1//! A small number of math routines for floats and doubles.
2//!
3//! These are adapted from libm, a port of musl libc's libm to Rust.
4//! libm can be found online [here](https://github.com/rust-lang/libm),
5//! and is similarly licensed under an Apache2.0/MIT license
6
7#![cfg(all(not(feature = "std"), feature = "compact"))]
8#![doc(hidden)]
9
10/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */
11/*
12 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
13 */
14/*
15 * ====================================================
16 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
17 *
18 * Developed at SunPro, a Sun Microsystems, Inc. business.
19 * Permission to use, copy, modify, and distribute this
20 * software is freely granted, provided that this notice
21 * is preserved.
22 * ====================================================
23 */
24
25/// # Safety
26///
27/// Safe if `index < array.len()`.
28macro_rules! i {
29    ($array:ident, $index:expr) => {
30        // SAFETY: safe if `index < array.len()`.
31        unsafe { *$array.get_unchecked($index) }
32    };
33}
34
35pub fn powf(x: f32, y: f32) -> f32 {
36    const BP: [f32; 2] = [1.0, 1.5];
37    const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */
38    const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */
39    const TWO24: f32 = 16777216.0; /* 0x4b800000 */
40    const HUGE: f32 = 1.0e30;
41    const TINY: f32 = 1.0e-30;
42    const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */
43    const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */
44    const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */
45    const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */
46    const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */
47    const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */
48    const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */
49    const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */
50    const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */
51    const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */
52    const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */
53    const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */
54    const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */
55    const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */
56    const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */
57    const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */
58    const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */
59    const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */
60    const IVLN2: f32 = 1.4426950216e+00;
61    const IVLN2_H: f32 = 1.4426879883e+00;
62    const IVLN2_L: f32 = 7.0526075433e-06;
63
64    let mut z: f32;
65    let mut ax: f32;
66    let z_h: f32;
67    let z_l: f32;
68    let mut p_h: f32;
69    let mut p_l: f32;
70    let y1: f32;
71    let mut t1: f32;
72    let t2: f32;
73    let mut r: f32;
74    let s: f32;
75    let mut sn: f32;
76    let mut t: f32;
77    let mut u: f32;
78    let mut v: f32;
79    let mut w: f32;
80    let i: i32;
81    let mut j: i32;
82    let mut k: i32;
83    let mut yisint: i32;
84    let mut n: i32;
85    let hx: i32;
86    let hy: i32;
87    let mut ix: i32;
88    let iy: i32;
89    let mut is: i32;
90
91    hx = x.to_bits() as i32;
92    hy = y.to_bits() as i32;
93
94    ix = hx & 0x7fffffff;
95    iy = hy & 0x7fffffff;
96
97    /* x**0 = 1, even if x is NaN */
98    if iy == 0 {
99        return 1.0;
100    }
101
102    /* 1**y = 1, even if y is NaN */
103    if hx == 0x3f800000 {
104        return 1.0;
105    }
106
107    /* NaN if either arg is NaN */
108    if ix > 0x7f800000 || iy > 0x7f800000 {
109        return x + y;
110    }
111
112    /* determine if y is an odd int when x < 0
113     * yisint = 0       ... y is not an integer
114     * yisint = 1       ... y is an odd int
115     * yisint = 2       ... y is an even int
116     */
117    yisint = 0;
118    if hx < 0 {
119        if iy >= 0x4b800000 {
120            yisint = 2; /* even integer y */
121        } else if iy >= 0x3f800000 {
122            k = (iy >> 23) - 0x7f; /* exponent */
123            j = iy >> (23 - k);
124            if (j << (23 - k)) == iy {
125                yisint = 2 - (j & 1);
126            }
127        }
128    }
129
130    /* special value of y */
131    if iy == 0x7f800000 {
132        /* y is +-inf */
133        if ix == 0x3f800000 {
134            /* (-1)**+-inf is 1 */
135            return 1.0;
136        } else if ix > 0x3f800000 {
137            /* (|x|>1)**+-inf = inf,0 */
138            return if hy >= 0 {
139                y
140            } else {
141                0.0
142            };
143        } else {
144            /* (|x|<1)**+-inf = 0,inf */
145            return if hy >= 0 {
146                0.0
147            } else {
148                -y
149            };
150        }
151    }
152    if iy == 0x3f800000 {
153        /* y is +-1 */
154        return if hy >= 0 {
155            x
156        } else {
157            1.0 / x
158        };
159    }
160
161    if hy == 0x40000000 {
162        /* y is 2 */
163        return x * x;
164    }
165
166    if hy == 0x3f000000
167       /* y is  0.5 */
168       && hx >= 0
