1cbd624adSopenharmony_ci//! A small number of math routines for floats and doubles. 2cbd624adSopenharmony_ci//! 3cbd624adSopenharmony_ci//! These are adapted from libm, a port of musl libc's libm to Rust. 4cbd624adSopenharmony_ci//! libm can be found online [here](https://github.com/rust-lang/libm), 5cbd624adSopenharmony_ci//! and is similarly licensed under an Apache2.0/MIT license 6cbd624adSopenharmony_ci 7cbd624adSopenharmony_ci#![cfg(all(not(feature = "std"), feature = "compact"))] 8cbd624adSopenharmony_ci#![doc(hidden)] 9cbd624adSopenharmony_ci 10cbd624adSopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_powf.c */ 11cbd624adSopenharmony_ci/* 12cbd624adSopenharmony_ci * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 13cbd624adSopenharmony_ci */ 14cbd624adSopenharmony_ci/* 15cbd624adSopenharmony_ci * ==================================================== 16cbd624adSopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 17cbd624adSopenharmony_ci * 18cbd624adSopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business. 19cbd624adSopenharmony_ci * Permission to use, copy, modify, and distribute this 20cbd624adSopenharmony_ci * software is freely granted, provided that this notice 21cbd624adSopenharmony_ci * is preserved. 22cbd624adSopenharmony_ci * ==================================================== 23cbd624adSopenharmony_ci */ 24cbd624adSopenharmony_ci 25cbd624adSopenharmony_ci/// # Safety 26cbd624adSopenharmony_ci/// 27cbd624adSopenharmony_ci/// Safe if `index < array.len()`. 28cbd624adSopenharmony_cimacro_rules! i { 29cbd624adSopenharmony_ci ($array:ident, $index:expr) => { 30cbd624adSopenharmony_ci // SAFETY: safe if `index < array.len()`. 31cbd624adSopenharmony_ci unsafe { *$array.get_unchecked($index) } 32cbd624adSopenharmony_ci }; 33cbd624adSopenharmony_ci} 34cbd624adSopenharmony_ci 35cbd624adSopenharmony_cipub fn powf(x: f32, y: f32) -> f32 { 36cbd624adSopenharmony_ci const BP: [f32; 2] = [1.0, 1.5]; 37cbd624adSopenharmony_ci const DP_H: [f32; 2] = [0.0, 5.84960938e-01]; /* 0x3f15c000 */ 38cbd624adSopenharmony_ci const DP_L: [f32; 2] = [0.0, 1.56322085e-06]; /* 0x35d1cfdc */ 39cbd624adSopenharmony_ci const TWO24: f32 = 16777216.0; /* 0x4b800000 */ 40cbd624adSopenharmony_ci const HUGE: f32 = 1.0e30; 41cbd624adSopenharmony_ci const TINY: f32 = 1.0e-30; 42cbd624adSopenharmony_ci const L1: f32 = 6.0000002384e-01; /* 0x3f19999a */ 43cbd624adSopenharmony_ci const L2: f32 = 4.2857143283e-01; /* 0x3edb6db7 */ 44cbd624adSopenharmony_ci const L3: f32 = 3.3333334327e-01; /* 0x3eaaaaab */ 45cbd624adSopenharmony_ci const L4: f32 = 2.7272811532e-01; /* 0x3e8ba305 */ 46cbd624adSopenharmony_ci const L5: f32 = 2.3066075146e-01; /* 0x3e6c3255 */ 47cbd624adSopenharmony_ci const L6: f32 = 2.0697501302e-01; /* 0x3e53f142 */ 48cbd624adSopenharmony_ci const P1: f32 = 1.6666667163e-01; /* 0x3e2aaaab */ 49cbd624adSopenharmony_ci const P2: f32 = -2.7777778450e-03; /* 0xbb360b61 */ 50cbd624adSopenharmony_ci const P3: f32 = 6.6137559770e-05; /* 0x388ab355 */ 51cbd624adSopenharmony_ci const P4: f32 = -1.6533901999e-06; /* 0xb5ddea0e */ 52cbd624adSopenharmony_ci const P5: f32 = 4.1381369442e-08; /* 0x3331bb4c */ 53cbd624adSopenharmony_ci const LG2: f32 = 6.9314718246e-01; /* 0x3f317218 */ 54cbd624adSopenharmony_ci const LG2_H: f32 = 6.93145752e-01; /* 0x3f317200 */ 55cbd624adSopenharmony_ci const LG2_L: f32 = 1.42860654e-06; /* 0x35bfbe8c */ 56cbd624adSopenharmony_ci const OVT: f32 = 4.2995665694e-08; /* -(128-log2(ovfl+.5ulp)) */ 57cbd624adSopenharmony_ci const CP: f32 = 9.6179670095e-01; /* 0x3f76384f =2/(3ln2) */ 58cbd624adSopenharmony_ci const CP_H: f32 = 9.6191406250e-01; /* 0x3f764000 =12b cp */ 59cbd624adSopenharmony_ci const CP_L: f32 = -1.1736857402e-04; /* 0xb8f623c6 =tail of cp_h */ 60cbd624adSopenharmony_ci const IVLN2: f32 = 1.4426950216e+00; 61cbd624adSopenharmony_ci const IVLN2_H: f32 = 1.4426879883e+00; 62cbd624adSopenharmony_ci const IVLN2_L: f32 = 7.0526075433e-06; 63cbd624adSopenharmony_ci 64cbd624adSopenharmony_ci let mut z: f32; 65cbd624adSopenharmony_ci let mut ax: f32; 66cbd624adSopenharmony_ci let z_h: f32; 67cbd624adSopenharmony_ci let z_l: f32; 68cbd624adSopenharmony_ci let mut p_h: f32; 69cbd624adSopenharmony_ci let mut p_l: f32; 70cbd624adSopenharmony_ci let y1: f32; 71cbd624adSopenharmony_ci let mut t1: f32; 72cbd624adSopenharmony_ci let t2: f32; 73cbd624adSopenharmony_ci let mut r: f32; 74cbd624adSopenharmony_ci let s: f32; 75cbd624adSopenharmony_ci let mut sn: f32; 76cbd624adSopenharmony_ci let mut t: f32; 77cbd624adSopenharmony_ci let mut u: f32; 78cbd624adSopenharmony_ci let mut v: f32; 79cbd624adSopenharmony_ci let mut w: f32; 80cbd624adSopenharmony_ci let i: i32; 81cbd624adSopenharmony_ci let mut j: i32; 82cbd624adSopenharmony_ci let mut k: i32; 83cbd624adSopenharmony_ci let mut yisint: i32; 84cbd624adSopenharmony_ci let mut n: i32; 85cbd624adSopenharmony_ci let hx: i32; 86cbd624adSopenharmony_ci let hy: i32; 87cbd624adSopenharmony_ci let mut ix: i32; 88cbd624adSopenharmony_ci let iy: i32; 89cbd624adSopenharmony_ci let mut is: i32; 90cbd624adSopenharmony_ci 91cbd624adSopenharmony_ci hx = x.to_bits() as i32; 92cbd624adSopenharmony_ci hy = y.to_bits() as i32; 93cbd624adSopenharmony_ci 94cbd624adSopenharmony_ci ix = hx & 0x7fffffff; 95cbd624adSopenharmony_ci iy = hy & 0x7fffffff; 96cbd624adSopenharmony_ci 97cbd624adSopenharmony_ci /* x**0 = 1, even if x is NaN */ 98cbd624adSopenharmony_ci if iy == 0 { 99cbd624adSopenharmony_ci return 1.0; 100cbd624adSopenharmony_ci } 101cbd624adSopenharmony_ci 102cbd624adSopenharmony_ci /* 1**y = 1, even if y is NaN */ 103cbd624adSopenharmony_ci if hx == 0x3f800000 { 104cbd624adSopenharmony_ci return 1.0; 105cbd624adSopenharmony_ci } 106cbd624adSopenharmony_ci 107cbd624adSopenharmony_ci /* NaN if either arg is NaN */ 108cbd624adSopenharmony_ci if ix > 0x7f800000 || iy > 0x7f800000 { 109cbd624adSopenharmony_ci return x + y; 110cbd624adSopenharmony_ci } 111cbd624adSopenharmony_ci 112cbd624adSopenharmony_ci /* determine if y is an odd int when x < 0 113cbd624adSopenharmony_ci * yisint = 0 ... y is not an integer 114cbd624adSopenharmony_ci * yisint = 1 ... y is an odd int 115cbd624adSopenharmony_ci * yisint = 2 ... y is an even int 116cbd624adSopenharmony_ci */ 117cbd624adSopenharmony_ci yisint = 0; 118cbd624adSopenharmony_ci if hx < 0 { 119cbd624adSopenharmony_ci if iy >= 0x4b800000 { 120cbd624adSopenharmony_ci yisint = 2; /* even integer y */ 121cbd624adSopenharmony_ci } else if iy >= 0x3f800000 { 122cbd624adSopenharmony_ci k = (iy >> 23) - 0x7f; /* exponent */ 123cbd624adSopenharmony_ci j = iy >> (23 - k); 124cbd624adSopenharmony_ci if (j << (23 - k)) == iy { 125cbd624adSopenharmony_ci yisint = 2 - (j & 1); 126cbd624adSopenharmony_ci } 127cbd624adSopenharmony_ci } 128cbd624adSopenharmony_ci } 129cbd624adSopenharmony_ci 130cbd624adSopenharmony_ci /* special value of y */ 131cbd624adSopenharmony_ci if iy == 0x7f800000 { 132cbd624adSopenharmony_ci /* y is +-inf */ 133cbd624adSopenharmony_ci if ix == 0x3f800000 { 134cbd624adSopenharmony_ci /* (-1)**+-inf is 1 */ 135cbd624adSopenharmony_ci return 1.0; 136cbd624adSopenharmony_ci } else if ix > 0x3f800000 { 137cbd624adSopenharmony_ci /* (|x|>1)**+-inf = inf,0 */ 138cbd624adSopenharmony_ci return if hy >= 0 { 139cbd624adSopenharmony_ci y 140cbd624adSopenharmony_ci } else { 141cbd624adSopenharmony_ci 0.0 142cbd624adSopenharmony_ci }; 143cbd624adSopenharmony_ci } else { 144cbd624adSopenharmony_ci /* (|x|<1)**+-inf = 0,inf */ 145cbd624adSopenharmony_ci return if hy >= 0 { 146cbd624adSopenharmony_ci 0.0 147cbd624adSopenharmony_ci } else { 148cbd624adSopenharmony_ci -y 149cbd624adSopenharmony_ci }; 150cbd624adSopenharmony_ci } 151cbd624adSopenharmony_ci } 152cbd624adSopenharmony_ci if iy == 0x3f800000 { 153cbd624adSopenharmony_ci /* y is +-1 */ 