16855e09eSopenharmony_ci//! This example shows an example of how to parse an escaped string. The
26855e09eSopenharmony_ci//! rules for the string are similar to JSON and rust. A string is:
36855e09eSopenharmony_ci//!
46855e09eSopenharmony_ci//! - Enclosed by double quotes
56855e09eSopenharmony_ci//! - Can contain any raw unescaped code point besides \ and "
66855e09eSopenharmony_ci//! - Matches the following escape sequences: \b, \f, \n, \r, \t, \", \\, \/
76855e09eSopenharmony_ci//! - Matches code points like Rust: \u{XXXX}, where XXXX can be up to 6
86855e09eSopenharmony_ci//!   hex characters
96855e09eSopenharmony_ci//! - an escape followed by whitespace consumes all whitespace between the
106855e09eSopenharmony_ci//!   escape and the next non-whitespace character
116855e09eSopenharmony_ci
126855e09eSopenharmony_ci#![cfg(feature = "alloc")]
136855e09eSopenharmony_ci
146855e09eSopenharmony_ciuse nom::branch::alt;
156855e09eSopenharmony_ciuse nom::bytes::streaming::{is_not, take_while_m_n};
166855e09eSopenharmony_ciuse nom::character::streaming::{char, multispace1};
176855e09eSopenharmony_ciuse nom::combinator::{map, map_opt, map_res, value, verify};
186855e09eSopenharmony_ciuse nom::error::{FromExternalError, ParseError};
196855e09eSopenharmony_ciuse nom::multi::fold_many0;
206855e09eSopenharmony_ciuse nom::sequence::{delimited, preceded};
216855e09eSopenharmony_ciuse nom::IResult;
226855e09eSopenharmony_ci
236855e09eSopenharmony_ci// parser combinators are constructed from the bottom up:
246855e09eSopenharmony_ci// first we write parsers for the smallest elements (escaped characters),
256855e09eSopenharmony_ci// then combine them into larger parsers.
266855e09eSopenharmony_ci
276855e09eSopenharmony_ci/// Parse a unicode sequence, of the form u{XXXX}, where XXXX is 1 to 6
286855e09eSopenharmony_ci/// hexadecimal numerals. We will combine this later with parse_escaped_char
296855e09eSopenharmony_ci/// to parse sequences like \u{00AC}.
306855e09eSopenharmony_cifn parse_unicode<'a, E>(input: &'a str) -> IResult<&'a str, char, E>
316855e09eSopenharmony_ciwhere
326855e09eSopenharmony_ci  E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
336855e09eSopenharmony_ci{
346855e09eSopenharmony_ci  // `take_while_m_n` parses between `m` and `n` bytes (inclusive) that match
356855e09eSopenharmony_ci  // a predicate. `parse_hex` here parses between 1 and 6 hexadecimal numerals.
366855e09eSopenharmony_ci  let parse_hex = take_while_m_n(1, 6, |c: char| c.is_ascii_hexdigit());
376855e09eSopenharmony_ci
386855e09eSopenharmony_ci  // `preceded` takes a prefix parser, and if it succeeds, returns the result
396855e09eSopenharmony_ci  // of the body parser. In this case, it parses u{XXXX}.
406855e09eSopenharmony_ci  let parse_delimited_hex = preceded(
416855e09eSopenharmony_ci    char('u'),
426855e09eSopenharmony_ci    // `delimited` is like `preceded`, but it parses both a prefix and a suffix.
436855e09eSopenharmony_ci    // It returns the result of the middle parser. In this case, it parses
446855e09eSopenharmony_ci    // {XXXX}, where XXXX is 1 to 6 hex numerals, and returns XXXX
456855e09eSopenharmony_ci    delimited(char('{'), parse_hex, char('}')),
466855e09eSopenharmony_ci  );
476855e09eSopenharmony_ci
486855e09eSopenharmony_ci  // `map_res` takes the result of a parser and applies a function that returns
496855e09eSopenharmony_ci  // a Result. In this case we take the hex bytes from parse_hex and attempt to
506855e09eSopenharmony_ci  // convert them to a u32.
516855e09eSopenharmony_ci  let parse_u32 = map_res(parse_delimited_hex, move |hex| u32::from_str_radix(hex, 16));
526855e09eSopenharmony_ci
536855e09eSopenharmony_ci  // map_opt is like map_res, but it takes an Option instead of a Result. If
546855e09eSopenharmony_ci  // the function returns None, map_opt returns an error. In this case, because
556855e09eSopenharmony_ci  // not all u32 values are valid unicode code points, we have to fallibly
566855e09eSopenharmony_ci  // convert to char with from_u32.