169    {
170        /* x >= +0 */
171        return sqrtf(x);
172    }
173
174    ax = fabsf(x);
175    /* special value of x */
176    if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 {
177        /* x is +-0,+-inf,+-1 */
178        z = ax;
179        if hy < 0 {
180            /* z = (1/|x|) */
181            z = 1.0 / z;
182        }
183
184        if hx < 0 {
185            if ((ix - 0x3f800000) | yisint) == 0 {
186                z = (z - z) / (z - z); /* (-1)**non-int is NaN */
187            } else if yisint == 1 {
188                z = -z; /* (x<0)**odd = -(|x|**odd) */
189            }
190        }
191        return z;
192    }
193
194    sn = 1.0; /* sign of result */
195    if hx < 0 {
196        if yisint == 0 {
197            /* (x<0)**(non-int) is NaN */
198            return (x - x) / (x - x);
199        }
200
201        if yisint == 1 {
202            /* (x<0)**(odd int) */
203            sn = -1.0;
204        }
205    }
206
207    /* |y| is HUGE */
208    if iy > 0x4d000000 {
209        /* if |y| > 2**27 */
210        /* over/underflow if x is not close to one */
211        if ix < 0x3f7ffff8 {
212            return if hy < 0 {
213                sn * HUGE * HUGE
214            } else {
215                sn * TINY * TINY
216            };
217        }
218
219        if ix > 0x3f800007 {
220            return if hy > 0 {
221                sn * HUGE * HUGE
222            } else {
223                sn * TINY * TINY
224            };
225        }
226
227        /* now |1-x| is TINY <= 2**-20, suffice to compute
228        log(x) by x-x^2/2+x^3/3-x^4/4 */
229        t = ax - 1.; /* t has 20 trailing zeros */
230        w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25));
231        u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */
232        v = t * IVLN2_L - w * IVLN2;
233        t1 = u + v;
234        is = t1.to_bits() as i32;
235        t1 = f32::from_bits(is as u32 & 0xfffff000);
236        t2 = v - (t1 - u);
237    } else {
238        let mut s2: f32;
239        let mut s_h: f32;
240        let s_l: f32;
241        let mut t_h: f32;
242        let mut t_l: f32;
243
244        n = 0;
245        /* take care subnormal number */
246        if ix < 0x00800000 {
247            ax *= TWO24;
248            n -= 24;
249            ix = ax.to_bits() as i32;
250        }
251        n += ((ix) >> 23) - 0x7f;
252        j = ix & 0x007fffff;
253        /* determine interval */
254        ix = j | 0x3f800000; /* normalize ix */
255        if j <= 0x1cc471 {
256            /* |x|<sqrt(3/2) */
257            k = 0;
258        } else if j < 0x5db3d7 {
259            /* |x|<sqrt(3)   */
260            k = 1;
261        } else {
262            k = 0;
263            n += 1;
264            ix -= 0x00800000;
265        }
266        ax = f32::from_bits(ix as u32);
267
268        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
269        u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
270        v = 1.0 / (ax + i!(BP, k as usize));
271        s = u * v;
272        s_h = s;
273        is = s_h.to_bits() as i32;
274        s_h = f32::from_bits(is as u32 & 0xfffff000);
275        /* t_h=ax+bp[k] High */
276        is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32;
277        t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21));
278        t_l = ax - (t_h - i!(BP, k as usize));
279        s_l = v * ((u - s_h * t_h) - s_h * t_l);
280        /* compute log(ax) */
281        s2 = s * s;
282        r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
283        r += s_l * (s_h + s);
284        s2 = s_h * s_h;
285        t_h = 3.0 + s2 + r;
286        is = t_h.to_bits() as i32;
287        t_h = f32::from_bits(is as u32 & 0xfffff000);
288        t_l = r - ((t_h - 3.0) - s2);
289        /* u+v = s*(1+...) */
290        u = s_h * t_h;
291        v = s_l * t_h + t_l * s;
292        /* 2/(3log2)*(s+...) */
293        p_h = u + v;
294        is = p_h.to_bits() as i32;
295        p_h = f32::from_bits(is as u32 & 0xfffff000);
296        p_l = v - (p_h - u);
297        z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
298        z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
299        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
300        t = n as f32;
301        t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t;
302        is = t1.to_bits() as i32;
303        t1 = f32::from_bits(is as u32 & 0xfffff000);
304        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
305    };
306
307    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
308    is = y.to_bits() as i32;
309    y1 = f32::from_bits(is as u32 & 0xfffff000);
310    p_l = (y - y1) * t1 + y * t2;
311    p_h = y1 * t1;
312    z = p_l + p_h;
313    j = z.to_bits() as i32;
314    if j > 0x43000000 {
315        /* if z > 128 */
316        return sn * HUGE * HUGE; /* overflow */
317    } else if j == 0x43000000 {
318        /* if z == 128 */
319        if p_l + OVT > z - p_h {
320            return sn * HUGE * HUGE; /* overflow */
321        }
322    } else if (j & 0x7fffffff) > 0x43160000 {
323        /* z < -150 */
324        // FIXME: check should be  (uint32_t)j > 0xc3160000
325        return sn * TINY * TINY; /* underflow */
326    } else if j as u32 == 0xc3160000