154cbd624adSopenharmony_ci return if hy >= 0 { 155cbd624adSopenharmony_ci x 156cbd624adSopenharmony_ci } else { 157cbd624adSopenharmony_ci 1.0 / x 158cbd624adSopenharmony_ci }; 159cbd624adSopenharmony_ci } 160cbd624adSopenharmony_ci 161cbd624adSopenharmony_ci if hy == 0x40000000 { 162cbd624adSopenharmony_ci /* y is 2 */ 163cbd624adSopenharmony_ci return x * x; 164cbd624adSopenharmony_ci } 165cbd624adSopenharmony_ci 166cbd624adSopenharmony_ci if hy == 0x3f000000 167cbd624adSopenharmony_ci /* y is 0.5 */ 168cbd624adSopenharmony_ci && hx >= 0 169cbd624adSopenharmony_ci { 170cbd624adSopenharmony_ci /* x >= +0 */ 171cbd624adSopenharmony_ci return sqrtf(x); 172cbd624adSopenharmony_ci } 173cbd624adSopenharmony_ci 174cbd624adSopenharmony_ci ax = fabsf(x); 175cbd624adSopenharmony_ci /* special value of x */ 176cbd624adSopenharmony_ci if ix == 0x7f800000 || ix == 0 || ix == 0x3f800000 { 177cbd624adSopenharmony_ci /* x is +-0,+-inf,+-1 */ 178cbd624adSopenharmony_ci z = ax; 179cbd624adSopenharmony_ci if hy < 0 { 180cbd624adSopenharmony_ci /* z = (1/|x|) */ 181cbd624adSopenharmony_ci z = 1.0 / z; 182cbd624adSopenharmony_ci } 183cbd624adSopenharmony_ci 184cbd624adSopenharmony_ci if hx < 0 { 185cbd624adSopenharmony_ci if ((ix - 0x3f800000) | yisint) == 0 { 186cbd624adSopenharmony_ci z = (z - z) / (z - z); /* (-1)**non-int is NaN */ 187cbd624adSopenharmony_ci } else if yisint == 1 { 188cbd624adSopenharmony_ci z = -z; /* (x<0)**odd = -(|x|**odd) */ 189cbd624adSopenharmony_ci } 190cbd624adSopenharmony_ci } 191cbd624adSopenharmony_ci return z; 192cbd624adSopenharmony_ci } 193cbd624adSopenharmony_ci 194cbd624adSopenharmony_ci sn = 1.0; /* sign of result */ 195cbd624adSopenharmony_ci if hx < 0 { 196cbd624adSopenharmony_ci if yisint == 0 { 197cbd624adSopenharmony_ci /* (x<0)**(non-int) is NaN */ 198cbd624adSopenharmony_ci return (x - x) / (x - x); 199cbd624adSopenharmony_ci } 200cbd624adSopenharmony_ci 201cbd624adSopenharmony_ci if yisint == 1 { 202cbd624adSopenharmony_ci /* (x<0)**(odd int) */ 203cbd624adSopenharmony_ci sn = -1.0; 204cbd624adSopenharmony_ci } 205cbd624adSopenharmony_ci } 206cbd624adSopenharmony_ci 207cbd624adSopenharmony_ci /* |y| is HUGE */ 208cbd624adSopenharmony_ci if iy > 0x4d000000 { 209cbd624adSopenharmony_ci /* if |y| > 2**27 */ 210cbd624adSopenharmony_ci /* over/underflow if x is not close to one */ 211cbd624adSopenharmony_ci if ix < 0x3f7ffff8 { 212cbd624adSopenharmony_ci return if hy < 0 { 213cbd624adSopenharmony_ci sn * HUGE * HUGE 214cbd624adSopenharmony_ci } else { 215cbd624adSopenharmony_ci sn * TINY * TINY 216cbd624adSopenharmony_ci }; 217cbd624adSopenharmony_ci } 218cbd624adSopenharmony_ci 219cbd624adSopenharmony_ci if ix > 0x3f800007 { 220cbd624adSopenharmony_ci return if hy > 0 { 221cbd624adSopenharmony_ci sn * HUGE * HUGE 222cbd624adSopenharmony_ci } else { 223cbd624adSopenharmony_ci sn * TINY * TINY 224cbd624adSopenharmony_ci }; 225cbd624adSopenharmony_ci } 226cbd624adSopenharmony_ci 227cbd624adSopenharmony_ci /* now |1-x| is TINY <= 2**-20, suffice to compute 228cbd624adSopenharmony_ci log(x) by x-x^2/2+x^3/3-x^4/4 */ 229cbd624adSopenharmony_ci t = ax - 1.; /* t has 20 trailing zeros */ 230cbd624adSopenharmony_ci w = (t * t) * (0.5 - t * (0.333333333333 - t * 0.25)); 231cbd624adSopenharmony_ci u = IVLN2_H * t; /* IVLN2_H has 16 sig. bits */ 232cbd624adSopenharmony_ci v = t * IVLN2_L - w * IVLN2; 233cbd624adSopenharmony_ci t1 = u + v; 234cbd624adSopenharmony_ci is = t1.to_bits() as i32; 235cbd624adSopenharmony_ci t1 = f32::from_bits(is as u32 & 0xfffff000); 236cbd624adSopenharmony_ci t2 = v - (t1 - u); 237cbd624adSopenharmony_ci } else { 238cbd624adSopenharmony_ci let mut s2: f32; 239cbd624adSopenharmony_ci let mut s_h: f32; 240cbd624adSopenharmony_ci let s_l: f32; 241cbd624adSopenharmony_ci let mut t_h: f32; 242cbd624adSopenharmony_ci let mut t_l: f32; 243cbd624adSopenharmony_ci 244cbd624adSopenharmony_ci n = 0; 245cbd624adSopenharmony_ci /* take care subnormal number */ 246cbd624adSopenharmony_ci if ix < 0x00800000 { 247cbd624adSopenharmony_ci ax *= TWO24; 248cbd624adSopenharmony_ci n -= 24; 249cbd624adSopenharmony_ci ix = ax.to_bits() as i32; 250cbd624adSopenharmony_ci } 251cbd624adSopenharmony_ci n += ((ix) >> 23) - 0x7f; 252cbd624adSopenharmony_ci j = ix & 0x007fffff; 253cbd624adSopenharmony_ci /* determine interval */ 254cbd624adSopenharmony_ci ix = j | 0x3f800000; /* normalize ix */ 255cbd624adSopenharmony_ci if j <= 0x1cc471 { 256cbd624adSopenharmony_ci /* |x|<sqrt(3/2) */ 257cbd624adSopenharmony_ci k = 0; 258cbd624adSopenharmony_ci } else if j < 0x5db3d7 { 259cbd624adSopenharmony_ci /* |x|<sqrt(3) */ 260cbd624adSopenharmony_ci k = 1; 261cbd624adSopenharmony_ci } else { 262cbd624adSopenharmony_ci k = 0; 263cbd624adSopenharmony_ci n += 1; 264cbd624adSopenharmony_ci ix -= 0x00800000; 265cbd624adSopenharmony_ci } 266cbd624adSopenharmony_ci ax = f32::from_bits(ix as u32); 267cbd624adSopenharmony_ci 268cbd624adSopenharmony_ci /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 269cbd624adSopenharmony_ci u = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ 270cbd624adSopenharmony_ci v = 1.0 / (ax + i!(BP, k as usize)); 271cbd624adSopenharmony_ci s = u * v; 272cbd624adSopenharmony_ci s_h = s; 273cbd624adSopenharmony_ci is = s_h.to_bits() as i32; 274cbd624adSopenharmony_ci s_h = f32::from_bits(is as u32 & 0xfffff000); 275cbd624adSopenharmony_ci /* t_h=ax+bp[k] High */ 276cbd624adSopenharmony_ci is = (((ix as u32 >> 1) & 0xfffff000) | 0x20000000) as i32; 277cbd624adSopenharmony_ci t_h = f32::from_bits(is as u32 + 0x00400000 + ((k as u32) << 21)); 278cbd624adSopenharmony_ci t_l = ax - (t_h - i!(BP, k as usize)); 279cbd624adSopenharmony_ci s_l = v * ((u - s_h * t_h) - s_h * t_l); 280cbd624adSopenharmony_ci /* compute log(ax) */ 281cbd624adSopenharmony_ci s2 = s * s; 282cbd624adSopenharmony_ci r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); 283cbd624adSopenharmony_ci r += s_l * (s_h + s); 284cbd624adSopenharmony_ci s2 = s_h * s_h; 285cbd624adSopenharmony_ci t_h = 3.0 + s2 + r; 286cbd624adSopenharmony_ci is = t_h.to_bits() as i32; 287cbd624adSopenharmony_ci t_h = f32::from_bits(is as u32 & 0xfffff000); 288cbd624adSopenharmony_ci t_l = r - ((t_h - 3.0) - s2); 289cbd624adSopenharmony_ci /* u+v = s*(1+...) */ 290cbd624adSopenharmony_ci u = s_h * t_h; 291cbd624adSopenharmony_ci v = s_l * t_h + t_l * s; 292cbd624adSopenharmony_ci /* 2/(3log2)*(s+...) */ 293cbd624adSopenharmony_ci p_h = u + v; 294cbd624adSopenharmony_ci is = p_h.to_bits() as i32; 295cbd624adSopenharmony_ci p_h = f32::from_bits(is as u32 & 0xfffff000); 296cbd624adSopenharmony_ci p_l = v - (p_h - u); 297cbd624adSopenharmony_ci z_h = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ 298cbd624adSopenharmony_ci z_l = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); 299cbd624adSopenharmony_ci /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 300cbd624adSopenharmony_ci t = n as f32; 301cbd624adSopenharmony_ci t1 = ((z_h + z_l) + i!