1//! # nom, eating data byte by byte 2//! 3//! nom is a parser combinator library with a focus on safe parsing, 4//! streaming patterns, and as much as possible zero copy. 5//! 6//! ## Example 7//! 8//! ```rust 9//! use nom::{ 10//! IResult, 11//! bytes::complete::{tag, take_while_m_n}, 12//! combinator::map_res, 13//! sequence::tuple}; 14//! 15//! #[derive(Debug,PartialEq)] 16//! pub struct Color { 17//! pub red: u8, 18//! pub green: u8, 19//! pub blue: u8, 20//! } 21//! 22//! fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> { 23//! u8::from_str_radix(input, 16) 24//! } 25//! 26//! fn is_hex_digit(c: char) -> bool { 27//! c.is_digit(16) 28//! } 29//! 30//! fn hex_primary(input: &str) -> IResult<&str, u8> { 31//! map_res( 32//! take_while_m_n(2, 2, is_hex_digit), 33//! from_hex 34//! )(input) 35//! } 36//! 37//! fn hex_color(input: &str) -> IResult<&str, Color> { 38//! let (input, _) = tag("#")(input)?; 39//! let (input, (red, green, blue)) = tuple((hex_primary, hex_primary, hex_primary))(input)?; 40//! 41//! Ok((input, Color { red, green, blue })) 42//! } 43//! 44//! fn main() { 45//! assert_eq!(hex_color("#2F14DF"), Ok(("", Color { 46//! red: 47, 47//! green: 20, 48//! blue: 223, 49//! }))); 50//! } 51//! ``` 52//! 53//! The code is available on [Github](https://github.com/Geal/nom) 54//! 55//! There are a few [guides](https://github.com/Geal/nom/tree/main/doc) with more details 56//! about [how to write parsers](https://github.com/Geal/nom/blob/main/doc/making_a_new_parser_from_scratch.md), 57//! or the [error management system](https://github.com/Geal/nom/blob/main/doc/error_management.md). 58//! You can also check out the [recipes] module that contains examples of common patterns. 59//! 60//! **Looking for a specific combinator? Read the 61//! ["choose a combinator" guide](https://github.com/Geal/nom/blob/main/doc/choosing_a_combinator.md)** 62//! 63//! If you are upgrading to nom 5.0, please read the 64//! [migration document](https://github.com/Geal/nom/blob/main/doc/upgrading_to_nom_5.md). 65//! 66//! ## Parser combinators 67//! 68//! Parser combinators are an approach to parsers that is very different from 69//! software like [lex](https://en.wikipedia.org/wiki/Lex_(software)) and 70//! [yacc](https://en.wikipedia.org/wiki/Yacc). Instead of writing the grammar 71//! in a separate syntax and generating the corresponding code, you use very small 72//! functions with very specific purposes, like "take 5 bytes", or "recognize the 73//! word 'HTTP'", and assemble them in meaningful patterns like "recognize 74//! 'HTTP', then a space, then a version". 75//! The resulting code is small, and looks like the grammar you would have 76//! written with other parser approaches. 77//! 78//! This gives us a few advantages: 79//! 80//! - The parsers are small and easy to write 81//! - The parsers components are easy to reuse (if they're general enough, please add them to nom!) 82//! - The parsers components are easy to test separately (unit tests and property-based tests) 83//! - The parser combination code looks close to the grammar you would have written 84//! - You can build partial parsers, specific to the data you need at the moment, and ignore the rest 85//! 86//! Here is an example of one such parser, to recognize text between parentheses: 87//! 88//! ```rust 89//! use nom::{ 90//! IResult, 91//! sequence::delimited, 92//! // see the "streaming/complete" paragraph lower for an explanation of these submodules 93//! character::complete::char, 94//! bytes::complete::is_not 95//! }; 96//! 97//! fn parens(input: &str) -> IResult<&str, &str> { 98//! delimited(char('('), is_not(")"), char(')'))(input) 99//! } 100//! ``` 101//! 102//! It defines a function named `parens` which will recognize a sequence of the 103//! character `(`, the longest byte array not containing `)`, then the character 104//! `)`, and will return the byte array in the middle. 105//! 106//! Here is another parser, written without using nom's combinators this time: 107//! 108//! ```rust 109//! use nom::{IResult, Err, Needed}; 110//! 111//! # fn main() { 112//! fn take4(i: &[u8]) -> IResult<&[u8], &[u8]>{ 113//! if i.len() < 4 { 114//! Err(Err::Incomplete(Needed::new(4))) 115//! } else { 116//! Ok((&i[4..], &i[0..4])) 117//! } 118//! } 119//! # } 120//! ``` 121//! 