "1.17.0"))]
2032impl From<[u16; 8]> for IpAddr {
2033    /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2034    ///
2035    /// # Examples
2036    ///
2037    /// ```
2038    /// use std::net::{IpAddr, Ipv6Addr};
2039    ///
2040    /// let addr = IpAddr::from([
2041    ///     525u16, 524u16, 523u16, 522u16,
2042    ///     521u16, 520u16, 519u16, 518u16,
2043    /// ]);
2044    /// assert_eq!(
2045    ///     IpAddr::V6(Ipv6Addr::new(
2046    ///         0x20d, 0x20c,
2047    ///         0x20b, 0x20a,
2048    ///         0x209, 0x208,
2049    ///         0x207, 0x206
2050    ///     )),
2051    ///     addr
2052    /// );
2053    /// ```
2054    #[inline]
2055    fn from(segments: [u16; 8]) -> IpAddr {
2056        IpAddr::V6(Ipv6Addr::from(segments))
2057    }
2058}
2059