(DP_H, k as usize)) + t; 302cbd624adSopenharmony_ci is = t1.to_bits() as i32; 303cbd624adSopenharmony_ci t1 = f32::from_bits(is as u32 & 0xfffff000); 304cbd624adSopenharmony_ci t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); 305cbd624adSopenharmony_ci }; 306cbd624adSopenharmony_ci 307cbd624adSopenharmony_ci /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 308cbd624adSopenharmony_ci is = y.to_bits() as i32; 309cbd624adSopenharmony_ci y1 = f32::from_bits(is as u32 & 0xfffff000); 310cbd624adSopenharmony_ci p_l = (y - y1) * t1 + y * t2; 311cbd624adSopenharmony_ci p_h = y1 * t1; 312cbd624adSopenharmony_ci z = p_l + p_h; 313cbd624adSopenharmony_ci j = z.to_bits() as i32; 314cbd624adSopenharmony_ci if j > 0x43000000 { 315cbd624adSopenharmony_ci /* if z > 128 */ 316cbd624adSopenharmony_ci return sn * HUGE * HUGE; /* overflow */ 317cbd624adSopenharmony_ci } else if j == 0x43000000 { 318cbd624adSopenharmony_ci /* if z == 128 */ 319cbd624adSopenharmony_ci if p_l + OVT > z - p_h { 320cbd624adSopenharmony_ci return sn * HUGE * HUGE; /* overflow */ 321cbd624adSopenharmony_ci } 322cbd624adSopenharmony_ci } else if (j & 0x7fffffff) > 0x43160000 { 323cbd624adSopenharmony_ci /* z < -150 */ 324cbd624adSopenharmony_ci // FIXME: check should be (uint32_t)j > 0xc3160000 325cbd624adSopenharmony_ci return sn * TINY * TINY; /* underflow */ 326cbd624adSopenharmony_ci } else if j as u32 == 0xc3160000 327cbd624adSopenharmony_ci /* z == -150 */ 328cbd624adSopenharmony_ci && p_l <= z - p_h 329cbd624adSopenharmony_ci { 330cbd624adSopenharmony_ci return sn * TINY * TINY; /* underflow */ 331cbd624adSopenharmony_ci } 332cbd624adSopenharmony_ci 333cbd624adSopenharmony_ci /* 334cbd624adSopenharmony_ci * compute 2**(p_h+p_l) 335cbd624adSopenharmony_ci */ 336cbd624adSopenharmony_ci i = j & 0x7fffffff; 337cbd624adSopenharmony_ci k = (i >> 23) - 0x7f; 338cbd624adSopenharmony_ci n = 0; 339cbd624adSopenharmony_ci if i > 0x3f000000 { 340cbd624adSopenharmony_ci /* if |z| > 0.5, set n = [z+0.5] */ 341cbd624adSopenharmony_ci n = j + (0x00800000 >> (k + 1)); 342cbd624adSopenharmony_ci k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */ 343cbd624adSopenharmony_ci t = f32::from_bits(n as u32 & !(0x007fffff >> k)); 344cbd624adSopenharmony_ci n = ((n & 0x007fffff) | 0x00800000) >> (23 - k); 345cbd624adSopenharmony_ci if j < 0 { 346cbd624adSopenharmony_ci n = -n; 347cbd624adSopenharmony_ci } 348cbd624adSopenharmony_ci p_h -= t; 349cbd624adSopenharmony_ci } 350cbd624adSopenharmony_ci t = p_l + p_h; 351cbd624adSopenharmony_ci is = t.to_bits() as i32; 352cbd624adSopenharmony_ci t = f32::from_bits(is as u32 & 0xffff8000); 353cbd624adSopenharmony_ci u = t * LG2_H; 354cbd624adSopenharmony_ci v = (p_l - (t - p_h)) * LG2 + t * LG2_L; 355cbd624adSopenharmony_ci z = u + v; 356cbd624adSopenharmony_ci w = v - (z - u); 357cbd624adSopenharmony_ci t = z * z; 358cbd624adSopenharmony_ci t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); 359cbd624adSopenharmony_ci r = (z * t1) / (t1 - 2.0) - (w + z * w); 360cbd624adSopenharmony_ci z = 1.0 - (r - z); 361cbd624adSopenharmony_ci j = z.to_bits() as i32; 362cbd624adSopenharmony_ci j += n << 23; 363cbd624adSopenharmony_ci if (j >> 23) <= 0 { 364cbd624adSopenharmony_ci /* subnormal output */ 365cbd624adSopenharmony_ci z = scalbnf(z, n); 366cbd624adSopenharmony_ci } else { 367cbd624adSopenharmony_ci z = f32::from_bits(j as u32); 368cbd624adSopenharmony_ci } 369cbd624adSopenharmony_ci sn * z 370cbd624adSopenharmony_ci} 371cbd624adSopenharmony_ci 372cbd624adSopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrtf.c */ 373cbd624adSopenharmony_ci/* 374cbd624adSopenharmony_ci * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com. 375cbd624adSopenharmony_ci */ 376cbd624adSopenharmony_ci/* 377cbd624adSopenharmony_ci * ==================================================== 378cbd624adSopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 379cbd624adSopenharmony_ci * 380cbd624adSopenharmony_ci * Developed at SunPro, a Sun Microsystems, Inc. business. 381cbd624adSopenharmony_ci * Permission to use, copy, modify, and distribute this 382cbd624adSopenharmony_ci * software is freely granted, provided that this notice 383cbd624adSopenharmony_ci * is preserved. 384cbd624adSopenharmony_ci * ==================================================== 385cbd624adSopenharmony_ci */ 386cbd624adSopenharmony_ci 387cbd624adSopenharmony_cipub fn sqrtf(x: f32) -> f32 { 388cbd624adSopenharmony_ci #[cfg(target_feature = "sse")] 389cbd624adSopenharmony_ci { 390cbd624adSopenharmony_ci // Note: This path is unlikely since LLVM will usually have already 391cbd624adSopenharmony_ci // optimized sqrt calls into hardware instructions if sse is available, 392cbd624adSopenharmony_ci // but if someone does end up here they'll apprected the speed increase. 393cbd624adSopenharmony_ci #[cfg(target_arch = "x86")] 394cbd624adSopenharmony_ci use core::arch::x86::*; 395cbd624adSopenharmony_ci #[cfg(target_arch = "x86_64")] 396cbd624adSopenharmony_ci use core::arch::x86_64::*; 397cbd624adSopenharmony_ci // SAFETY: safe, since `_mm_set_ss` takes a 32-bit float, and returns 398cbd624adSopenharmony_ci // a 128-bit type with the lowest 32-bits as `x`, `_mm_sqrt_ss` calculates 399cbd624adSopenharmony_ci // the sqrt of this 128-bit vector, and `_mm_cvtss_f32` extracts the lower 400cbd624adSopenharmony_ci // 32-bits as a 32-bit float. 401cbd624adSopenharmony_ci unsafe { 402cbd624adSopenharmony_ci let m = _mm_set_ss(x); 403cbd624adSopenharmony_ci let m_sqrt = _mm_sqrt_ss(m); 404cbd624adSopenharmony_ci _mm_cvtss_f32(m_sqrt) 405cbd624adSopenharmony_ci } 406cbd624adSopenharmony_ci } 407cbd624adSopenharmony_ci #[cfg(not(target_feature = "sse"))] 408cbd624adSopenharmony_ci { 409cbd624adSopenharmony_ci const TINY: f32 = 1.0e-30; 410cbd624adSopenharmony_ci 411cbd624adSopenharmony_ci let mut z: f32; 412cbd624adSopenharmony_ci let sign: i32 = 0x80000000u32 as i32; 413cbd624adSopenharmony_ci let mut ix: i32; 414cbd624adSopenharmony_ci let mut s: i32; 415cbd624adSopenharmony_ci let mut q: i32; 416cbd624adSopenharmony_ci let mut m: i32; 417cbd624adSopenharmony_ci let mut t: i32; 418cbd624adSopenharmony_ci let mut i: i32; 419cbd624adSopenharmony_ci let mut r: u32; 420cbd624adSopenharmony_ci 421cbd624adSopenharmony_ci ix = x.to_bits() as i32; 422cbd624adSopenharmony_ci 423cbd624adSopenharmony_ci /* take care of Inf and NaN */ 424cbd624adSopenharmony_ci if (ix as u32 & 0x7f800000) == 0x7f800000 { 425cbd624adSopenharmony_ci return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ 426cbd624adSopenharmony_ci } 427cbd624adSopenharmony_ci 428cbd624adSopenharmony_ci /* take care of zero */ 429cbd624adSopenharmony_ci if ix <= 0 { 430cbd624adSopenharmony_ci if (ix & !sign) == 0 { 431cbd624adSopenharmony_ci return x; /* sqrt(+-0) = +-0 */ 432cbd624adSopenharmony_ci } 433cbd624adSopenharmony_ci if ix < 0 { 434cbd624adSopenharmony_ci return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ 435cbd624adSopenharmony_ci } 436cbd624adSopenharmony_ci } 437cbd624adSopenharmony_ci 438cbd624adSopenharmony_ci /* normalize x */ 439cbd624adSopenharmony_ci m = ix >> 23; 440cbd624adSopenharmony_ci if m == 0 { 441cbd624adSopenharmony_ci /* subnormal x */ 442cbd624adSopenharmony_ci i = 0; 443cbd624adSopenharmony_ci while ix & 0x00800000 == 0 { 444cbd624adSopenharmony_ci ix <<= 1; 445cbd624adSopenharmony_ci i = i + 1; 446cbd624adSopenharmony_ci } 447cbd624adSopenharmony_ci m -= i - 1; 448cbd624adSopenharmony_ci } 449cbd624adSopenharmony_ci m -= 127; /* unbias exponent */ 450cbd624adSopenharmony_ci ix = (ix & 0x007fffff) | 0x00800000; 451cbd624adSopenharmony_ci if m & 1 == 1 { 452cbd624adSopenharmony_ci /* odd m, double x to make it even */ 453cbd624adSopenharmony_ci ix += ix; 454cbd624adSopenharmony_ci } 455cbd624adSopenharmony_ci m >>= 1; /* m = [m/2] */ 456cbd624adSopenharmony_ci 457cbd624adSopenharmony_ci /* generate sqrt(x) bit by bit */ 458cbd624adSopenharmony_ci ix += ix; 459cbd624adSopenharmony_ci q = 0; 460cbd624adSopenharmony_ci s = 0; 461cbd624adSopenharmony_ci r = 0x01000000; /* r = moving bit from right to left */ 462cbd624adSopenharmony_ci 463cbd624adSopenharmony_ci while r != 0 { 464cbd624adSopenharmony_ci t = s + r as i32; 465cbd624adSopenharmony_ci if t <= ix { 466cbd624adSopenharmony_ci s = t + r as i32; 467cbd624adSopenharmony_ci ix -= t; 468cbd624adSopenharmony_ci q += r as i32; 469cbd624adSopenharmony_ci } 470cbd624adSopenharmony_ci ix += ix; 471cbd624adSopenharmony_ci r >>= 1; 472cbd624adSopenharmony_ci } 473cbd624adSopenharmony_ci 474cbd624adSopenharmony_ci /* use floating add to find out rounding direction */ 475cbd624adSopenharmony_ci if ix != 0 { 476cbd624adSopenharmony_ci z = 1.0 - TINY; /* raise inexact flag */ 477cbd624adSopenharmony_ci if z >= 1.0 { 478cbd624adSopenharmony_ci z = 1.0 + TINY; 479cbd624adSopenharmony_ci if z > 1.0 { 480cbd624adSopenharmony_ci q += 2; 481cbd624adSopenharmony_ci } else { 482cbd624adSopenharmony_ci q += q & 1; 483cbd624adSopenharmony_ci } 484cbd624adSopenharmony_ci } 485cbd624adSopenharmony_ci } 486cbd624adSopenharmony_ci 487cbd624adSopenharmony_ci ix = (q >> 1) + 0x3f000000; 488cbd624adSopenharmony_ci ix += m << 23; 489cbd624adSopenharmony_ci f32::from_bits(ix as u32) 490cbd624adSopenharmony_ci } 491cbd624adSopenharmony_ci} 492cbd624adSopenharmony_ci 493cbd624adSopenharmony_ci/// Absolute value (magnitude) (f32) 494cbd624adSopenharmony_ci/// Calculates the absolute value (magnitude) of the argument `x`, 495cbd624adSopenharmony_ci/// by direct manipulation of the bit representation of `x`. 