122//! This function takes a byte array as input, and tries to consume 4 bytes. 123//! Writing all the parsers manually, like this, is dangerous, despite Rust's 124//! safety features. There are still a lot of mistakes one can make. That's why 125//! nom provides a list of functions to help in developing parsers. 126//! 127//! With functions, you would write it like this: 128//! 129//! ```rust 130//! use nom::{IResult, bytes::streaming::take}; 131//! fn take4(input: &str) -> IResult<&str, &str> { 132//! take(4u8)(input) 133//! } 134//! ``` 135//! 136//! A parser in nom is a function which, for an input type `I`, an output type `O` 137//! and an optional error type `E`, will have the following signature: 138//! 139//! ```rust,compile_fail 140//! fn parser(input: I) -> IResult<I, O, E>; 141//! ``` 142//! 143//! Or like this, if you don't want to specify a custom error type (it will be `(I, ErrorKind)` by default): 144//! 145//! ```rust,compile_fail 146//! fn parser(input: I) -> IResult<I, O>; 147//! ``` 148//! 149//! `IResult` is an alias for the `Result` type: 150//! 151//! ```rust 152//! use nom::{Needed, error::Error}; 153//! 154//! type IResult<I, O, E = Error<I>> = Result<(I, O), Err<E>>; 155//! 156//! enum Err<E> { 157//! Incomplete(Needed), 158//! Error(E), 159//! Failure(E), 160//! } 161//! ``` 162//! 163//! It can have the following values: 164//! 165//! - A correct result `Ok((I,O))` with the first element being the remaining of the input (not parsed yet), and the second the output value; 166//! - An error `Err(Err::Error(c))` with `c` an error that can be built from the input position and a parser specific error 167//! - An error `Err(Err::Incomplete(Needed))` indicating that more input is necessary. `Needed` can indicate how much data is needed 168//! - An error `Err(Err::Failure(c))`. It works like the `Error` case, except it indicates an unrecoverable error: We cannot backtrack and test another parser 169//! 170//! Please refer to the ["choose a combinator" guide](https://github.com/Geal/nom/blob/main/doc/choosing_a_combinator.md) for an exhaustive list of parsers. 171//! See also the rest of the documentation [here](https://github.com/Geal/nom/blob/main/doc). 172//! 173//! ## Making new parsers with function combinators 174//! 175//! nom is based on functions that generate parsers, with a signature like 176//! this: `(arguments) -> impl Fn(Input) -> IResult<Input, Output, Error>`. 177//! The arguments of a combinator can be direct values (like `take` which uses 178//! a number of bytes or character as argument) or even other parsers (like 179//! `delimited` which takes as argument 3 parsers, and returns the result of 180//! the second one if all are successful). 181//! 182//! Here are some examples: 183//! 184//! ```rust 185//! use nom::IResult; 186//! use nom::bytes::complete::{tag, take}; 187//! fn abcd_parser(i: &str) -> IResult<&str, &str> { 188//! tag("abcd")(i) // will consume bytes if the input begins with "abcd" 189//! } 190//! 191//! fn take_10(i: &[u8]) -> IResult<&[u8], &[u8]> { 192//! take(10u8)(i) // will consume and return 10 bytes of input 193//! } 194//! ``` 195//! 196//! ## Combining parsers 197//! 198//! There are higher level patterns, like the **`alt`** combinator, which 199//! provides a choice between multiple parsers. If one branch fails, it tries 200//! the next, and returns the result of the first parser that succeeds: 201//! 202//! ```rust 203//! use nom::IResult; 204//! use nom::branch::alt; 205//! use nom::bytes::complete::tag; 206//! 207//! let mut alt_tags = alt((tag("abcd"), tag("efgh"))); 208//! 209//! assert_eq!(alt_tags(&b"abcdxxx"[..]), Ok((&b"xxx"[..], &b"abcd"[..]))); 210//! assert_eq!(alt_tags(&b"efghxxx"[..]), Ok((&b"xxx"[..], &b"efgh"[..]))); 211//! assert_eq!(alt_tags(&b"ijklxxx"[..]), Err(nom::Err::Error((&b"ijklxxx"[..], nom::error::ErrorKind::Tag)))); 212//! ``` 213//! 214//! The **`opt`** combinator makes a parser optional. If the child parser returns 215//! an error, **`opt`** will still succeed and return None: 216//! 