576855e09eSopenharmony_ci  map_opt(parse_u32, |value| std::char::from_u32(value))(input)
586855e09eSopenharmony_ci}
596855e09eSopenharmony_ci
606855e09eSopenharmony_ci/// Parse an escaped character: \n, \t, \r, \u{00AC}, etc.
616855e09eSopenharmony_cifn parse_escaped_char<'a, E>(input: &'a str) -> IResult<&'a str, char, E>
626855e09eSopenharmony_ciwhere
636855e09eSopenharmony_ci  E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
646855e09eSopenharmony_ci{
656855e09eSopenharmony_ci  preceded(
666855e09eSopenharmony_ci    char('\\'),
676855e09eSopenharmony_ci    // `alt` tries each parser in sequence, returning the result of
686855e09eSopenharmony_ci    // the first successful match
696855e09eSopenharmony_ci    alt((
706855e09eSopenharmony_ci      parse_unicode,
716855e09eSopenharmony_ci      // The `value` parser returns a fixed value (the first argument) if its
726855e09eSopenharmony_ci      // parser (the second argument) succeeds. In these cases, it looks for
736855e09eSopenharmony_ci      // the marker characters (n, r, t, etc) and returns the matching
746855e09eSopenharmony_ci      // character (\n, \r, \t, etc).
756855e09eSopenharmony_ci      value('\n', char('n')),
766855e09eSopenharmony_ci      value('\r', char('r')),
776855e09eSopenharmony_ci      value('\t', char('t')),
786855e09eSopenharmony_ci      value('\u{08}', char('b')),
796855e09eSopenharmony_ci      value('\u{0C}', char('f')),
806855e09eSopenharmony_ci      value('\\', char('\\')),
816855e09eSopenharmony_ci      value('/', char('/')),
826855e09eSopenharmony_ci      value('"', char('"')),
836855e09eSopenharmony_ci    )),
846855e09eSopenharmony_ci  )(input)
856855e09eSopenharmony_ci}
866855e09eSopenharmony_ci
876855e09eSopenharmony_ci/// Parse a backslash, followed by any amount of whitespace. This is used later
886855e09eSopenharmony_ci/// to discard any escaped whitespace.
896855e09eSopenharmony_cifn parse_escaped_whitespace<'a, E: ParseError<&'a str>>(
906855e09eSopenharmony_ci  input: &'a str,
916855e09eSopenharmony_ci) -> IResult<&'a str, &'a str, E> {
926855e09eSopenharmony_ci  preceded(char('\\'), multispace1)(input)
936855e09eSopenharmony_ci}
946855e09eSopenharmony_ci
956855e09eSopenharmony_ci/// Parse a non-empty block of text that doesn't include \ or "
966855e09eSopenharmony_cifn parse_literal<'a, E: ParseError<&'a str>>(input: &'a str) -> IResult<&'a str, &'a str, E> {
976855e09eSopenharmony_ci  // `is_not` parses a string of 0 or more characters that aren't one of the
986855e09eSopenharmony_ci  // given characters.
996855e09eSopenharmony_ci  let not_quote_slash = is_not("\"\\");
1006855e09eSopenharmony_ci
1016855e09eSopenharmony_ci  // `verify` runs a parser, then runs a verification function on the output of
1026855e09eSopenharmony_ci  // the parser. The verification function accepts out output only if it
1036855e09eSopenharmony_ci  // returns true. In this case, we want to ensure that the output of is_not
1046855e09eSopenharmony_ci  // is non-empty.
1056855e09eSopenharmony_ci  verify(not_quote_slash, |s: &str| !s.is_empty())(input)
1066855e09eSopenharmony_ci}
1076855e09eSopenharmony_ci
1086855e09eSopenharmony_ci/// A string fragment contains a fragment of a string being parsed: either
1096855e09eSopenharmony_ci/// a non-empty Literal (a series of non-escaped characters), a single
1106855e09eSopenharmony_ci/// parsed escaped character, or a block of escaped whitespace.
1116855e09eSopenharmony_ci#[derive(Debug, Clone, Copy, PartialEq, Eq)]
1126855e09eSopenharmony_cienum StringFragment<'a> {
1136855e09eSopenharmony_ci  Literal(&'a str),
1146855e09eSopenharmony_ci  EscapedChar(char),
1156855e09eSopenharmony_ci  EscapedWS,
1166855e09eSopenharmony_ci}
1176855e09eSopenharmony_ci
1186855e09eSopenharmony_ci/// Combine parse_literal, parse_escaped_whitespace, and parse_escaped_char
1196855e09eSopenharmony_ci/// into a StringFragment.
1206855e09eSopenharmony_cifn parse_fragment<'a, E>(input: &'a str) -> IResult<&'a str, StringFragment<'a>, E>
1216855e09eSopenharmony_ciwhere
1226855e09eSopenharmony_ci  E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
1236855e09eSopenharmony_ci{
1246855e09eSopenharmony_ci  alt((
1256855e09eSopenharmony_ci    // The `map` combinator runs a parser, then applies a function to the output
1266855e09eSopenharmony_ci    // of that parser.