496cbd624adSopenharmony_cipub fn fabsf(x: f32) -> f32 { 497cbd624adSopenharmony_ci f32::from_bits(x.to_bits() & 0x7fffffff) 498cbd624adSopenharmony_ci} 499cbd624adSopenharmony_ci 500cbd624adSopenharmony_cipub fn scalbnf(mut x: f32, mut n: i32) -> f32 { 501cbd624adSopenharmony_ci let x1p127 = f32::from_bits(0x7f000000); // 0x1p127f === 2 ^ 127 502cbd624adSopenharmony_ci let x1p_126 = f32::from_bits(0x800000); // 0x1p-126f === 2 ^ -126 503cbd624adSopenharmony_ci let x1p24 = f32::from_bits(0x4b800000); // 0x1p24f === 2 ^ 24 504cbd624adSopenharmony_ci 505cbd624adSopenharmony_ci if n > 127 { 506cbd624adSopenharmony_ci x *= x1p127; 507cbd624adSopenharmony_ci n -= 127; 508cbd624adSopenharmony_ci if n > 127 { 509cbd624adSopenharmony_ci x *= x1p127; 510cbd624adSopenharmony_ci n -= 127; 511cbd624adSopenharmony_ci if n > 127 { 512cbd624adSopenharmony_ci n = 127; 513cbd624adSopenharmony_ci } 514cbd624adSopenharmony_ci } 515cbd624adSopenharmony_ci } else if n < -126 { 516cbd624adSopenharmony_ci x *= x1p_126 * x1p24; 517cbd624adSopenharmony_ci n += 126 - 24; 518cbd624adSopenharmony_ci if n < -126 { 519cbd624adSopenharmony_ci x *= x1p_126 * x1p24; 520cbd624adSopenharmony_ci n += 126 - 24; 521cbd624adSopenharmony_ci if n < -126 { 522cbd624adSopenharmony_ci n = -126; 523cbd624adSopenharmony_ci } 524cbd624adSopenharmony_ci } 525cbd624adSopenharmony_ci } 526cbd624adSopenharmony_ci x * f32::from_bits(((0x7f + n) as u32) << 23) 527cbd624adSopenharmony_ci} 528cbd624adSopenharmony_ci 529cbd624adSopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_pow.c */ 530cbd624adSopenharmony_ci/* 531cbd624adSopenharmony_ci * ==================================================== 532cbd624adSopenharmony_ci * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. 533cbd624adSopenharmony_ci * 534cbd624adSopenharmony_ci * Permission to use, copy, modify, and distribute this 535cbd624adSopenharmony_ci * software is freely granted, provided that this notice 536cbd624adSopenharmony_ci * is preserved. 537cbd624adSopenharmony_ci * ==================================================== 538cbd624adSopenharmony_ci */ 539cbd624adSopenharmony_ci 540cbd624adSopenharmony_ci// pow(x,y) return x**y 541cbd624adSopenharmony_ci// 542cbd624adSopenharmony_ci// n 543cbd624adSopenharmony_ci// Method: Let x = 2 * (1+f) 544cbd624adSopenharmony_ci// 1. Compute and return log2(x) in two pieces: 545cbd624adSopenharmony_ci// log2(x) = w1 + w2, 546cbd624adSopenharmony_ci// where w1 has 53-24 = 29 bit trailing zeros. 547cbd624adSopenharmony_ci// 2. Perform y*log2(x) = n+y' by simulating muti-precision 548cbd624adSopenharmony_ci// arithmetic, where |y'|<=0.5. 549cbd624adSopenharmony_ci// 3. Return x**y = 2**n*exp(y'*log2) 550cbd624adSopenharmony_ci// 551cbd624adSopenharmony_ci// Special cases: 552cbd624adSopenharmony_ci// 1. (anything) ** 0 is 1 553cbd624adSopenharmony_ci// 2. 1 ** (anything) is 1 554cbd624adSopenharmony_ci// 3. (anything except 1) ** NAN is NAN 555cbd624adSopenharmony_ci// 4. NAN ** (anything except 0) is NAN 556cbd624adSopenharmony_ci// 5. +-(|x| > 1) ** +INF is +INF 557cbd624adSopenharmony_ci// 6. +-(|x| > 1) ** -INF is +0 558cbd624adSopenharmony_ci// 7. +-(|x| < 1) ** +INF is +0 559cbd624adSopenharmony_ci// 8. +-(|x| < 1) ** -INF is +INF 560cbd624adSopenharmony_ci// 9. -1 ** +-INF is 1 561cbd624adSopenharmony_ci// 10. +0 ** (+anything except 0, NAN) is +0 562cbd624adSopenharmony_ci// 11. -0 ** (+anything except 0, NAN, odd integer) is +0 563cbd624adSopenharmony_ci// 12. +0 ** (-anything except 0, NAN) is +INF, raise divbyzero 564cbd624adSopenharmony_ci// 13. -0 ** (-anything except 0, NAN, odd integer) is +INF, raise divbyzero 565cbd624adSopenharmony_ci// 14. -0 ** (+odd integer) is -0 566cbd624adSopenharmony_ci// 15. -0 ** (-odd integer) is -INF, raise divbyzero 567cbd624adSopenharmony_ci// 16. +INF ** (+anything except 0,NAN) is +INF 568cbd624adSopenharmony_ci// 17. +INF ** (-anything except 0,NAN) is +0 569cbd624adSopenharmony_ci// 18. -INF ** (+odd integer) is -INF 570cbd624adSopenharmony_ci// 19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer) 571cbd624adSopenharmony_ci// 20. (anything) ** 1 is (anything) 572cbd624adSopenharmony_ci// 21. (anything) ** -1 is 1/(anything) 573cbd624adSopenharmony_ci// 22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) 574cbd624adSopenharmony_ci// 23. (-anything except 0 and inf) ** (non-integer) is NAN 575cbd624adSopenharmony_ci// 576cbd624adSopenharmony_ci// Accuracy: 577cbd624adSopenharmony_ci// pow(x,y) returns x**y nearly rounded. In particular 578cbd624adSopenharmony_ci// pow(integer,integer) 579cbd624adSopenharmony_ci// always returns the correct integer provided it is 580cbd624adSopenharmony_ci// representable. 581cbd624adSopenharmony_ci// 582cbd624adSopenharmony_ci// Constants : 583cbd624adSopenharmony_ci// The hexadecimal values are the intended ones for the following 584cbd624adSopenharmony_ci// constants. The decimal values may be used, provided that the 585cbd624adSopenharmony_ci// compiler will convert from decimal to binary accurately enough 586cbd624adSopenharmony_ci// to produce the hexadecimal values shown. 587cbd624adSopenharmony_ci 588cbd624adSopenharmony_cipub fn powd(x: f64, y: f64) -> f64 { 589cbd624adSopenharmony_ci const BP: [f64; 2] = [1.0, 1.5]; 590cbd624adSopenharmony_ci const DP_H: [f64; 2] = [0.0, 5.84962487220764160156e-01]; /* 0x3fe2b803_40000000 */ 591cbd624adSopenharmony_ci const DP_L: [f64; 2] = [0.0, 1.35003920212974897128e-08]; /* 0x3E4CFDEB, 0x43CFD006 */ 592cbd624adSopenharmony_ci const TWO53: f64 = 9007199254740992.0; /* 0x43400000_00000000 */ 593cbd624adSopenharmony_ci const HUGE: f64 = 1.0e300; 594cbd624adSopenharmony_ci const TINY: f64 = 1.0e-300; 595cbd624adSopenharmony_ci 596cbd624adSopenharmony_ci // poly coefs for (3/2)*(log(x)-2s-2/3*s**3: 597cbd624adSopenharmony_ci const L1: f64 = 5.99999999999994648725e-01; /* 0x3fe33333_33333303 */ 598cbd624adSopenharmony_ci const L2: f64 = 4.28571428578550184252e-01; /* 0x3fdb6db6_db6fabff */ 599cbd624adSopenharmony_ci const L3: f64 = 3.33333329818377432918e-01; /* 0x3fd55555_518f264d */ 600cbd624adSopenharmony_ci const L4: f64 = 2.72728123808534006489e-01; /* 0x3fd17460_a91d4101 */ 601cbd624adSopenharmony_ci const L5: f64 = 2.30660745775561754067e-01; /* 0x3fcd864a_93c9db65 */ 602cbd624adSopenharmony_ci const L6: f64 = 2.06975017800338417784e-01; /* 0x3fca7e28_4a454eef */ 603cbd624adSopenharmony_ci const P1: f64 = 1.66666666666666019037e-01; /* 0x3fc55555_5555553e */ 604cbd624adSopenharmony_ci const P2: f64 = -2.77777777770155933842e-03; /* 0xbf66c16c_16bebd93 */ 605cbd624adSopenharmony_ci const P3: f64 = 6.61375632143793436117e-05; /* 0x3f11566a_af25de2c */ 606cbd624adSopenharmony_ci const P4: f64 = -1.65339022054652515390e-06; /* 0xbebbbd41_c5d26bf1 */ 607cbd624adSopenharmony_ci const P5: f64 = 4.13813679705723846039e-08; /* 0x3e663769_72bea4d0 */ 608cbd624adSopenharmony_ci const LG2: f64 = 