16855e09eSopenharmony_ci//! This example shows an example of how to parse an escaped string. The 26855e09eSopenharmony_ci//! rules for the string are similar to JSON and rust. A string is: 36855e09eSopenharmony_ci//! 46855e09eSopenharmony_ci//! - Enclosed by double quotes 56855e09eSopenharmony_ci//! - Can contain any raw unescaped code point besides \ and " 66855e09eSopenharmony_ci//! - Matches the following escape sequences: \b, \f, \n, \r, \t, \", \\, \/ 76855e09eSopenharmony_ci//! - Matches code points like Rust: \u{XXXX}, where XXXX can be up to 6 86855e09eSopenharmony_ci//! hex characters 96855e09eSopenharmony_ci//! - an escape followed by whitespace consumes all whitespace between the 106855e09eSopenharmony_ci//! escape and the next non-whitespace character 116855e09eSopenharmony_ci 126855e09eSopenharmony_ci#![cfg(feature = "alloc")] 136855e09eSopenharmony_ci 146855e09eSopenharmony_ciuse nom::branch::alt; 156855e09eSopenharmony_ciuse nom::bytes::streaming::{is_not, take_while_m_n}; 166855e09eSopenharmony_ciuse nom::character::streaming::{char, multispace1}; 176855e09eSopenharmony_ciuse nom::combinator::{map, map_opt, map_res, value, verify}; 186855e09eSopenharmony_ciuse nom::error::{FromExternalError, ParseError}; 196855e09eSopenharmony_ciuse nom::multi::fold_many0; 206855e09eSopenharmony_ciuse nom::sequence::{delimited, preceded}; 216855e09eSopenharmony_ciuse nom::IResult; 226855e09eSopenharmony_ci 236855e09eSopenharmony_ci// parser combinators are constructed from the bottom up: 246855e09eSopenharmony_ci// first we write parsers for the smallest elements (escaped characters), 256855e09eSopenharmony_ci// then combine them into larger parsers. 266855e09eSopenharmony_ci 276855e09eSopenharmony_ci/// Parse a unicode sequence, of the form u{XXXX}, where XXXX is 1 to 6 286855e09eSopenharmony_ci/// hexadecimal numerals. We will combine this later with parse_escaped_char 296855e09eSopenharmony_ci/// to parse sequences like \u{00AC}. 306855e09eSopenharmony_cifn parse_unicode<'a, E>(input: &'a str) -> IResult<&'a str, char, E> 316855e09eSopenharmony_ciwhere 326855e09eSopenharmony_ci E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, 336855e09eSopenharmony_ci{ 346855e09eSopenharmony_ci // `take_while_m_n` parses between `m` and `n` bytes (inclusive) that match 356855e09eSopenharmony_ci // a predicate. `parse_hex` here parses between 1 and 6 hexadecimal numerals. 366855e09eSopenharmony_ci let parse_hex = take_while_m_n(1, 6, |c: char| c.is_ascii_hexdigit()); 376855e09eSopenharmony_ci 386855e09eSopenharmony_ci // `preceded` takes a prefix parser, and if it succeeds, returns the result 396855e09eSopenharmony_ci // of the body parser. In this case, it parses u{XXXX}. 406855e09eSopenharmony_ci let parse_delimited_hex = preceded( 416855e09eSopenharmony_ci char('u'), 426855e09eSopenharmony_ci // `delimited` is like `preceded`, but it parses both a prefix and a suffix. 436855e09eSopenharmony_ci // It returns the result of the middle parser. In this case, it parses 446855e09eSopenharmony_ci // {XXXX}, where XXXX is 1 to 6 hex numerals, and returns XXXX 456855e09eSopenharmony_ci delimited(char('{'), parse_hex, char('}')), 466855e09eSopenharmony_ci ); 476855e09eSopenharmony_ci 486855e09eSopenharmony_ci // `map_res` takes the result of a parser and applies a function that returns 496855e09eSopenharmony_ci // a Result. In this case we take the hex bytes from parse_hex and attempt to 506855e09eSopenharmony_ci // convert them to a u32. 516855e09eSopenharmony_ci let parse_u32 = map_res(parse_delimited_hex, move |hex| u32::from_str_radix(hex, 16)); 526855e09eSopenharmony_ci 536855e09eSopenharmony_ci // map_opt is like map_res, but it takes an Option instead of a Result. If 546855e09eSopenharmony_ci // the function returns None, map_opt returns an error. In this case, because 556855e09eSopenharmony_ci // not all u32 values are valid unicode code points, we have to fallibly 566855e09eSopenharmony_ci // convert to char with from_u32. 