1//! Utilities for Rust numbers. 2 3#![doc(hidden)] 4 5#[cfg(all(not(feature = "std"), feature = "compact"))] 6use crate::libm::{powd, powf}; 7#[cfg(not(feature = "compact"))] 8use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5}; 9#[cfg(not(feature = "compact"))] 10use core::hint; 11use core::ops; 12 13/// Generic floating-point type, to be used in generic code for parsing. 14/// 15/// Although the trait is part of the public API, the trait provides methods 16/// and constants that are effectively non-public: they may be removed 17/// at any time without any breaking changes. 18pub trait Float: 19 Sized 20 + Copy 21 + PartialEq 22 + PartialOrd 23 + Send 24 + Sync 25 + ops::Add<Output = Self> 26 + ops::AddAssign 27 + ops::Div<Output = Self> 28 + ops::DivAssign 29 + ops::Mul<Output = Self> 30 + ops::MulAssign 31 + ops::Rem<Output = Self> 32 + ops::RemAssign 33 + ops::Sub<Output = Self> 34 + ops::SubAssign 35 + ops::Neg<Output = Self> 36{ 37 /// Maximum number of digits that can contribute in the mantissa. 38 /// 39 /// We can exactly represent a float in radix `b` from radix 2 if 40 /// `b` is divisible by 2. This function calculates the exact number of 41 /// digits required to exactly represent that float. 42 /// 43 /// According to the "Handbook of Floating Point Arithmetic", 44 /// for IEEE754, with emin being the min exponent, p2 being the 45 /// precision, and b being the radix, the number of digits follows as: 46 /// 47 /// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋` 48 /// 49 /// For f32, this follows as: 50 /// emin = -126 51 /// p2 = 24 52 /// 53 /// For f64, this follows as: 54 /// emin = -1022 55 /// p2 = 53 56 /// 57 /// In Python: 58 /// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))` 59 /// 60 /// This was used to calculate the maximum number of digits for [2, 36]. 61 const MAX_DIGITS: usize; 62 63 // MASKS 64 65 /// Bitmask for the sign bit. 66 const SIGN_MASK: u64; 67 /// Bitmask for the exponent, including the hidden bit. 68 const EXPONENT_MASK: u64; 69 /// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction. 70 const HIDDEN_BIT_MASK: u64; 71 /// Bitmask for the mantissa (fraction), excluding the hidden bit. 72 const MANTISSA_MASK: u64; 73 74 // PROPERTIES 75 76 /// Size of the significand (mantissa) without hidden bit. 77 const MANTISSA_SIZE: i32; 78 /// Bias of the exponet 79 const EXPONENT_BIAS: i32; 80 /// Exponent portion of a denormal float. 81 const DENORMAL_EXPONENT: i32; 82 /// Maximum exponent value in float. 83 const MAX_EXPONENT: i32; 84 85 // ROUNDING 86 87 /// Mask to determine if a full-carry occurred (1 in bit above hidden bit). 88 const CARRY_MASK: u64; 89 90 /// Bias for marking an invalid extended float. 91 // Value is `i16::MIN`, using hard-coded constants for older Rustc versions. 92 const INVALID_FP: i32 = -0x8000; 93 94 // Maximum mantissa for the fast-path (`1 << 53` for f64). 95 const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE; 96 97 // Largest exponent value `(1 << EXP_BITS) - 1`. 98 const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS; 99 100 // Round-to-even only happens for negative values of q 101 // when q ≥ −4 in the 64-bit case and when q ≥ −17 in 102 // the 32-bitcase. 103 // 104 // When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we 105 // have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have 106 // 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10. 107 // 108 // When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64 109 // so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case) 110 // or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64 111 // (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11 112 // or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase). 113 // 114 // Thus we have that we only need to round ties to even when 115 // we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10] 116 // (in the 32-bit case). In both cases,the power of five(5^|q|) 117 // fits in a 64-bit word. 118 const MIN_EXPONENT_ROUND_TO_EVEN: i32; 119 const MAX_EXPONENT_ROUND_TO_EVEN: i32; 120 121 /// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`. 122 const MINIMUM_EXPONENT: i32; 123 124 /// Smallest decimal exponent for a non-zero value. 125 const SMALLEST_POWER_OF_TEN: i32; 126 127 /// Largest decimal exponent for a non-infinite value. 128 const LARGEST_POWER_OF_TEN: i32; 129 130 /// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋` 131 const MIN_EXPONENT_FAST_PATH: i32; 132 133 /// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋` 134 const MAX_EXPONENT_FAST_PATH: i32; 135 136 /// Maximum exponent that can be represented for a disguised-fast path case. 137 /// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋` 138 const MAX_EXPONENT_DISGUISED_FAST_PATH: i32; 139 140 /// Convert 64-bit integer to float. 141 fn from_u64(u: u64) -> Self; 142 143 // Re-exported methods from std. 144 fn from_bits(u: u64) -> Self; 145 fn to_bits(self) -> u64; 146 147 /// Get a small power-of-radix for fast-path multiplication. 