327              /* z == -150 */
328              && p_l <= z - p_h
329    {
330        return sn * TINY * TINY; /* underflow */
331    }
332
333    /*
334     * compute 2**(p_h+p_l)
335     */
336    i = j & 0x7fffffff;
337    k = (i >> 23) - 0x7f;
338    n = 0;
339    if i > 0x3f000000 {
340        /* if |z| > 0.5, set n = [z+0.5] */
341        n = j + (0x00800000 >> (k + 1));
342        k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
343        t = f32::from_bits(n as u32 & !(0x007fffff >> k));
344        n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
345        if j < 0 {
346            n = -n;
347        }
348        p_h -= t;
349    }
350    t = p_l + p_h;
351    is = t.to_bits() as i32;
352    t = f32::from_bits(is as u32 & 0xffff8000);
353    u = t * LG2_H;
354    v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
355    z = u + v;
356    w = v - (z - u);
357    t = z * z;
358    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
359    r = (z * t1) / (t1 - 2.0) - (w + z * w);
360    z = 1.0 - (r - z);
361    j = z.to_bits() as i32;
362    j += n << 23;
363    if (j >> 23) <= 0 {
364        /* subnormal output */
365        z = scalbnf(z, n);
366    } else {
367        z = f32::from_bits(j as u32);
368    }
369    sn * z
370}
371
372/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */
373/*
374 * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
375 */
376/*
377 * ====================================================
378 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
379 *
380 * Developed at SunPro, a Sun Microsystems, Inc. business.
381 * Permission to use, copy, modify, and distribute this
382 * software is freely granted, provided that this notice
383 * is preserved.
384 * ====================================================
385 */
386
387pub fn sqrtf(x: f32) -> f32 {
388    #[cfg(target_feature = "sse")]
389    {
390        // Note: This path is unlikely since LLVM will usually have already
391        // optimized sqrt calls into hardware instructions if sse is available,
392        // but if someone does end up here they'll apprected the speed increase.
393        #[cfg(target_arch = "x86")]
394        use core::arch::x86::*;
395        #[cfg(target_arch = "x86_64")]
396        use core::arch::x86_64::*;
397        // SAFETY: safe, since `_mm_set_ss` takes a 32-bit float, and returns
398        // a 128-bit type with the lowest 32-bits as `x`, `_mm_sqrt_ss` calculates
399        // the sqrt of this 128-bit vector, and `_mm_cvtss_f32` extracts the lower
400        // 32-bits as a 32-bit float.
401        unsafe {
402            let m = _mm_set_ss(x);
403            let m_sqrt = _mm_sqrt_ss(m);
404            _mm_cvtss_f32(m_sqrt)
405        }
406    }
407    #[cfg(not(target_feature = "sse"))]
408    {
409        const TINY: f32 = 1.0e-30;
410
411        let mut z: f32;
412        let sign: i32 = 0x80000000u32 as i32;
413        let mut ix: i32;
414        let mut s: i32;
415        let mut q: i32;
416        let mut m: i32;
417        let mut t: i32;
418        let mut i: i32;
419        let mut r: u32;
420
421        ix = x.to_bits() as i32;
422
423        /* take care of Inf and NaN */
424        if (ix as u32 & 0x7f800000) == 0x7f800000 {
425            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
426        }
427
428        /* take care of zero */
429        if ix <= 0 {
430            if (ix & !sign) == 0 {
431                return x; /* sqrt(+-0) = +-0 */
432            }
433            if ix < 0 {
434                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
435            }
436        }
437
438        /* normalize x */
439        m = ix >> 23;
440        if m == 0 {
441            /* subnormal x */
442            i = 0;
443            while ix & 0x00800000 == 0 {
444                ix <<= 1;
445                i = i + 1;
446            }
447            m -= i - 1;
448        }
449        m -= 127; /* unbias exponent */
450        ix = (ix & 0x007fffff) | 0x00800000;
451        if m & 1 == 1 {
452            /* odd m, double x to make it even */
453            ix += ix;
454        }
455        m >>= 1; /* m = [m/2] */
456
457        /* generate sqrt(x) bit by bit */
458        ix += ix;
459        q = 0;
460        s = 0;
461        r = 0x01000000; /* r = moving bit from right to left */
462
463        while r != 0 {
464            t = s + r as i32;
465            if t <= ix {
466                s = t + r as i32;
467                ix -= t;
468                q += r as i32;
469            }
470            ix += ix;
471            r >>= 1;
472        }
473
474        /* use floating add to find out rounding direction */
475        if ix != 0 {
476            z = 1.0 - TINY; /* raise inexact flag */
477            if z >= 1.0 {
478                z = 1.0 + TINY;
479                if z > 1.0 {
480                    q += 2;
481                } else {
482                    q += q & 1;
483                }
484            }
485        }
486
487        ix = (q >> 1) + 0x3f000000;
488        ix += m << 23;
489        f32::from_bits(ix as u32)
490    }
491}
492
493/// Absolute value (magnitude) (f32)
494/// Calculates the absolute value (magnitude) of the argument `x`,
495/// by direct manipulation of the bit representation of `x`.