6.93147180559945286227e-01; /* 0x3fe62e42_fefa39ef */ 609cbd624adSopenharmony_ci const LG2_H: f64 = 6.93147182464599609375e-01; /* 0x3fe62e43_00000000 */ 610cbd624adSopenharmony_ci const LG2_L: f64 = -1.90465429995776804525e-09; /* 0xbe205c61_0ca86c39 */ 611cbd624adSopenharmony_ci const OVT: f64 = 8.0085662595372944372e-017; /* -(1024-log2(ovfl+.5ulp)) */ 612cbd624adSopenharmony_ci const CP: f64 = 9.61796693925975554329e-01; /* 0x3feec709_dc3a03fd =2/(3ln2) */ 613cbd624adSopenharmony_ci const CP_H: f64 = 9.61796700954437255859e-01; /* 0x3feec709_e0000000 =(float)cp */ 614cbd624adSopenharmony_ci const CP_L: f64 = -7.02846165095275826516e-09; /* 0xbe3e2fe0_145b01f5 =tail of cp_h*/ 615cbd624adSopenharmony_ci const IVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547_652b82fe =1/ln2 */ 616cbd624adSopenharmony_ci const IVLN2_H: f64 = 1.44269502162933349609e+00; /* 0x3ff71547_60000000 =24b 1/ln2*/ 617cbd624adSopenharmony_ci const IVLN2_L: f64 = 1.92596299112661746887e-08; /* 0x3e54ae0b_f85ddf44 =1/ln2 tail*/ 618cbd624adSopenharmony_ci 619cbd624adSopenharmony_ci let t1: f64; 620cbd624adSopenharmony_ci let t2: f64; 621cbd624adSopenharmony_ci 622cbd624adSopenharmony_ci let (hx, lx): (i32, u32) = ((x.to_bits() >> 32) as i32, x.to_bits() as u32); 623cbd624adSopenharmony_ci let (hy, ly): (i32, u32) = ((y.to_bits() >> 32) as i32, y.to_bits() as u32); 624cbd624adSopenharmony_ci 625cbd624adSopenharmony_ci let mut ix: i32 = (hx & 0x7fffffff) as i32; 626cbd624adSopenharmony_ci let iy: i32 = (hy & 0x7fffffff) as i32; 627cbd624adSopenharmony_ci 628cbd624adSopenharmony_ci /* x**0 = 1, even if x is NaN */ 629cbd624adSopenharmony_ci if ((iy as u32) | ly) == 0 { 630cbd624adSopenharmony_ci return 1.0; 631cbd624adSopenharmony_ci } 632cbd624adSopenharmony_ci 633cbd624adSopenharmony_ci /* 1**y = 1, even if y is NaN */ 634cbd624adSopenharmony_ci if hx == 0x3ff00000 && lx == 0 { 635cbd624adSopenharmony_ci return 1.0; 636cbd624adSopenharmony_ci } 637cbd624adSopenharmony_ci 638cbd624adSopenharmony_ci /* NaN if either arg is NaN */ 639cbd624adSopenharmony_ci if ix > 0x7ff00000 640cbd624adSopenharmony_ci || (ix == 0x7ff00000 && lx != 0) 641cbd624adSopenharmony_ci || iy > 0x7ff00000 642cbd624adSopenharmony_ci || (iy == 0x7ff00000 && ly != 0) 643cbd624adSopenharmony_ci { 644cbd624adSopenharmony_ci return x + y; 645cbd624adSopenharmony_ci } 646cbd624adSopenharmony_ci 647cbd624adSopenharmony_ci /* determine if y is an odd int when x < 0 648cbd624adSopenharmony_ci * yisint = 0 ... y is not an integer 649cbd624adSopenharmony_ci * yisint = 1 ... y is an odd int 650cbd624adSopenharmony_ci * yisint = 2 ... y is an even int 651cbd624adSopenharmony_ci */ 652cbd624adSopenharmony_ci let mut yisint: i32 = 0; 653cbd624adSopenharmony_ci let mut k: i32; 654cbd624adSopenharmony_ci let mut j: i32; 655cbd624adSopenharmony_ci if hx < 0 { 656cbd624adSopenharmony_ci if iy >= 0x43400000 { 657cbd624adSopenharmony_ci yisint = 2; /* even integer y */ 658cbd624adSopenharmony_ci } else if iy >= 0x3ff00000 { 659cbd624adSopenharmony_ci k = (iy >> 20) - 0x3ff; /* exponent */ 660cbd624adSopenharmony_ci 661cbd624adSopenharmony_ci if k > 20 { 662cbd624adSopenharmony_ci j = (ly >> (52 - k)) as i32; 663cbd624adSopenharmony_ci 664cbd624adSopenharmony_ci if (j << (52 - k)) == (ly as i32) { 665cbd624adSopenharmony_ci yisint = 2 - (j & 1); 666cbd624adSopenharmony_ci } 667cbd624adSopenharmony_ci } else if ly == 0 { 668cbd624adSopenharmony_ci j = iy >> (20 - k); 669cbd624adSopenharmony_ci 670cbd624adSopenharmony_ci if (j << (20 - k)) == iy { 671cbd624adSopenharmony_ci yisint = 2 - (j & 1); 672cbd624adSopenharmony_ci } 673cbd624adSopenharmony_ci } 674cbd624adSopenharmony_ci } 675cbd624adSopenharmony_ci } 676cbd624adSopenharmony_ci 677cbd624adSopenharmony_ci if ly == 0 { 678cbd624adSopenharmony_ci /* special value of y */ 679cbd624adSopenharmony_ci if iy == 0x7ff00000 { 680cbd624adSopenharmony_ci /* y is +-inf */ 681cbd624adSopenharmony_ci 682cbd624adSopenharmony_ci return if ((ix - 0x3ff00000) | (lx as i32)) == 0 { 683cbd624adSopenharmony_ci /* (-1)**+-inf is 1 */ 684cbd624adSopenharmony_ci 1.0 685cbd624adSopenharmony_ci } else if ix >= 0x3ff00000 { 686cbd624adSopenharmony_ci /* (|x|>1)**+-inf = inf,0 */ 687cbd624adSopenharmony_ci if hy >= 0 { 688cbd624adSopenharmony_ci y 689cbd624adSopenharmony_ci } else { 690cbd624adSopenharmony_ci 0.0 691cbd624adSopenharmony_ci } 692cbd624adSopenharmony_ci } else { 693cbd624adSopenharmony_ci /* (|x|<1)**+-inf = 0,inf */ 694cbd624adSopenharmony_ci if hy >= 0 { 695cbd624adSopenharmony_ci 0.0 696cbd624adSopenharmony_ci } else { 697cbd624adSopenharmony_ci -y 698cbd624adSopenharmony_ci } 699cbd624adSopenharmony_ci }; 700cbd624adSopenharmony_ci } 701cbd624adSopenharmony_ci 702cbd624adSopenharmony_ci if iy == 0x3ff00000 { 703cbd624adSopenharmony_ci /* y is +-1 */ 704cbd624adSopenharmony_ci return if hy >= 0 { 705cbd624adSopenharmony_ci x 706cbd624adSopenharmony_ci } else { 707cbd624adSopenharmony_ci 1.0 / x 708cbd624adSopenharmony_ci }; 709cbd624adSopenharmony_ci } 710cbd624adSopenharmony_ci 711cbd624adSopenharmony_ci if hy == 0x40000000 { 712cbd624adSopenharmony_ci /* y is 2 */ 713cbd624adSopenharmony_ci return x * x; 714cbd624adSopenharmony_ci } 715cbd624adSopenharmony_ci 716cbd624adSopenharmony_ci if hy == 0x3fe00000 { 717cbd624adSopenharmony_ci /* y is 0.5 */ 718cbd624adSopenharmony_ci if hx >= 0 { 719cbd624adSopenharmony_ci /* x >= +0 */ 720cbd624adSopenharmony_ci return sqrtd(x); 721cbd624adSopenharmony_ci } 722cbd624adSopenharmony_ci } 723cbd624adSopenharmony_ci } 724cbd624adSopenharmony_ci 725cbd624adSopenharmony_ci let mut ax: f64 = fabsd(x); 726cbd624adSopenharmony_ci if lx == 0 { 727cbd624adSopenharmony_ci /* special value of x */ 728cbd624adSopenharmony_ci if ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000 { 729cbd624adSopenharmony_ci /* x is +-0,+-inf,+-1 */ 730cbd624adSopenharmony_ci let mut z: f64 = ax; 731cbd624adSopenharmony_ci 732cbd624adSopenharmony_ci if hy < 0 { 733cbd624adSopenharmony_ci /* z = (1/|x|) */ 734cbd624adSopenharmony_ci z = 1.0 / z; 735cbd624adSopenharmony_ci } 736cbd624adSopenharmony_ci 737cbd624adSopenharmony_ci if hx < 0 { 738cbd624adSopenharmony_ci if ((ix - 0x3ff00000) | yisint) == 0 { 739cbd624adSopenharmony_ci z = (z - z) / (z - z); /* (-1)**non-int is NaN */ 740cbd624adSopenharmony_ci } else if yisint == 1 { 741cbd624adSopenharmony_ci z = -z; /* (x<0)**odd = -(|x|**odd) */ 742cbd624adSopenharmony_ci } 743cbd624adSopenharmony_ci } 744cbd624adSopenharmony_ci 745cbd624adSopenharmony_ci return z; 746cbd624adSopenharmony_ci } 747cbd624adSopenharmony_ci } 748cbd624adSopenharmony_ci 749cbd624adSopenharmony_ci let mut s: f64 = 1.0; /* sign of result */ 750cbd624adSopenharmony_ci if hx < 0 { 751cbd624adSopenharmony_ci if yisint == 0 { 752cbd624adSopenharmony_ci /* (x<0)**(non-int) is NaN */ 753cbd624adSopenharmony_ci return (x - x) / (x - x); 754cbd624adSopenharmony_ci } 755cbd624adSopenharmony_ci 756cbd624adSopenharmony_ci if yisint == 1 { 757cbd624adSopenharmony_ci /* (x<0)**(odd int) */ 758cbd624adSopenharmony_ci s = -1.0; 759cbd624adSopenharmony_ci } 760cbd624adSopenharmony_ci } 761cbd624adSopenharmony_ci 762cbd624adSopenharmony_ci /* |y| is HUGE */ 763cbd624adSopenharmony_ci if iy > 0x41e00000 { 764cbd624adSopenharmony_ci /* if |y| > 2**31 */ 765cbd624adSopenharmony_ci if iy > 0x43f00000 { 766cbd624adSopenharmony_ci /* if |y| > 2**64, must o/uflow */ 767cbd624adSopenharmony_ci if ix <= 0x3fefffff { 768cbd624adSopenharmony_ci return if hy < 0 { 769cbd624adSopenharmony_ci HUGE * HUGE 770cbd624adSopenharmony_ci } else { 771cbd624adSopenharmony_ci TINY * TINY 772cbd624adSopenharmony_ci }; 773cbd624adSopenharmony_ci } 774cbd624adSopenharmony_ci 775cbd624adSopenharmony_ci if ix >= 0x3ff00000 { 776cbd624adSopenharmony_ci return if hy > 0 { 777cbd624adSopenharmony_ci