217//! ```rust 218//! use nom::{IResult, combinator::opt, bytes::complete::tag}; 219//! fn abcd_opt(i: &[u8]) -> IResult<&[u8], Option<&[u8]>> { 220//! opt(tag("abcd"))(i) 221//! } 222//! 223//! assert_eq!(abcd_opt(&b"abcdxxx"[..]), Ok((&b"xxx"[..], Some(&b"abcd"[..])))); 224//! assert_eq!(abcd_opt(&b"efghxxx"[..]), Ok((&b"efghxxx"[..], None))); 225//! ``` 226//! 227//! **`many0`** applies a parser 0 or more times, and returns a vector of the aggregated results: 228//! 229//! ```rust 230//! # #[cfg(feature = "alloc")] 231//! # fn main() { 232//! use nom::{IResult, multi::many0, bytes::complete::tag}; 233//! use std::str; 234//! 235//! fn multi(i: &str) -> IResult<&str, Vec<&str>> { 236//! many0(tag("abcd"))(i) 237//! } 238//! 239//! let a = "abcdef"; 240//! let b = "abcdabcdef"; 241//! let c = "azerty"; 242//! assert_eq!(multi(a), Ok(("ef", vec!["abcd"]))); 243//! assert_eq!(multi(b), Ok(("ef", vec!["abcd", "abcd"]))); 244//! assert_eq!(multi(c), Ok(("azerty", Vec::new()))); 245//! # } 246//! # #[cfg(not(feature = "alloc"))] 247//! # fn main() {} 248//! ``` 249//! 250//! Here are some basic combinators available: 251//! 252//! - **`opt`**: Will make the parser optional (if it returns the `O` type, the new parser returns `Option<O>`) 253//! - **`many0`**: Will apply the parser 0 or more times (if it returns the `O` type, the new parser returns `Vec<O>`) 254//! - **`many1`**: Will apply the parser 1 or more times 255//! 256//! There are more complex (and more useful) parsers like `tuple`, which is 257//! used to apply a series of parsers then assemble their results. 258//! 259//! Example with `tuple`: 260//! 261//! ```rust 262//! # fn main() { 263//! use nom::{error::ErrorKind, Needed, 264//! number::streaming::be_u16, 265//! bytes::streaming::{tag, take}, 266//! sequence::tuple}; 267//! 268//! let mut tpl = tuple((be_u16, take(3u8), tag("fg"))); 269//! 270//! assert_eq!( 271//! tpl(&b"abcdefgh"[..]), 272//! Ok(( 273//! &b"h"[..], 274//! (0x6162u16, &b"cde"[..], &b"fg"[..]) 275//! )) 276//! ); 277//! assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::new(2)))); 278//! let input = &b"abcdejk"[..]; 279//! assert_eq!(tpl(input), Err(nom::Err::Error((&input[5..], ErrorKind::Tag)))); 280//! # } 281//! ``` 282//! 283//! But you can also use a sequence of combinators written in imperative style, 284//! thanks to the `?` operator: 285//! 286//! ```rust 287//! # fn main() { 288//! use nom::{IResult, bytes::complete::tag}; 289//! 290//! #[derive(Debug, PartialEq)] 291//! struct A { 292//! a: u8, 293//! b: u8 294//! } 295//! 296//! fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) } 297//! fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) } 298//! 299//! fn f(i: &[u8]) -> IResult<&[u8], A> { 300//! // if successful, the parser returns `Ok((remaining_input, output_value))` that we can destructure 301//! let (i, _) = tag("abcd")(i)?; 302//! let (i, a) = ret_int1(i)?; 303//! let (i, _) = tag("efgh")(i)?; 304//! let (i, b) = ret_int2(i)?; 305//! 306//! Ok((i, A { a, b })) 307//! } 308//! 309//! let r = f(b"abcdefghX"); 310//! assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2}))); 311//! # } 312//! ``` 313//! 314//! ## Streaming / Complete 315//! 316//! Some of nom's modules have `streaming` or `complete` submodules. They hold 317//! different variants of the same combinators. 318//! 319//! A streaming parser assumes that we might not have all of the input data. 320//! This can happen with some network protocol or large file parsers, where the 321//! input buffer can be full and need to be resized or refilled. 322//! 323//! A complete parser assumes that we already have all of the input data. 324//! This will be the common case with small files that can be read entirely to 325//! memory. 326//! 327//! Here is how it works in practice: 328//! 329//! ```rust 330//! use nom::{IResult, Err, Needed, error::{Error, ErrorKind}, bytes, character}; 331//! 332//! fn take_streaming(i: &[u8]) -> IResult<&[u8], &[u8]> { 333//! bytes::streaming::take(4u8)(i) 334//! } 335//! 336//! fn take_complete(i: &[u8]) -> IResult<&[u8], &[u8]> { 337//! bytes::complete::take(4u8)(i) 338//! } 339//! 340//! // both parsers will take 4 bytes as expected 341//! assert_eq!