496pub fn fabsf(x: f32) -> f32 {
497    f32::from_bits(x.to_bits() & 0x7fffffff)
498}
499
500pub fn scalbnf(mut x: f32, mut n: i32) -> f32 {
501    let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127
502    let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126
503    let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24
504
505    if n > 127 {
506        x *= x1p127;
507        n -= 127;
508        if n > 127 {
509            x *= x1p127;
510            n -= 127;
511            if n > 127 {
512                n = 127;
513            }
514        }
515    } else if n < -126 {
516        x *= x1p_126 * x1p24;
517        n += 126 - 24;
518        if n < -126 {
519            x *= x1p_126 * x1p24;
520            n += 126 - 24;
521            if n < -126 {
522                n = -126;
523            }
524        }
525    }
526    x * f32::from_bits(((0x7f + n) as u32) << 23)
527}
528
529/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */
530/*
531 * ====================================================
532 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
533 *
534 * Permission to use, copy, modify, and distribute this
535 * software is freely granted, provided that this notice
536 * is preserved.
537 * ====================================================
538 */
539
540// pow(x,y) return x**y
541//
542//                    n
543// Method:  Let x =  2   * (1+f)
544//      1. Compute and return log2(x) in two pieces:
545//              log2(x) = w1 + w2,
546//         where w1 has 53-24 = 29 bit trailing zeros.
547//      2. Perform y*log2(x) = n+y' by simulating muti-precision
548//         arithmetic, where |y'|<=0.5.
549//      3. Return x**y = 2**n*exp(y'*log2)
550//
551// Special cases:
552//      1.  (anything) ** 0  is 1
553//      2.  1 ** (anything)  is 1
554//      3.  (anything except 1) ** NAN is NAN
555//      4.  NAN ** (anything except 0) is NAN
556//      5.  +-(|x| > 1) **  +INF is +INF
557//      6.  +-(|x| > 1) **  -INF is +0
558//      7.  +-(|x| < 1) **  +INF is +0
559//      8.  +-(|x| < 1) **  -INF is +INF
560//      9.  -1          ** +-INF is 1
561//      10. +0 ** (+anything except 0, NAN)               is +0
562//      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
563//      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
564//      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
565//      14. -0 ** (+odd integer) is -0
566//      15. -0 ** (-odd integer) is -INF, raise divbyzero
567//      16. +INF ** (+anything except 0,NAN) is +INF
568//      17. +INF ** (-anything except 0,NAN) is +0
569//      18. -INF ** (+odd integer) is -INF
570//      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
571//      20. (anything) ** 1 is (anything)
572//      21. (anything) ** -1 is 1/(anything)
573//      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
574//      23. (-anything except 0 and inf) ** (non-integer) is NAN
575//
576// Accuracy:
577//      pow(x,y) returns x**y nearly rounded. In particular
578//                      pow(integer,integer)
579//      always returns the correct integer provided it is
580//      representable.
581//
582// Constants :
583// The hexadecimal values are the intended ones for the following
584// constants. The decimal values may be used, provided that the
585// compiler will convert from decimal to binary accurately enough
586// to produce the hexadecimal values shown.