HUGE * HUGE 778cbd624adSopenharmony_ci } else { 779cbd624adSopenharmony_ci TINY * TINY 780cbd624adSopenharmony_ci }; 781cbd624adSopenharmony_ci } 782cbd624adSopenharmony_ci } 783cbd624adSopenharmony_ci 784cbd624adSopenharmony_ci /* over/underflow if x is not close to one */ 785cbd624adSopenharmony_ci if ix < 0x3fefffff { 786cbd624adSopenharmony_ci return if hy < 0 { 787cbd624adSopenharmony_ci s * HUGE * HUGE 788cbd624adSopenharmony_ci } else { 789cbd624adSopenharmony_ci s * TINY * TINY 790cbd624adSopenharmony_ci }; 791cbd624adSopenharmony_ci } 792cbd624adSopenharmony_ci if ix > 0x3ff00000 { 793cbd624adSopenharmony_ci return if hy > 0 { 794cbd624adSopenharmony_ci s * HUGE * HUGE 795cbd624adSopenharmony_ci } else { 796cbd624adSopenharmony_ci s * TINY * TINY 797cbd624adSopenharmony_ci }; 798cbd624adSopenharmony_ci } 799cbd624adSopenharmony_ci 800cbd624adSopenharmony_ci /* now |1-x| is TINY <= 2**-20, suffice to compute 801cbd624adSopenharmony_ci log(x) by x-x^2/2+x^3/3-x^4/4 */ 802cbd624adSopenharmony_ci let t: f64 = ax - 1.0; /* t has 20 trailing zeros */ 803cbd624adSopenharmony_ci let w: f64 = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); 804cbd624adSopenharmony_ci let u: f64 = IVLN2_H * t; /* ivln2_h has 21 sig. bits */ 805cbd624adSopenharmony_ci let v: f64 = t * IVLN2_L - w * IVLN2; 806cbd624adSopenharmony_ci t1 = with_set_low_word(u + v, 0); 807cbd624adSopenharmony_ci t2 = v - (t1 - u); 808cbd624adSopenharmony_ci } else { 809cbd624adSopenharmony_ci // double ss,s2,s_h,s_l,t_h,t_l; 810cbd624adSopenharmony_ci let mut n: i32 = 0; 811cbd624adSopenharmony_ci 812cbd624adSopenharmony_ci if ix < 0x00100000 { 813cbd624adSopenharmony_ci /* take care subnormal number */ 814cbd624adSopenharmony_ci ax *= TWO53; 815cbd624adSopenharmony_ci n -= 53; 816cbd624adSopenharmony_ci ix = get_high_word(ax) as i32; 817cbd624adSopenharmony_ci } 818cbd624adSopenharmony_ci 819cbd624adSopenharmony_ci n += (ix >> 20) - 0x3ff; 820cbd624adSopenharmony_ci j = ix & 0x000fffff; 821cbd624adSopenharmony_ci 822cbd624adSopenharmony_ci /* determine interval */ 823cbd624adSopenharmony_ci let k: i32; 824cbd624adSopenharmony_ci ix = j | 0x3ff00000; /* normalize ix */ 825cbd624adSopenharmony_ci if j <= 0x3988E { 826cbd624adSopenharmony_ci /* |x|<sqrt(3/2) */ 827cbd624adSopenharmony_ci k = 0; 828cbd624adSopenharmony_ci } else if j < 0xBB67A { 829cbd624adSopenharmony_ci /* |x|<sqrt(3) */ 830cbd624adSopenharmony_ci k = 1; 831cbd624adSopenharmony_ci } else { 832cbd624adSopenharmony_ci k = 0; 833cbd624adSopenharmony_ci n += 1; 834cbd624adSopenharmony_ci ix -= 0x00100000; 835cbd624adSopenharmony_ci } 836cbd624adSopenharmony_ci ax = with_set_high_word(ax, ix as u32); 837cbd624adSopenharmony_ci 838cbd624adSopenharmony_ci /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ 839cbd624adSopenharmony_ci let u: f64 = ax - i!(BP, k as usize); /* bp[0]=1.0, bp[1]=1.5 */ 840cbd624adSopenharmony_ci let v: f64 = 1.0 / (ax + i!(BP, k as usize)); 841cbd624adSopenharmony_ci let ss: f64 = u * v; 842cbd624adSopenharmony_ci let s_h = with_set_low_word(ss, 0); 843cbd624adSopenharmony_ci 844cbd624adSopenharmony_ci /* t_h=ax+bp[k] High */ 845cbd624adSopenharmony_ci let t_h: f64 = with_set_high_word( 846cbd624adSopenharmony_ci 0.0, 847cbd624adSopenharmony_ci ((ix as u32 >> 1) | 0x20000000) + 0x00080000 + ((k as u32) << 18), 848cbd624adSopenharmony_ci ); 849cbd624adSopenharmony_ci let t_l: f64 = ax - (t_h - i!(BP, k as usize)); 850cbd624adSopenharmony_ci let s_l: f64 = v * ((u - s_h * t_h) - s_h * t_l); 851cbd624adSopenharmony_ci 852cbd624adSopenharmony_ci /* compute log(ax) */ 853cbd624adSopenharmony_ci let s2: f64 = ss * ss; 854cbd624adSopenharmony_ci let mut r: f64 = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); 855cbd624adSopenharmony_ci r += s_l * (s_h + ss); 856cbd624adSopenharmony_ci let s2: f64 = s_h * s_h; 857cbd624adSopenharmony_ci let t_h: f64 = with_set_low_word(3.0 + s2 + r, 0); 858cbd624adSopenharmony_ci let t_l: f64 = r - ((t_h - 3.0) - s2); 859cbd624adSopenharmony_ci 860cbd624adSopenharmony_ci /* u+v = ss*(1+...) */ 861cbd624adSopenharmony_ci let u: f64 = s_h * t_h; 862cbd624adSopenharmony_ci let v: f64 = s_l * t_h + t_l * ss; 863cbd624adSopenharmony_ci 864cbd624adSopenharmony_ci /* 2/(3log2)*(ss+...) */ 865cbd624adSopenharmony_ci let p_h: f64 = with_set_low_word(u + v, 0); 866cbd624adSopenharmony_ci let p_l = v - (p_h - u); 867cbd624adSopenharmony_ci let z_h: f64 = CP_H * p_h; /* cp_h+cp_l = 2/(3*log2) */ 868cbd624adSopenharmony_ci let z_l: f64 = CP_L * p_h + p_l * CP + i!(DP_L, k as usize); 869cbd624adSopenharmony_ci 870cbd624adSopenharmony_ci /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */ 871cbd624adSopenharmony_ci let t: f64 = n as f64; 872cbd624adSopenharmony_ci t1 = with_set_low_word(((z_h + z_l) + i!(DP_H, k as usize)) + t, 0); 873cbd624adSopenharmony_ci t2 = z_l - (((t1 - t) - i!(DP_H, k as usize)) - z_h); 874cbd624adSopenharmony_ci } 875cbd624adSopenharmony_ci 876cbd624adSopenharmony_ci /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ 877cbd624adSopenharmony_ci let y1: f64 = with_set_low_word(y, 0); 878cbd624adSopenharmony_ci let p_l: f64 = (y - y1) * t1 + y * t2; 879cbd624adSopenharmony_ci let mut p_h: f64 = y1 * t1; 880cbd624adSopenharmony_ci let z: f64 = p_l + p_h; 881cbd624adSopenharmony_ci let mut j: i32 = (z.to_bits() >> 32) as i32; 882cbd624adSopenharmony_ci let i: i32 = z.to_bits() as i32; 883cbd624adSopenharmony_ci // let (j, i): (i32, i32) = ((z.to_bits() >> 32) as i32, z.to_bits() as i32); 884cbd624adSopenharmony_ci 885cbd624adSopenharmony_ci if j >= 0x40900000 { 886cbd624adSopenharmony_ci /* z >= 1024 */ 887cbd624adSopenharmony_ci if (j - 0x40900000) | i != 0 { 888cbd624adSopenharmony_ci /* if z > 1024 */ 889cbd624adSopenharmony_ci return s * HUGE * HUGE; /* overflow */ 890cbd624adSopenharmony_ci } 891cbd624adSopenharmony_ci 892cbd624adSopenharmony_ci if p_l + OVT > z - p_h { 893cbd624adSopenharmony_ci return s * HUGE * HUGE; /* overflow */ 894cbd624adSopenharmony_ci } 895cbd624adSopenharmony_ci } else if (j & 0x7fffffff) >= 0x4090cc00 { 896cbd624adSopenharmony_ci /* z <= -1075 */ 897cbd624adSopenharmony_ci // FIXME: instead of abs(j) use unsigned j 898cbd624adSopenharmony_ci 899cbd624adSopenharmony_ci if (((j as u32) - 0xc090cc00) | (i as u32)) != 0 { 900cbd624adSopenharmony_ci /* z < -1075 */ 901cbd624adSopenharmony_ci return s * TINY * TINY; /* underflow */ 902cbd624adSopenharmony_ci } 903cbd624adSopenharmony_ci 904cbd624adSopenharmony_ci if p_l <= z - p_h { 905cbd624adSopenharmony_ci return s * TINY * TINY; /* underflow */ 906cbd624adSopenharmony_ci } 907cbd624adSopenharmony_ci } 908cbd624adSopenharmony_ci 909cbd624adSopenharmony_ci /* compute 2**(p_h+p_l) */ 910cbd624adSopenharmony_ci let i: i32 = j & (0x7fffffff as i32); 911cbd624adSopenharmony_ci k = (i >> 20) - 0x3ff; 912cbd624adSopenharmony_ci let mut n: i32 = 0; 913cbd624adSopenharmony_ci 914cbd624adSopenharmony_ci if i > 0x3fe00000 { 915cbd624adSopenharmony_ci /* if |z| > 0.5, set n = [z+0.5] */ 916cbd624adSopenharmony_ci n = j + (0x00100000 >> (k + 1)); 917cbd624adSopenharmony_ci k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ 918cbd624adSopenharmony_ci let t: f64 = with_set_high_word(0.0, (n & !