1276855e09eSopenharmony_ci    map(parse_literal, StringFragment::Literal),
1286855e09eSopenharmony_ci    map(parse_escaped_char, StringFragment::EscapedChar),
1296855e09eSopenharmony_ci    value(StringFragment::EscapedWS, parse_escaped_whitespace),
1306855e09eSopenharmony_ci  ))(input)
1316855e09eSopenharmony_ci}
1326855e09eSopenharmony_ci
1336855e09eSopenharmony_ci/// Parse a string. Use a loop of parse_fragment and push all of the fragments
1346855e09eSopenharmony_ci/// into an output string.
1356855e09eSopenharmony_cifn parse_string<'a, E>(input: &'a str) -> IResult<&'a str, String, E>
1366855e09eSopenharmony_ciwhere
1376855e09eSopenharmony_ci  E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>,
1386855e09eSopenharmony_ci{
1396855e09eSopenharmony_ci  // fold_many0 is the equivalent of iterator::fold. It runs a parser in a loop,
1406855e09eSopenharmony_ci  // and for each output value, calls a folding function on each output value.
1416855e09eSopenharmony_ci  let build_string = fold_many0(
1426855e09eSopenharmony_ci    // Our parser function– parses a single string fragment
1436855e09eSopenharmony_ci    parse_fragment,
1446855e09eSopenharmony_ci    // Our init value, an empty string
1456855e09eSopenharmony_ci    String::new,
1466855e09eSopenharmony_ci    // Our folding function. For each fragment, append the fragment to the
1476855e09eSopenharmony_ci    // string.
1486855e09eSopenharmony_ci    |mut string, fragment| {
1496855e09eSopenharmony_ci      match fragment {
1506855e09eSopenharmony_ci        StringFragment::Literal(s) => string.push_str(s),
1516855e09eSopenharmony_ci        StringFragment::EscapedChar(c) => string.push(c),
1526855e09eSopenharmony_ci        StringFragment::EscapedWS => {}
1536855e09eSopenharmony_ci      }
1546855e09eSopenharmony_ci      string
1556855e09eSopenharmony_ci    },
1566855e09eSopenharmony_ci  );
1576855e09eSopenharmony_ci
1586855e09eSopenharmony_ci  // Finally, parse the string. Note that, if `build_string` could accept a raw
1596855e09eSopenharmony_ci  // " character, the closing delimiter " would never match. When using
1606855e09eSopenharmony_ci  // `delimited` with a looping parser (like fold_many0), be sure that the
1616855e09eSopenharmony_ci  // loop won't accidentally match your closing delimiter!
1626855e09eSopenharmony_ci  delimited(char('"'), build_string, char('"'))(input)
1636855e09eSopenharmony_ci}
1646855e09eSopenharmony_ci
1656855e09eSopenharmony_cifn main() {
1666855e09eSopenharmony_ci  let data = "\"abc\"";
1676855e09eSopenharmony_ci  println!("EXAMPLE 1:\nParsing a simple input string: {}", data);
1686855e09eSopenharmony_ci  let result = parse_string::<()>(data);
1696855e09eSopenharmony_ci  assert_eq!(result, Ok(("", String::from("abc"))));
1706855e09eSopenharmony_ci  println!("Result: {}\n\n", result.unwrap().1);
1716855e09eSopenharmony_ci
1726855e09eSopenharmony_ci  let data = "\"tab:\\tafter tab, newline:\\nnew line, quote: \\\", emoji: \\u{1F602}, newline:\\nescaped whitespace: \\    abc\"";
1736855e09eSopenharmony_ci  println!(
1746855e09eSopenharmony_ci    "EXAMPLE 2:\nParsing a string with escape sequences, newline literal, and escaped whitespace:\n\n{}\n",
1756855e09eSopenharmony_ci    data
1766855e09eSopenharmony_ci  );
1776855e09eSopenharmony_ci  let result = parse_string::<()>(data);
1786855e09eSopenharmony_ci  assert_eq!(
1796855e09eSopenharmony_ci    result,
1806855e09eSopenharmony_ci    Ok((
1816855e09eSopenharmony_ci      "",
1826855e09eSopenharmony_ci      String::from("tab:\tafter tab, newline:\nnew line, quote: \", emoji: �, newline:\nescaped whitespace: abc")
1836855e09eSopenharmony_ci    ))
1846855e09eSopenharmony_ci  );
1856855e09eSopenharmony_ci  println!("Result:\n\n{}", result.unwrap().1);
1866855e09eSopenharmony_ci}
187