587
588pub fn powd(x: f64, y: f64) -> f64 {
589    const BP: [f64; 2] = [1.0, 1.5];
590    const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */
591    const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */
592    const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */
593    const HUGE: f64 = 1.0e300;
594    const TINY: f64 = 1.0e-300;
595
596    // poly coefs for (3/2)*(log(x)-2s-2/3*s**3:
597    const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */
598    const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */
599    const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */
600    const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */
601    const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */
602    const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */
603    const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */
604    const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */
605    const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */
606    const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */
607    const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */
608    const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */
609    const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */
610    const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */
611    const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */
612    const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */
613    const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */
614    const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/
615    const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */
616    const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/
617    const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/
618
619    let t1: f64;
620    let t2: f64;
621
622    let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32);
623    let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32);
624
625    let mut ix: i32 = (hx & 0x7fffffff) as i32;
626    let iy: i32 = (hy & 0x7fffffff) as i32;
627
628    /* x**0 = 1, even if x is NaN */
629    if ((iy as u32) | ly) == 0 {
630        return 1.0;
631    }
632
633    /* 1**y = 1, even if y is NaN */
634    if hx == 0x3ff00000 && lx == 0 {
635        return 1.0;
636    }
637
638    /* NaN if either arg is NaN */
639    if ix > 0x7ff00000
640        || (ix == 0x7ff00000 && lx != 0)
641        || iy > 0x7ff00000
642        || (iy == 0x7ff00000 && ly != 0)
643    {
644        return x + y;
645    }
646
647    /* determine if y is an odd int when x < 0
648     * yisint = 0       ... y is not an integer
649     * yisint = 1       ... y is an odd int
650     * yisint = 2       ... y is an even int
651     */
652    let mut yisint: i32 = 0;
653    let mut k: i32;
654    let mut j: i32;
655    if hx < 0 {
656        if iy >= 0x43400000 {
657            yisint = 2; /* even integer y */
658        } else if iy >= 0x3ff00000 {
659            k = (iy >> 20) - 0x3ff; /* exponent */
660
661            if k > 20 {
662                j = (ly >> (52 - k)) as i32;
663
664                if (j << (52 - k)) == (ly as i32) {
665                    yisint = 2 - (j & 1);
666                }
667            } else if ly == 0 {
668                j = iy >> (20 - k);
669
670                if (j << (20 - k)) == iy {
671                    yisint = 2 - (j & 1);
672                }
673            }
674        }
675    }
676
677    if ly == 0 {
678        /* special value of y */
679        if iy == 0x7ff00000 {
680            /* y is +-inf */
681
682            return if ((ix - 0x3ff00000) | (lx as i32)) == 0 {
683                /* (-1)**+-inf is 1 */
684                1.0
685            } else if ix >= 0x3ff00000 {
686                /* (|x|>1)**+-inf = inf,0 */
687                if hy >= 0 {
688                    y
689                } else {
690                    0.0
691                }
692            } else {
693                /* (|x|<1)**+-inf = 0,inf */
694                if hy >= 0 {
695                    0.0
696                } else {
697                    -y
698                }
699            };
700        }
701
702        if iy == 0x3ff00000 {
703            /* y is +-1 */
704            return if hy >= 0 {
705                x
706            } else {
707                1.0 / x
708            };
709        }
710
711        if hy == 0x40000000 {
712            /* y is 2 */
713            return x * x;
714        }
715
716        if hy == 0x3fe00000 {
717            /* y is 0.5 */
718            if hx >= 0 {
719                /* x >= +0 */
720                return sqrtd(x);
721            }
722        }
723    }
724
725    let mut ax: f64 = fabsd(x);
726    if lx == 0 {
727        /* special value of x */
728        if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 {
729            /* x is +-0,+-inf,+-1 */
730            let mut z: f64 = ax;
731
732            if hy < 0 {
733                /* z = (1/|x|) */
734                z = 1.0 / z;
735            }
736
737            if hx < 0 {
738                if ((ix - 0x3ff00000) | yisint) == 0 {
739                    z = (z - z) / (z - z); /* (-1)**non-int is NaN */
740                } else if yisint == 1 {
741                    z = -z; /* (x<0)**odd = -(|x|**odd) */
742                }
743            }
744
745            return z;
746        }
747    }
748
749    let mut s: f64 = 1.0; /* sign of result */
750    if hx < 0 {
751        if yisint == 0 {
752            /* (x<0)**(non-int) is NaN */
753            return (x - x) / (x - x);
754        }
755
756        if yisint == 1 {
757            /* (x<0)**(odd int) */
758            s = -1.0;
759        }
760    }
761
762    /* |y| is HUGE */
763    if iy > 0x41e00000 {
764        /* if |y| > 2**31 */
765        if iy > 0x43f00000 {
766            /* if |y| > 2**64, must o/uflow */
767            if ix <= 0x3fefffff {
768                return if hy < 0 {
769                    HUGE * HUGE
770                } else {
771                    TINY * TINY
772                };
773            }
774
775            if ix >= 0x3ff00000 {
776                return if hy > 0 {
777                    HUGE * HUGE
778                } else {
779                    TINY * TINY
780                };
781            }
782        }
783
784        /* over/underflow if x is not close to one */
785        if ix < 0x3fefffff {
786            return if hy < 0 {
787                s * HUGE * HUGE
788            } else {
789                s * TINY * TINY
790            };
791        }
792        if ix > 0x3ff00000 {
793            return if hy > 0 {
794                s * HUGE * HUGE