576855e09eSopenharmony_ci map_opt(parse_u32, |value| std::char::from_u32(value))(input) 586855e09eSopenharmony_ci} 596855e09eSopenharmony_ci 606855e09eSopenharmony_ci/// Parse an escaped character: \n, \t, \r, \u{00AC}, etc. 616855e09eSopenharmony_cifn parse_escaped_char<'a, E>(input: &'a str) -> IResult<&'a str, char, E> 626855e09eSopenharmony_ciwhere 636855e09eSopenharmony_ci E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, 646855e09eSopenharmony_ci{ 656855e09eSopenharmony_ci preceded( 666855e09eSopenharmony_ci char('\\'), 676855e09eSopenharmony_ci // `alt` tries each parser in sequence, returning the result of 686855e09eSopenharmony_ci // the first successful match 696855e09eSopenharmony_ci alt(( 706855e09eSopenharmony_ci parse_unicode, 716855e09eSopenharmony_ci // The `value` parser returns a fixed value (the first argument) if its 726855e09eSopenharmony_ci // parser (the second argument) succeeds. In these cases, it looks for 736855e09eSopenharmony_ci // the marker characters (n, r, t, etc) and returns the matching 746855e09eSopenharmony_ci // character (\n, \r, \t, etc). 756855e09eSopenharmony_ci value('\n', char('n')), 766855e09eSopenharmony_ci value('\r', char('r')), 776855e09eSopenharmony_ci value('\t', char('t')), 786855e09eSopenharmony_ci value('\u{08}', char('b')), 796855e09eSopenharmony_ci value('\u{0C}', char('f')), 806855e09eSopenharmony_ci value('\\', char('\\')), 816855e09eSopenharmony_ci value('/', char('/')), 826855e09eSopenharmony_ci value('"', char('"')), 836855e09eSopenharmony_ci )), 846855e09eSopenharmony_ci )(input) 856855e09eSopenharmony_ci} 866855e09eSopenharmony_ci 876855e09eSopenharmony_ci/// Parse a backslash, followed by any amount of whitespace. This is used later 886855e09eSopenharmony_ci/// to discard any escaped whitespace. 896855e09eSopenharmony_cifn parse_escaped_whitespace<'a, E: ParseError<&'a str>>( 906855e09eSopenharmony_ci input: &'a str, 916855e09eSopenharmony_ci) -> IResult<&'a str, &'a str, E> { 926855e09eSopenharmony_ci preceded(char('\\'), multispace1)(input) 936855e09eSopenharmony_ci} 946855e09eSopenharmony_ci 956855e09eSopenharmony_ci/// Parse a non-empty block of text that doesn't include \ or " 966855e09eSopenharmony_cifn parse_literal<'a, E: ParseError<&'a str>>(input: &'a str) -> IResult<&'a str, &'a str, E> { 976855e09eSopenharmony_ci // `is_not` parses a string of 0 or more characters that aren't one of the 986855e09eSopenharmony_ci // given characters. 996855e09eSopenharmony_ci let not_quote_slash = is_not("\"\\"); 1006855e09eSopenharmony_ci 1016855e09eSopenharmony_ci // `verify` runs a parser, then runs a verification function on the output of 1026855e09eSopenharmony_ci // the parser. The verification function accepts out output only if it 1036855e09eSopenharmony_ci // returns true. In this case, we want to ensure that the output of is_not 1046855e09eSopenharmony_ci // is non-empty. 1056855e09eSopenharmony_ci verify(not_quote_slash, |s: &str| !s.is_empty())(input) 1066855e09eSopenharmony_ci} 1076855e09eSopenharmony_ci 1086855e09eSopenharmony_ci/// A string fragment contains a fragment of a string being parsed: either 1096855e09eSopenharmony_ci/// a non-empty Literal (a series of non-escaped characters), a single 1106855e09eSopenharmony_ci/// parsed escaped character, or a block of escaped whitespace. 1116855e09eSopenharmony_ci#[derive(Debug, Clone, Copy, PartialEq, Eq)] 1126855e09eSopenharmony_cienum StringFragment<'a> { 1136855e09eSopenharmony_ci Literal(&'a str), 1146855e09eSopenharmony_ci EscapedChar(char), 1156855e09eSopenharmony_ci EscapedWS, 1166855e09eSopenharmony_ci} 1176855e09eSopenharmony_ci 1186855e09eSopenharmony_ci/// Combine parse_literal, parse_escaped_whitespace, and parse_escaped_char 1196855e09eSopenharmony_ci/// into a StringFragment. 