148 /// 149 /// # Safety 150 /// 151 /// Safe as long as the exponent is smaller than the table size. 152 unsafe fn pow_fast_path(exponent: usize) -> Self; 153 154 /// Get a small, integral power-of-radix for fast-path multiplication. 155 /// 156 /// # Safety 157 /// 158 /// Safe as long as the exponent is smaller than the table size. 159 #[inline(always)] 160 unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 { 161 // SAFETY: safe as long as the exponent is smaller than the radix table. 162 #[cfg(not(feature = "compact"))] 163 return match radix { 164 5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) }, 165 10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) }, 166 _ => unsafe { hint::unreachable_unchecked() }, 167 }; 168 169 #[cfg(feature = "compact")] 170 return (radix as u64).pow(exponent as u32); 171 } 172 173 /// Returns true if the float is a denormal. 174 #[inline] 175 fn is_denormal(self) -> bool { 176 self.to_bits() & Self::EXPONENT_MASK == 0 177 } 178 179 /// Get exponent component from the float. 180 #[inline] 181 fn exponent(self) -> i32 { 182 if self.is_denormal() { 183 return Self::DENORMAL_EXPONENT; 184 } 185 186 let bits = self.to_bits(); 187 let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32; 188 biased_e - Self::EXPONENT_BIAS 189 } 190 191 /// Get mantissa (significand) component from float. 192 #[inline] 193 fn mantissa(self) -> u64 { 194 let bits = self.to_bits(); 195 let s = bits & Self::MANTISSA_MASK; 196 if !self.is_denormal() { 197 s + Self::HIDDEN_BIT_MASK 198 } else { 199 s 200 } 201 } 202} 203 204impl Float for f32 { 205 const MAX_DIGITS: usize = 114; 206 const SIGN_MASK: u64 = 0x80000000; 207 const EXPONENT_MASK: u64 = 0x7F800000; 208 const HIDDEN_BIT_MASK: u64 = 0x00800000; 209 const MANTISSA_MASK: u64 = 0x007FFFFF; 210 const MANTISSA_SIZE: i32 = 23; 211 const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE; 212 const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; 213 const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS; 214 const CARRY_MASK: u64 = 0x1000000; 215 const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17; 216 const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10; 217 const MINIMUM_EXPONENT: i32 = -127; 218 const SMALLEST_POWER_OF_TEN: i32 = -65; 219 const LARGEST_POWER_OF_TEN: i32 = 38; 220 const MIN_EXPONENT_FAST_PATH: i32 = -10; 221 const MAX_EXPONENT_FAST_PATH: i32 = 10; 222 const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17; 223 224 #[inline(always)] 225 unsafe fn pow_fast_path(exponent: usize) -> Self { 226 // SAFETY: safe as long as the exponent is smaller than the radix table. 227 #[cfg(not(feature = "compact"))] 228 return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) }; 229 230 #[cfg(feature = "compact")] 231 return powf(10.0f32, exponent as f32); 232 } 233 234 #[inline] 235 fn from_u64(u: u64) -> f32 { 236 u as _ 237 } 238 239 #[inline] 240 fn from_bits(u: u64) -> f32 { 241 // Constant is `u32::MAX` for older Rustc versions. 242 debug_assert!(u <= 0xffff_ffff); 243 f32::from_bits(u as u32) 244 } 245 246 #[inline] 247 fn to_bits(self) -> u64 { 248 f32::to_bits(self) as u64 249 } 250} 251 252impl Float for f64 { 253 const MAX_DIGITS: usize = 769; 254 const SIGN_MASK: u64 = 0x8000000000000000; 255 const EXPONENT_MASK: u64 = 0x7FF0000000000000; 256 const HIDDEN_BIT_MASK: u64 = 0x0010000000000000; 257 const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF; 258 const MANTISSA_SIZE: i32 = 52; 259 const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE; 260 const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS; 261 const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS; 262 const CARRY_MASK: u64 = 0x20000000000000; 263 const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4; 264 const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23; 265 const MINIMUM_EXPONENT: i32 = -1023; 266 const SMALLEST_POWER_OF_TEN: i32 = -342; 267 const LARGEST_POWER_OF_TEN: i32 = 308; 268 const MIN_EXPONENT_FAST_PATH: i32 = -22; 269 const MAX_EXPONENT_FAST_PATH: i32 = 22; 270 const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37; 271 272 #[inline(always)] 273 unsafe fn pow_fast_path(exponent: usize) -> Self { 274 // SAFETY: safe as long as the exponent is smaller than the radix table. 275 #[cfg(not(feature = "compact"))] 276 return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) }; 277 278 #[cfg(feature = "compact")] 279 return powd(10.0f64, exponent as f64); 280 } 281 282 #[inline] 283 fn from_u64(u: u64) -> f64 { 284 u as _ 285 } 286 287 #[inline] 288 fn from_bits(u: u64) -> f64 { 289 f64::from_bits(u) 290 } 291 292 #[inline] 293 fn to_bits(self) -> u64 { 294 f64::to_bits(self) 295 } 296} 297 298#[inline(always)] 299#[cfg(all(feature = "std", feature = "compact"))] 300pub fn powf(x: f32, y: f32) -> f32 { 301 x.powf(y) 302} 303 304#[inline(always)] 305#[cfg(all(feature = "std", feature = "compact"))] 306pub fn powd(x: f64, y: f64) -> f64 { 307 x.powf(y) 308} 309