795            } else {
796                s * TINY * TINY
797            };
798        }
799
800        /* now |1-x| is TINY <= 2**-20, suffice to compute
801        log(x) by x-x^2/2+x^3/3-x^4/4 */
802        let t: f64 = ax - 1.0; /* t has 20 trailing zeros */
803        let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
804        let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */
805        let v: f64 = t * IVLN2_L - w * IVLN2;
806        t1 = with_set_low_word(u + v, 0);
807        t2 = v - (t1 - u);
808    } else {
809        // double ss,s2,s_h,s_l,t_h,t_l;
810        let mut n: i32 = 0;
811
812        if ix < 0x00100000 {
813            /* take care subnormal number */
814            ax *= TWO53;
815            n -= 53;
816            ix = get_high_word(ax) as i32;
817        }
818
819        n += (ix >> 20) - 0x3ff;
820        j = ix & 0x000fffff;
821
822        /* determine interval */
823        let k: i32;
824        ix = j | 0x3ff00000; /* normalize ix */
825        if j <= 0x3988E {
826            /* |x|<sqrt(3/2) */
827            k = 0;
828        } else if j < 0xBB67A {
829            /* |x|<sqrt(3)   */
830            k = 1;
831        } else {
832            k = 0;
833            n += 1;
834            ix -= 0x00100000;
835        }
836        ax = with_set_high_word(ax, ix as u32);
837
838        /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
839        let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */
840        let v: f64 = 1.0 / (ax + i!(BP, k as usize));
841        let ss: f64 = u * v;
842        let s_h = with_set_low_word(ss, 0);
843
844        /* t_h=ax+bp[k] High */
845        let t_h: f64 = with_set_high_word(
846            0.0,
847            ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18),
848        );
849        let t_l: f64 = ax - (t_h - i!(BP, k as usize));
850        let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l);
851
852        /* compute log(ax) */
853        let s2: f64 = ss * ss;
854        let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
855        r += s_l * (s_h + ss);
856        let s2: f64 = s_h * s_h;
857        let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0);
858        let t_l: f64 = r - ((t_h - 3.0) - s2);
859
860        /* u+v = ss*(1+...) */
861        let u: f64 = s_h * t_h;
862        let v: f64 = s_l * t_h + t_l * ss;
863
864        /* 2/(3log2)*(ss+...) */
865        let p_h: f64 = with_set_low_word(u + v, 0);
866        let p_l = v - (p_h - u);
867        let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */
868        let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize);
869
870        /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
871        let t: f64 = n as f64;
872        t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0);
873        t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h);
874    }
875
876    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
877    let y1: f64 = with_set_low_word(y, 0);
878    let p_l: f64 = (y - y1) * t1 + y * t2;
879    let mut p_h: f64 = y1 * t1;
880    let z: f64 = p_l + p_h;
881    let mut j: i32 = (z.to_bits() >> 32) as i32;
882    let i: i32 = z.to_bits() as i32;
883    // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32);
884
885    if j >= 0x40900000 {
886        /* z >= 1024 */
887        if (j - 0x40900000) | i != 0 {
888            /* if z > 1024 */
889            return s * HUGE * HUGE; /* overflow */
890        }
891
892        if p_l + OVT > z - p_h {
893            return s * HUGE * HUGE; /* overflow */
894        }
895    } else if (j & 0x7fffffff) >= 0x4090cc00 {
896        /* z <= -1075 */
897        // FIXME: instead of abs(j) use unsigned j
898
899        if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 {
900            /* z < -1075 */
901            return s * TINY * TINY; /* underflow */
902        }
903
904        if p_l <= z - p_h {
905            return s * TINY * TINY; /* underflow */
906        }
907    }
908
909    /* compute 2**(p_h+p_l) */
910    let i: i32 = j & (0x7fffffff as i32);
911    k = (i >> 20) - 0x3ff;
912    let mut n: i32 = 0;
913
914    if i > 0x3fe00000 {
915        /* if |z| > 0.5, set n = [z+0.5] */
916        n = j + (0x00100000 >> (k + 1));
917        k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
918        let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32);
919        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
920        if j < 0 {
921            n = -n;
922        }
923        p_h -= t;
924    }
925
926    let t: f64 = with_set_low_word(p_l + p_h, 0);
927    let u: f64 = t * LG2_H;
928    let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L;
929    let mut z: f64 = u + v;
930    let w: f64 = v - (z - u);
931    let t: f64 = z * z;
932    let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
933    let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w);
934    z = 1.0 - (r - z);
935    j = get_high_word(z) as i32;
936    j += n << 20;
937
938    if (j >> 20) <= 0 {
939        /* subnormal output */
940        z = scalbnd(z, n);
941    } else {
942        z = with_set_high_word(z, j as u32);
943    }
944
945    s * z
946}
947
948/// Absolute value (magnitude) (f64)
949/// Calculates the absolute value (magnitude) of the argument `x`,
950/// by direct manipulation of the bit representation of `x`.
951pub fn fabsd(x: f64) -> f64 {
952    f64::from_bits(x.to_bits() & (u64::MAX / 2))
953}
954
955pub fn scalbnd(x: f64, mut n: i32) -> f64 {
956    let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023
957    let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53
958    let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022)
959
960    let mut y = x;
961
962    if n > 1023 {
963        y *= x1p1023;
964        n -= 1023;
965        if n > 1023 {
966            y *= x1p1023;
967            n -= 1023;
968            if n > 1023 {
969                n = 1023;
970            }
971        }
972    } else if n < -1022 {
973        /* make sure final n < -53 to avoid double
974        rounding in the subnormal range */
975        y *= x1p_1022 * x1p53;
976        n += 1022 - 53;
977        if n < -1022 {
978            y *= x1p_1022 * x1p53;
979            n += 1022 - 53;
980            if n < -1022 {
981                n = -1022;
982            }
983        }
984    }
985    y * f64::from_bits(((0x3ff + n) as u64) << 52)
986}
987
988/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */
989/*
990 * ====================================================
991 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
992 *
993 * Developed at SunSoft, a Sun Microsystems, Inc. business.