(0x000fffff >> k)) as u32); 919cbd624adSopenharmony_ci n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); 920cbd624adSopenharmony_ci if j < 0 { 921cbd624adSopenharmony_ci n = -n; 922cbd624adSopenharmony_ci } 923cbd624adSopenharmony_ci p_h -= t; 924cbd624adSopenharmony_ci } 925cbd624adSopenharmony_ci 926cbd624adSopenharmony_ci let t: f64 = with_set_low_word(p_l + p_h, 0); 927cbd624adSopenharmony_ci let u: f64 = t * LG2_H; 928cbd624adSopenharmony_ci let v: f64 = (p_l - (t - p_h)) * LG2 + t * LG2_L; 929cbd624adSopenharmony_ci let mut z: f64 = u + v; 930cbd624adSopenharmony_ci let w: f64 = v - (z - u); 931cbd624adSopenharmony_ci let t: f64 = z * z; 932cbd624adSopenharmony_ci let t1: f64 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); 933cbd624adSopenharmony_ci let r: f64 = (z * t1) / (t1 - 2.0) - (w + z * w); 934cbd624adSopenharmony_ci z = 1.0 - (r - z); 935cbd624adSopenharmony_ci j = get_high_word(z) as i32; 936cbd624adSopenharmony_ci j += n << 20; 937cbd624adSopenharmony_ci 938cbd624adSopenharmony_ci if (j >> 20) <= 0 { 939cbd624adSopenharmony_ci /* subnormal output */ 940cbd624adSopenharmony_ci z = scalbnd(z, n); 941cbd624adSopenharmony_ci } else { 942cbd624adSopenharmony_ci z = with_set_high_word(z, j as u32); 943cbd624adSopenharmony_ci } 944cbd624adSopenharmony_ci 945cbd624adSopenharmony_ci s * z 946cbd624adSopenharmony_ci} 947cbd624adSopenharmony_ci 948cbd624adSopenharmony_ci/// Absolute value (magnitude) (f64) 949cbd624adSopenharmony_ci/// Calculates the absolute value (magnitude) of the argument `x`, 950cbd624adSopenharmony_ci/// by direct manipulation of the bit representation of `x`. 951cbd624adSopenharmony_cipub fn fabsd(x: f64) -> f64 { 952cbd624adSopenharmony_ci f64::from_bits(x.to_bits() & (u64::MAX / 2)) 953cbd624adSopenharmony_ci} 954cbd624adSopenharmony_ci 955cbd624adSopenharmony_cipub fn scalbnd(x: f64, mut n: i32) -> f64 { 956cbd624adSopenharmony_ci let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 === 2 ^ 1023 957cbd624adSopenharmony_ci let x1p53 = f64::from_bits(0x4340000000000000); // 0x1p53 === 2 ^ 53 958cbd624adSopenharmony_ci let x1p_1022 = f64::from_bits(0x0010000000000000); // 0x1p-1022 === 2 ^ (-1022) 959cbd624adSopenharmony_ci 960cbd624adSopenharmony_ci let mut y = x; 961cbd624adSopenharmony_ci 962cbd624adSopenharmony_ci if n > 1023 { 963cbd624adSopenharmony_ci y *= x1p1023; 964cbd624adSopenharmony_ci n -= 1023; 965cbd624adSopenharmony_ci if n > 1023 { 966cbd624adSopenharmony_ci y *= x1p1023; 967cbd624adSopenharmony_ci n -= 1023; 968cbd624adSopenharmony_ci if n > 1023 { 969cbd624adSopenharmony_ci n = 1023; 970cbd624adSopenharmony_ci } 971cbd624adSopenharmony_ci } 972cbd624adSopenharmony_ci } else if n < -1022 { 973cbd624adSopenharmony_ci /* make sure final n < -53 to avoid double 974cbd624adSopenharmony_ci rounding in the subnormal range */ 975cbd624adSopenharmony_ci y *= x1p_1022 * x1p53; 976cbd624adSopenharmony_ci n += 1022 - 53; 977cbd624adSopenharmony_ci if n < -1022 { 978cbd624adSopenharmony_ci y *= x1p_1022 * x1p53; 979cbd624adSopenharmony_ci n += 1022 - 53; 980cbd624adSopenharmony_ci if n < -1022 { 981cbd624adSopenharmony_ci n = -1022; 982cbd624adSopenharmony_ci } 983cbd624adSopenharmony_ci } 984cbd624adSopenharmony_ci } 985cbd624adSopenharmony_ci y * f64::from_bits(((0x3ff + n) as u64) << 52) 986cbd624adSopenharmony_ci} 987cbd624adSopenharmony_ci 988cbd624adSopenharmony_ci/* origin: FreeBSD /usr/src/lib/msun/src/e_sqrt.c */ 989cbd624adSopenharmony_ci/* 990cbd624adSopenharmony_ci * ==================================================== 991cbd624adSopenharmony_ci * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 992cbd624adSopenharmony_ci * 993cbd624adSopenharmony_ci * Developed at SunSoft, a Sun Microsystems, Inc. business. 994cbd624adSopenharmony_ci * Permission to use, copy, modify, and distribute this 995cbd624adSopenharmony_ci * software is freely granted, provided that this notice 996cbd624adSopenharmony_ci * is preserved. 997cbd624adSopenharmony_ci * ==================================================== 998cbd624adSopenharmony_ci */ 999cbd624adSopenharmony_ci/* sqrt(x) 1000cbd624adSopenharmony_ci * Return correctly rounded sqrt. 1001cbd624adSopenharmony_ci * ------------------------------------------ 1002cbd624adSopenharmony_ci * | Use the hardware sqrt if you have one | 1003cbd624adSopenharmony_ci * ------------------------------------------ 1004cbd624adSopenharmony_ci * Method: 1005cbd624adSopenharmony_ci * Bit by bit method using integer arithmetic. (Slow, but portable) 1006cbd624adSopenharmony_ci * 1. Normalization 1007cbd624adSopenharmony_ci * Scale x to y in [1,4) with even powers of 2: 1008cbd624adSopenharmony_ci * find an integer k such that 1 <= (y=x*2^(2k)) < 4, then 1009cbd624adSopenharmony_ci * sqrt(x) = 2^k * sqrt(y) 1010cbd624adSopenharmony_ci * 2. Bit by bit computation 1011cbd624adSopenharmony_ci * Let q = sqrt(y) truncated to i bit after binary point (q = 1), 1012cbd624adSopenharmony_ci * i 0 1013cbd624adSopenharmony_ci * i+1 2 1014cbd624adSopenharmony_ci * s = 2*q , and y = 2 * ( y - q ). (1) 1015cbd624adSopenharmony_ci * i i i i 1016cbd624adSopenharmony_ci * 1017cbd624adSopenharmony_ci * To compute q from q , one checks whether 1018cbd624adSopenharmony_ci * i+1 i 1019cbd624adSopenharmony_ci * 1020cbd624adSopenharmony_ci * -(i+1) 2 1021cbd624adSopenharmony_ci * (q + 2 ) <= y. (2) 1022cbd624adSopenharmony_ci * i 1023cbd624adSopenharmony_ci * -(i+1) 1024cbd624adSopenharmony_ci * If (2) is false, then q = q ; otherwise q = q + 2 . 1025cbd624adSopenharmony_ci * i+1 i i+1 i 1026cbd624adSopenharmony_ci * 1027cbd624adSopenharmony_ci * With some algebraic manipulation, it is not difficult to see 1028cbd624adSopenharmony_ci * that (2) is equivalent to 1029cbd624adSopenharmony_ci * -(i+1) 1030cbd624adSopenharmony_ci * s + 2 <= y (3) 1031cbd624adSopenharmony_ci * i i 1032cbd624adSopenharmony_ci * 1033cbd624adSopenharmony_ci * The advantage of (3) is that s and y can be computed by 1034cbd624adSopenharmony_ci * i i 1035cbd624adSopenharmony_ci * the following recurrence formula: 1036cbd624adSopenharmony_ci * if (3) is false 1037cbd624adSopenharmony_ci * 1038cbd624adSopenharmony_ci * s = s , y = y ; (4) 1039cbd624adSopenharmony_ci * i+1 i i+1 i 1040cbd624adSopenharmony_ci * 1041cbd624adSopenharmony_ci * otherwise, 1042cbd624adSopenharmony_ci * -i -(i+1) 1043cbd624adSopenharmony_ci * s = s + 2 , y = y - s - 2 (5) 1044cbd624adSopenharmony_ci * i+1 i i+1 i i 1045cbd624adSopenharmony_ci * 1046cbd624adSopenharmony_ci * One may easily use induction to prove (4) and (5). 1047cbd624adSopenharmony_ci * Note. Since the left hand side of (3) contain only i+2 bits, 1048cbd624adSopenharmony_ci * it does not necessary to do a full (53-bit) comparison 1049cbd624adSopenharmony_ci * in (3). 1050cbd624adSopenharmony_ci * 3. Final rounding 1051cbd624adSopenharmony_ci * After generating the 53 bits result, we compute one more bit. 1052cbd624adSopenharmony_ci * Together with the remainder, we can decide whether the 1053cbd624adSopenharmony_ci * result is exact, bigger than 1/2ulp, or less than 1/2ulp 1054cbd624adSopenharmony_ci * (it will never equal to 1/2ulp). 1055cbd624adSopenharmony_ci * The rounding mode can be detected by checking whether 1056cbd624adSopenharmony_ci * huge + tiny is equal to huge, and whether huge - tiny is 1057cbd624adSopenharmony_ci * equal to huge for some floating point number "huge" and "tiny". 1058cbd624adSopenharmony_ci * 1059cbd624adSopenharmony_ci * Special cases: 1060cbd624adSopenharmony_ci * sqrt(+-0) = +-0 ... exact 1061cbd624adSopenharmony_ci * sqrt(inf) = inf 1062cbd624adSopenharmony_ci * sqrt(-ve) = NaN ... with invalid signal 1063cbd624adSopenharmony_ci * sqrt(NaN) = NaN ... with invalid signal for signaling NaN 1064cbd624adSopenharmony_ci */ 1065cbd624adSopenharmony_ci 1066cbd624adSopenharmony_cipub fn sqrtd(x: f64) -> f64 { 1067cbd624adSopenharmony_ci #[cfg(target_feature = "sse2")] 1068cbd624adSopenharmony_ci { 1069cbd624adSopenharmony_ci // Note: This path is unlikely since LLVM will usually have already 1070cbd624adSopenharmony_ci // optimized sqrt calls into hardware instructions if sse2 is available, 1071cbd624adSopenharmony_ci // but if someone does end up here they'll apprected the speed increase. 