(take_streaming(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..]))); 342//! assert_eq!(take_complete(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..]))); 343//! 344//! // if the input is smaller than 4 bytes, the streaming parser 345//! // will return `Incomplete` to indicate that we need more data 346//! assert_eq!(take_streaming(&b"abc"[..]), Err(Err::Incomplete(Needed::new(1)))); 347//! 348//! // but the complete parser will return an error 349//! assert_eq!(take_complete(&b"abc"[..]), Err(Err::Error(Error::new(&b"abc"[..], ErrorKind::Eof)))); 350//! 351//! // the alpha0 function recognizes 0 or more alphabetic characters 352//! fn alpha0_streaming(i: &str) -> IResult<&str, &str> { 353//! character::streaming::alpha0(i) 354//! } 355//! 356//! fn alpha0_complete(i: &str) -> IResult<&str, &str> { 357//! character::complete::alpha0(i) 358//! } 359//! 360//! // if there's a clear limit to the recognized characters, both parsers work the same way 361//! assert_eq!(alpha0_streaming("abcd;"), Ok((";", "abcd"))); 362//! assert_eq!(alpha0_complete("abcd;"), Ok((";", "abcd"))); 363//! 364//! // but when there's no limit, the streaming version returns `Incomplete`, because it cannot 365//! // know if more input data should be recognized. The whole input could be "abcd;", or 366//! // "abcde;" 367//! assert_eq!(alpha0_streaming("abcd"), Err(Err::Incomplete(Needed::new(1)))); 368//! 369//! // while the complete version knows that all of the data is there 370//! assert_eq!(alpha0_complete("abcd"), Ok(("", "abcd"))); 371//! ``` 372//! **Going further:** Read the [guides](https://github.com/Geal/nom/tree/main/doc), 373//! check out the [recipes]! 374#![cfg_attr(not(feature = "std"), no_std)] 375#![cfg_attr(feature = "cargo-clippy", allow(clippy::doc_markdown))] 376#![cfg_attr(feature = "docsrs", feature(doc_cfg))] 377#![cfg_attr(feature = "docsrs", feature(extended_key_value_attributes))] 378#![deny(missing_docs)] 379#[cfg_attr(nightly, warn(rustdoc::missing_doc_code_examples))] 380#[cfg(feature = "alloc")] 381#[macro_use] 382extern crate alloc; 383#[cfg(doctest)] 384extern crate doc_comment; 385 386#[cfg(doctest)] 387doc_comment::doctest!("../README.md"); 388 389/// Lib module to re-export everything needed from `std` or `core`/`alloc`. This is how `serde` does 390/// it, albeit there it is not public. 391#[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))] 392pub mod lib { 393 /// `std` facade allowing `std`/`core` to be interchangeable. Reexports `alloc` crate optionally, 394 /// as well as `core` or `std` 395 #[cfg(not(feature = "std"))] 396 #[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))] 397 /// internal std exports for no_std compatibility 398 pub mod std { 399 #[doc(hidden)] 400 #[cfg(not(feature = "alloc"))] 401 pub use core::borrow; 402 403 #[cfg(feature = "alloc")] 404 #[doc(hidden)] 405 pub use alloc::{borrow, boxed, string, vec}; 406 407 #[doc(hidden)] 408 pub use core::{cmp, convert, fmt, iter, mem, ops, option, result, slice, str}; 409 410 /// internal reproduction of std prelude 411 #[doc(hidden)] 412 pub mod prelude { 413 pub use core::prelude as v1; 414 } 415 } 416 417 #[cfg(feature = "std")] 418 #[cfg_attr(nightly, allow(rustdoc::missing_doc_code_examples))] 419 /// internal std exports for no_std compatibility 420 pub mod std { 421 #[doc(hidden)] 422 pub use std::{ 423 alloc, borrow, boxed, cmp, collections, convert, fmt, hash, iter, mem, ops, option, result, 424 slice, str, string, vec, 425 }; 426 427 /// internal reproduction of std prelude 428 #[doc(hidden)] 429 pub mod prelude { 430 pub use std::prelude as v1; 431 } 432 } 433} 434 435pub use self::bits::*; 436pub use self::internal::*; 437pub use self::traits::*; 438 439pub use self::str::*; 440 441#[macro_use] 442mod macros; 443#[macro_use] 444pub mod error; 445 446pub mod branch; 447pub mod combinator; 448mod internal; 449pub mod multi; 450pub mod sequence; 451mod traits; 452 453pub mod bits; 454pub mod bytes; 455 456pub mod character; 457 458mod str; 459 460pub mod number; 461 462#[cfg(feature = "docsrs")] 463#[cfg_attr(feature = "docsrs", cfg_attr(feature = "docsrs", doc = include_str!("../doc/nom_recipes.md")))] 464pub mod recipes {} 465