994 * Permission to use, copy, modify, and distribute this
995 * software is freely granted, provided that this notice
996 * is preserved.
997 * ====================================================
998 */
999/* sqrt(x)
1000 * Return correctly rounded sqrt.
1001 *           ------------------------------------------
1002 *           |  Use the hardware sqrt if you have one |
1003 *           ------------------------------------------
1004 * Method:
1005 *   Bit by bit method using integer arithmetic. (Slow, but portable)
1006 *   1. Normalization
1007 *      Scale x to y in [1,4) with even powers of 2:
1008 *      find an integer k such that  1 <= (y=x*2^(2k)) < 4, then
1009 *              sqrt(x) = 2^k * sqrt(y)
1010 *   2. Bit by bit computation
1011 *      Let q  = sqrt(y) truncated to i bit after binary point (q = 1),
1012 *           i                                                   0
1013 *                                     i+1         2
1014 *          s  = 2*q , and      y  =  2   * ( y - q  ).         (1)
1015 *           i      i            i                 i
1016 *
1017 *      To compute q    from q , one checks whether
1018 *                  i+1       i
1019 *
1020 *                            -(i+1) 2
1021 *                      (q + 2      ) <= y.                     (2)
1022 *                        i
1023 *                                                            -(i+1)
1024 *      If (2) is false, then q   = q ; otherwise q   = q  + 2      .
1025 *                             i+1   i             i+1   i
1026 *
1027 *      With some algebraic manipulation, it is not difficult to see
1028 *      that (2) is equivalent to
1029 *                             -(i+1)
1030 *                      s  +  2       <= y                      (3)
1031 *                       i                i
1032 *
1033 *      The advantage of (3) is that s  and y  can be computed by
1034 *                                    i      i
1035 *      the following recurrence formula:
1036 *          if (3) is false
1037 *
1038 *          s     =  s  ,       y    = y   ;                    (4)
1039 *           i+1      i          i+1    i
1040 *
1041 *          otherwise,
1042 *                         -i                     -(i+1)
1043 *          s     =  s  + 2  ,  y    = y  -  s  - 2             (5)
1044 *           i+1      i          i+1    i     i
1045 *
1046 *      One may easily use induction to prove (4) and (5).
1047 *      Note. Since the left hand side of (3) contain only i+2 bits,
1048 *            it does not necessary to do a full (53-bit) comparison
1049 *            in (3).
1050 *   3. Final rounding
1051 *      After generating the 53 bits result, we compute one more bit.
1052 *      Together with the remainder, we can decide whether the
1053 *      result is exact, bigger than 1/2ulp, or less than 1/2ulp
1054 *      (it will never equal to 1/2ulp).
1055 *      The rounding mode can be detected by checking whether
1056 *      huge + tiny is equal to huge, and whether huge - tiny is
1057 *      equal to huge for some floating point number "huge" and "tiny".
1058 *
1059 * Special cases:
1060 *      sqrt(+-0) = +-0         ... exact
1061 *      sqrt(inf) = inf
1062 *      sqrt(-ve) = NaN         ... with invalid signal
1063 *      sqrt(NaN) = NaN         ... with invalid signal for signaling NaN
1064 */
1065
1066pub fn sqrtd(x: f64) -> f64 {
1067    #[cfg(target_feature = "sse2")]
1068    {
1069        // Note: This path is unlikely since LLVM will usually have already
1070        // optimized sqrt calls into hardware instructions if sse2 is available,
1071        // but if someone does end up here they'll apprected the speed increase.
1072        #[cfg(target_arch = "x86")]
1073        use core::arch::x86::*;
1074        #[cfg(target_arch = "x86_64")]
1075        use core::arch::x86_64::*;
1076        // SAFETY: safe, since `_mm_set_sd` takes a 64-bit float, and returns
1077        // a 128-bit type with the lowest 64-bits as `x`, `_mm_sqrt_ss` calculates
1078        // the sqrt of this 128-bit vector, and `_mm_cvtss_f64` extracts the lower
1079        // 64-bits as a 64-bit float.