1072cbd624adSopenharmony_ci #[cfg(target_arch = "x86")] 1073cbd624adSopenharmony_ci use core::arch::x86::*; 1074cbd624adSopenharmony_ci #[cfg(target_arch = "x86_64")] 1075cbd624adSopenharmony_ci use core::arch::x86_64::*; 1076cbd624adSopenharmony_ci // SAFETY: safe, since `_mm_set_sd` takes a 64-bit float, and returns 1077cbd624adSopenharmony_ci // a 128-bit type with the lowest 64-bits as `x`, `_mm_sqrt_ss` calculates 1078cbd624adSopenharmony_ci // the sqrt of this 128-bit vector, and `_mm_cvtss_f64` extracts the lower 1079cbd624adSopenharmony_ci // 64-bits as a 64-bit float. 1080cbd624adSopenharmony_ci unsafe { 1081cbd624adSopenharmony_ci let m = _mm_set_sd(x); 1082cbd624adSopenharmony_ci let m_sqrt = _mm_sqrt_pd(m); 1083cbd624adSopenharmony_ci _mm_cvtsd_f64(m_sqrt) 1084cbd624adSopenharmony_ci } 1085cbd624adSopenharmony_ci } 1086cbd624adSopenharmony_ci #[cfg(not(target_feature = "sse2"))] 1087cbd624adSopenharmony_ci { 1088cbd624adSopenharmony_ci use core::num::Wrapping; 1089cbd624adSopenharmony_ci 1090cbd624adSopenharmony_ci const TINY: f64 = 1.0e-300; 1091cbd624adSopenharmony_ci 1092cbd624adSopenharmony_ci let mut z: f64; 1093cbd624adSopenharmony_ci let sign: Wrapping<u32> = Wrapping(0x80000000); 1094cbd624adSopenharmony_ci let mut ix0: i32; 1095cbd624adSopenharmony_ci let mut s0: i32; 1096cbd624adSopenharmony_ci let mut q: i32; 1097cbd624adSopenharmony_ci let mut m: i32; 1098cbd624adSopenharmony_ci let mut t: i32; 1099cbd624adSopenharmony_ci let mut i: i32; 1100cbd624adSopenharmony_ci let mut r: Wrapping<u32>; 1101cbd624adSopenharmony_ci let mut t1: Wrapping<u32>; 1102cbd624adSopenharmony_ci let mut s1: Wrapping<u32>; 1103cbd624adSopenharmony_ci let mut ix1: Wrapping<u32>; 1104cbd624adSopenharmony_ci let mut q1: Wrapping<u32>; 1105cbd624adSopenharmony_ci 1106cbd624adSopenharmony_ci ix0 = (x.to_bits() >> 32) as i32; 1107cbd624adSopenharmony_ci ix1 = Wrapping(x.to_bits() as u32); 1108cbd624adSopenharmony_ci 1109cbd624adSopenharmony_ci /* take care of Inf and NaN */ 1110cbd624adSopenharmony_ci if (ix0 & 0x7ff00000) == 0x7ff00000 { 1111cbd624adSopenharmony_ci return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */ 1112cbd624adSopenharmony_ci } 1113cbd624adSopenharmony_ci /* take care of zero */ 1114cbd624adSopenharmony_ci if ix0 <= 0 { 1115cbd624adSopenharmony_ci if ((ix0 & !(sign.0 as i32)) | ix1.0 as i32) == 0 { 1116cbd624adSopenharmony_ci return x; /* sqrt(+-0) = +-0 */ 1117cbd624adSopenharmony_ci } 1118cbd624adSopenharmony_ci if ix0 < 0 { 1119cbd624adSopenharmony_ci return (x - x) / (x - x); /* sqrt(-ve) = sNaN */ 1120cbd624adSopenharmony_ci } 1121cbd624adSopenharmony_ci } 1122cbd624adSopenharmony_ci /* normalize x */ 1123cbd624adSopenharmony_ci m = ix0 >> 20; 1124cbd624adSopenharmony_ci if m == 0 { 1125cbd624adSopenharmony_ci /* subnormal x */ 1126cbd624adSopenharmony_ci while ix0 == 0 { 1127cbd624adSopenharmony_ci m -= 21; 1128cbd624adSopenharmony_ci ix0 |= (ix1 >> 11).0 as i32; 1129cbd624adSopenharmony_ci ix1 <<= 21; 1130cbd624adSopenharmony_ci } 1131cbd624adSopenharmony_ci i = 0; 1132cbd624adSopenharmony_ci while (ix0 & 0x00100000) == 0 { 1133cbd624adSopenharmony_ci i += 1; 1134cbd624adSopenharmony_ci ix0 <<= 1; 1135cbd624adSopenharmony_ci } 1136cbd624adSopenharmony_ci m -= i - 1; 1137cbd624adSopenharmony_ci ix0 |= (ix1 >> (32 - i) as usize).0 as i32; 1138cbd624adSopenharmony_ci ix1 = ix1 << i as usize; 1139cbd624adSopenharmony_ci } 1140cbd624adSopenharmony_ci m -= 1023; /* unbias exponent */ 1141cbd624adSopenharmony_ci ix0 = (ix0 & 0x000fffff) | 0x00100000; 1142cbd624adSopenharmony_ci if (m & 1) == 1 { 1143cbd624adSopenharmony_ci /* odd m, double x to make it even */ 1144cbd624adSopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; 1145cbd624adSopenharmony_ci ix1 += ix1; 1146cbd624adSopenharmony_ci } 1147cbd624adSopenharmony_ci m >>= 1; /* m = [m/2] */ 1148cbd624adSopenharmony_ci 1149cbd624adSopenharmony_ci /* generate sqrt(x) bit by bit */ 1150cbd624adSopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; 1151cbd624adSopenharmony_ci ix1 += ix1; 1152cbd624adSopenharmony_ci q = 0; /* [q,q1] = sqrt(x) */ 1153cbd624adSopenharmony_ci q1 = Wrapping(0); 1154cbd624adSopenharmony_ci s0 = 0; 1155cbd624adSopenharmony_ci s1 = Wrapping(0); 1156cbd624adSopenharmony_ci r = Wrapping(0x00200000); /* r = moving bit from right to left */ 1157cbd624adSopenharmony_ci 1158cbd624adSopenharmony_ci while r != Wrapping(0) { 1159cbd624adSopenharmony_ci t = s0 + r.0 as i32; 1160cbd624adSopenharmony_ci if t <= ix0 { 1161cbd624adSopenharmony_ci s0 = t + r.0 as i32; 1162cbd624adSopenharmony_ci ix0 -= t; 1163cbd624adSopenharmony_ci q += r.0 as i32; 1164cbd624adSopenharmony_ci } 1165cbd624adSopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; 1166cbd624adSopenharmony_ci ix1 += ix1; 1167cbd624adSopenharmony_ci r >>= 1; 1168cbd624adSopenharmony_ci } 1169cbd624adSopenharmony_ci 1170cbd624adSopenharmony_ci r = sign; 1171cbd624adSopenharmony_ci while r != Wrapping(0) { 1172cbd624adSopenharmony_ci t1 = s1 + r; 1173cbd624adSopenharmony_ci t = s0; 1174cbd624adSopenharmony_ci if t < ix0 || (t == ix0 && t1 <= ix1) { 1175cbd624adSopenharmony_ci s1 = t1 + r; 1176cbd624adSopenharmony_ci if (t1 & sign) == sign && (s1 & sign) == Wrapping(0) { 1177cbd624adSopenharmony_ci s0 += 1; 1178cbd624adSopenharmony_ci } 1179cbd624adSopenharmony_ci ix0 -= t; 1180cbd624adSopenharmony_ci if ix1 < t1 { 1181cbd624adSopenharmony_ci ix0 -= 1; 1182cbd624adSopenharmony_ci } 1183cbd624adSopenharmony_ci ix1 -= t1; 1184cbd624adSopenharmony_ci q1 += r; 1185cbd624adSopenharmony_ci } 1186cbd624adSopenharmony_ci ix0 += ix0 + ((ix1 & sign) >> 31).0 as i32; 1187cbd624adSopenharmony_ci ix1 += ix1; 1188cbd624adSopenharmony_ci r >>= 1; 1189cbd624adSopenharmony_ci } 1190cbd624adSopenharmony_ci 1191cbd624adSopenharmony_ci /* use floating add to find out rounding direction */ 1192cbd624adSopenharmony_ci if (ix0 as u32 | ix1.0) != 0 { 1193cbd624adSopenharmony_ci z = 1.0 - TINY; /* raise inexact flag */ 1194cbd624adSopenharmony_ci if z >= 1.0 { 1195cbd624adSopenharmony_ci z = 1.0 + TINY; 1196cbd624adSopenharmony_ci if q1.0 == 0xffffffff { 1197cbd624adSopenharmony_ci q1 = Wrapping(0); 1198cbd624adSopenharmony_ci q += 1; 1199cbd624adSopenharmony_ci } else if z > 1.0 { 1200cbd624adSopenharmony_ci if q1.0 == 0xfffffffe { 1201cbd624adSopenharmony_ci q += 1; 1202cbd624adSopenharmony_ci } 1203cbd624adSopenharmony_ci q1 += Wrapping(2); 1204cbd624adSopenharmony_ci } else { 1205cbd624adSopenharmony_ci q1 += q1 & Wrapping(1); 1206cbd624adSopenharmony_ci } 1207cbd624adSopenharmony_ci } 1208cbd624adSopenharmony_ci } 1209cbd624adSopenharmony_ci ix0 = (q >> 1) + 0x3fe00000; 1210cbd624adSopenharmony_ci ix1 = q1 >> 1; 1211cbd624adSopenharmony_ci if (q & 1) == 1 { 1212cbd624adSopenharmony_ci ix1 |= sign; 1213cbd624adSopenharmony_ci } 1214cbd624adSopenharmony_ci ix0 += m << 20; 1215cbd624adSopenharmony_ci f64::from_bits((ix0 as u64) << 32 | ix1.0 as u64) 1216cbd624adSopenharmony_ci } 1217cbd624adSopenharmony_ci} 1218cbd624adSopenharmony_ci 1219cbd624adSopenharmony_ci#[inline] 1220cbd624adSopenharmony_cifn get_high_word(x: f64) -> u32 { 1221cbd624adSopenharmony_ci (x.to_bits() >> 32) as u32 1222cbd624adSopenharmony_ci} 1223cbd624adSopenharmony_ci 1224cbd624adSopenharmony_ci#[inline] 1225cbd624adSopenharmony_cifn with_set_high_word(f: f64, hi: u32) -> f64 { 1226cbd624adSopenharmony_ci let mut tmp = f.to_bits(); 1227cbd624adSopenharmony_ci tmp &= 0x00000000_ffffffff; 1228cbd624adSopenharmony_ci tmp |= (hi as u64) << 32; 1229cbd624adSopenharmony_ci f64::from_bits(tmp) 1230cbd624adSopenharmony_ci} 1231cbd624adSopenharmony_ci 1232cbd624adSopenharmony_ci#[inline] 1233cbd624adSopenharmony_cifn with_set_low_word(f: f64, lo: u32) -> f64 { 1234cbd624adSopenharmony_ci let mut tmp = f.to_bits(); 1235cbd624adSopenharmony_ci tmp &= 0xffffffff_00000000; 1236cbd624adSopenharmony_ci tmp |= lo as u64; 1237cbd624adSopenharmony_ci f64::from_bits(tmp) 1238cbd624adSopenharmony_ci} 1239