1206855e09eSopenharmony_cifn parse_fragment<'a, E>(input: &'a str) -> IResult<&'a str, StringFragment<'a>, E> 1216855e09eSopenharmony_ciwhere 1226855e09eSopenharmony_ci E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, 1236855e09eSopenharmony_ci{ 1246855e09eSopenharmony_ci alt(( 1256855e09eSopenharmony_ci // The `map` combinator runs a parser, then applies a function to the output 1266855e09eSopenharmony_ci // of that parser. 1276855e09eSopenharmony_ci map(parse_literal, StringFragment::Literal), 1286855e09eSopenharmony_ci map(parse_escaped_char, StringFragment::EscapedChar), 1296855e09eSopenharmony_ci value(StringFragment::EscapedWS, parse_escaped_whitespace), 1306855e09eSopenharmony_ci ))(input) 1316855e09eSopenharmony_ci} 1326855e09eSopenharmony_ci 1336855e09eSopenharmony_ci/// Parse a string. Use a loop of parse_fragment and push all of the fragments 1346855e09eSopenharmony_ci/// into an output string. 1356855e09eSopenharmony_cifn parse_string<'a, E>(input: &'a str) -> IResult<&'a str, String, E> 1366855e09eSopenharmony_ciwhere 1376855e09eSopenharmony_ci E: ParseError<&'a str> + FromExternalError<&'a str, std::num::ParseIntError>, 1386855e09eSopenharmony_ci{ 1396855e09eSopenharmony_ci // fold_many0 is the equivalent of iterator::fold. It runs a parser in a loop, 1406855e09eSopenharmony_ci // and for each output value, calls a folding function on each output value. 1416855e09eSopenharmony_ci let build_string = fold_many0( 1426855e09eSopenharmony_ci // Our parser function– parses a single string fragment 1436855e09eSopenharmony_ci parse_fragment, 1446855e09eSopenharmony_ci // Our init value, an empty string 1456855e09eSopenharmony_ci String::new, 1466855e09eSopenharmony_ci // Our folding function. For each fragment, append the fragment to the 1476855e09eSopenharmony_ci // string. 1486855e09eSopenharmony_ci |mut string, fragment| { 1496855e09eSopenharmony_ci match fragment { 1506855e09eSopenharmony_ci StringFragment::Literal(s) => string.push_str(s), 1516855e09eSopenharmony_ci StringFragment::EscapedChar(c) => string.push(c), 1526855e09eSopenharmony_ci StringFragment::EscapedWS => {} 1536855e09eSopenharmony_ci } 1546855e09eSopenharmony_ci string 1556855e09eSopenharmony_ci }, 1566855e09eSopenharmony_ci ); 1576855e09eSopenharmony_ci 1586855e09eSopenharmony_ci // Finally, parse the string. Note that, if `build_string` could accept a raw 1596855e09eSopenharmony_ci // " character, the closing delimiter " would never match. When using 1606855e09eSopenharmony_ci // `delimited` with a looping parser (like fold_many0), be sure that the 1616855e09eSopenharmony_ci // loop won't accidentally match your closing delimiter! 1626855e09eSopenharmony_ci delimited(char('"'), build_string, char('"'))(input) 1636855e09eSopenharmony_ci} 1646855e09eSopenharmony_ci 1656855e09eSopenharmony_cifn main() { 1666855e09eSopenharmony_ci let data = "\"abc\""; 1676855e09eSopenharmony_ci println!("EXAMPLE 1:\nParsing a simple input string: {}", data); 1686855e09eSopenharmony_ci let result = parse_string::<()>(data); 1696855e09eSopenharmony_ci assert_eq!(result, Ok(("", String::from("abc")))); 1706855e09eSopenharmony_ci println!("Result: {}\n\n", result.unwrap().1); 1716855e09eSopenharmony_ci 1726855e09eSopenharmony_ci let data = "\"tab:\\tafter tab, newline:\\nnew line, quote: \\\", emoji: \\u{1F602}, newline:\\nescaped whitespace: \\ abc\""; 1736855e09eSopenharmony_ci println!( 1746855e09eSopenharmony_ci "EXAMPLE 2:\nParsing a string with escape sequences, newline literal, and escaped whitespace:\n\n{}\n", 1756855e09eSopenharmony_ci data 1766855e09eSopenharmony_ci ); 1776855e09eSopenharmony_ci let result = parse_string::<()>(data); 1786855e09eSopenharmony_ci assert_eq!( 1796855e09eSopenharmony_ci result, 1806855e09eSopenharmony_ci Ok(( 1816855e09eSopenharmony_ci "", 1826855e09eSopenharmony_ci String::from("tab:\tafter tab, newline:\nnew line, quote: \", emoji: , newline:\nescaped whitespace: abc") 1836855e09eSopenharmony_ci )) 1846855e09eSopenharmony_ci ); 1856855e09eSopenharmony_ci println!("Result:\n\n{}", result.unwrap().1); 1866855e09eSopenharmony_ci} 187