1080        unsafe {
1081            let m = _mm_set_sd(x);
1082            let m_sqrt = _mm_sqrt_pd(m);
1083            _mm_cvtsd_f64(m_sqrt)
1084        }
1085    }
1086    #[cfg(not(target_feature = "sse2"))]
1087    {
1088        use core::num::Wrapping;
1089
1090        const TINY: f64 = 1.0e-300;
1091
1092        let mut z: f64;
1093        let sign: Wrapping<u32> = Wrapping(0x80000000);
1094        let mut ix0: i32;
1095        let mut s0: i32;
1096        let mut q: i32;
1097        let mut m: i32;
1098        let mut t: i32;
1099        let mut i: i32;
1100        let mut r: Wrapping<u32>;
1101        let mut t1: Wrapping<u32>;
1102        let mut s1: Wrapping<u32>;
1103        let mut ix1: Wrapping<u32>;
1104        let mut q1: Wrapping<u32>;
1105
1106        ix0 = (x.to_bits() >> 32) as i32;
1107        ix1 = Wrapping(x.to_bits() as u32);
1108
1109        /* take care of Inf and NaN */
1110        if (ix0 & 0x7ff00000) == 0x7ff00000 {
1111            return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
1112        }
1113        /* take care of zero */
1114        if ix0 <= 0 {
1115            if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 {
1116                return x; /* sqrt(+-0) = +-0 */
1117            }
1118            if ix0 < 0 {
1119                return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
1120            }
1121        }
1122        /* normalize x */
1123        m = ix0 >> 20;
1124        if m == 0 {
1125            /* subnormal x */
1126            while ix0 == 0 {
1127                m -= 21;
1128                ix0 |= (ix1 >> 11).0 as i32;
1129                ix1 <<= 21;
1130            }
1131            i = 0;
1132            while (ix0 & 0x00100000) == 0 {
1133                i += 1;
1134                ix0 <<= 1;
1135            }
1136            m -= i - 1;
1137            ix0 |= (ix1 >> (32 - i) as usize).0 as i32;
1138            ix1 = ix1 << i as usize;
1139        }
1140        m -= 1023; /* unbias exponent */
1141        ix0 = (ix0 & 0x000fffff) | 0x00100000;
1142        if (m & 1) == 1 {
1143            /* odd m, double x to make it even */
1144            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1145            ix1 += ix1;
1146        }
1147        m >>= 1; /* m = [m/2] */
1148
1149        /* generate sqrt(x) bit by bit */
1150        ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1151        ix1 += ix1;
1152        q = 0; /* [q,q1] = sqrt(x) */
1153        q1 = Wrapping(0);
1154        s0 = 0;
1155        s1 = Wrapping(0);
1156        r = Wrapping(0x00200000); /* r = moving bit from right to left */
1157
1158        while r != Wrapping(0) {
1159            t = s0 + r.0 as i32;
1160            if t <= ix0 {
1161                s0 = t + r.0 as i32;
1162                ix0 -= t;
1163                q += r.0 as i32;
1164            }
1165            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1166            ix1 += ix1;
1167            r >>= 1;
1168        }
1169
1170        r = sign;
1171        while r != Wrapping(0) {
1172            t1 = s1 + r;
1173            t = s0;
1174            if t < ix0 || (t == ix0 && t1 <= ix1) {
1175                s1 = t1 + r;
1176                if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) {
1177                    s0 += 1;
1178                }
1179                ix0 -= t;
1180                if ix1 < t1 {
1181                    ix0 -= 1;
1182                }
1183                ix1 -= t1;
1184                q1 += r;
1185            }
1186            ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32;
1187            ix1 += ix1;
1188            r >>= 1;
1189        }
1190
1191        /* use floating add to find out rounding direction */
1192        if (ix0 as u32 | ix1.0) != 0 {
1193            z = 1.0 - TINY; /* raise inexact flag */
1194            if z >= 1.0 {
1195                z = 1.0 + TINY;
1196                if q1.0 == 0xffffffff {
1197                    q1 = Wrapping(0);
1198                    q += 1;
1199                } else if z > 1.0 {
1200                    if q1.0 == 0xfffffffe {
1201                        q += 1;
1202                    }
1203                    q1 += Wrapping(2);
1204                } else {
1205                    q1 += q1 & Wrapping(1);
1206                }
1207            }
1208        }
1209        ix0 = (q >> 1) + 0x3fe00000;
1210        ix1 = q1 >> 1;
1211        if (q & 1) == 1 {
1212            ix1 |= sign;
1213        }
1214        ix0 += m << 20;
1215        f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64)
1216    }
1217}
1218
1219#[inline]
1220fn get_high_word(x: f64) -> u32 {
1221    (x.to_bits() >> 32) as u32
1222}
1223
1224#[inline]
1225fn with_set_high_word(f: f64, hi: u32) -> f64 {
1226    let mut tmp = f.to_bits();
1227    tmp &= 0x00000000_ffffffff;
1228    tmp |= (hi as u64) << 32;
1229    f64::from_bits(tmp)
1230}
1231
1232#[inline]
1233fn with_set_low_word(f: f64, lo: u32) -> f64 {
1234    let mut tmp = f.to_bits();
1235    tmp &= 0xffffffff_00000000;
1236    tmp |= lo as u64;
1237    f64::from_bits(tmp)
1238}
1239