xref: /third_party/rust/crates/cxx/syntax/check.rs (revision 33d722a9)
1use crate::syntax::atom::Atom::{self, *};
2use crate::syntax::report::Errors;
3use crate::syntax::visit::{self, Visit};
4use crate::syntax::{
5    error, ident, trivial, Api, Array, Enum, ExternFn, ExternType, Impl, Lang, Lifetimes,
6    NamedType, Ptr, Receiver, Ref, Signature, SliceRef, Struct, Trait, Ty1, Type, TypeAlias, Types,
7};
8use proc_macro2::{Delimiter, Group, Ident, TokenStream};
9use quote::{quote, ToTokens};
10use std::fmt::Display;
11use syn::{GenericParam, Generics, Lifetime};
12
13pub(crate) struct Check<'a> {
14    apis: &'a [Api],
15    types: &'a Types<'a>,
16    errors: &'a mut Errors,
17    generator: Generator,
18}
19
20pub(crate) enum Generator {
21    // cxx-build crate, cxxbridge cli, cxx-gen.
22    #[allow(dead_code)]
23    Build,
24    // cxxbridge-macro. This is relevant in that the macro output is going to
25    // get fed straight to rustc, so for errors that rustc already contains
26    // logic to catch (probably with a better diagnostic than what the proc
27    // macro API is able to produce), we avoid duplicating them in our own
28    // diagnostics.
29    #[allow(dead_code)]
30    Macro,
31}
32
33pub(crate) fn typecheck(cx: &mut Errors, apis: &[Api], types: &Types, generator: Generator) {
34    do_typecheck(&mut Check {
35        apis,
36        types,
37        errors: cx,
38        generator,
39    });
40}
41
42fn do_typecheck(cx: &mut Check) {
43    ident::check_all(cx, cx.apis);
44
45    for ty in cx.types {
46        match ty {
47            Type::Ident(ident) => check_type_ident(cx, ident),
48            Type::RustBox(ptr) => check_type_box(cx, ptr),
49            Type::RustVec(ty) => check_type_rust_vec(cx, ty),
50            Type::UniquePtr(ptr) => check_type_unique_ptr(cx, ptr),
51            Type::SharedPtr(ptr) => check_type_shared_ptr(cx, ptr),
52            Type::WeakPtr(ptr) => check_type_weak_ptr(cx, ptr),
53            Type::CxxVector(ptr) => check_type_cxx_vector(cx, ptr),
54            Type::Ref(ty) => check_type_ref(cx, ty),
55            Type::Ptr(ty) => check_type_ptr(cx, ty),
56            Type::Array(array) => check_type_array(cx, array),
57            Type::Fn(ty) => check_type_fn(cx, ty),
58            Type::SliceRef(ty) => check_type_slice_ref(cx, ty),
59            Type::Str(_) | Type::Void(_) => {}
60        }
61    }
62
63    for api in cx.apis {
64        match api {
65            Api::Include(_) => {}
66            Api::Struct(strct) => check_api_struct(cx, strct),
67            Api::Enum(enm) => check_api_enum(cx, enm),
68            Api::CxxType(ety) | Api::RustType(ety) => check_api_type(cx, ety),
69            Api::CxxFunction(efn) | Api::RustFunction(efn) => check_api_fn(cx, efn),
70            Api::TypeAlias(alias) => check_api_type_alias(cx, alias),
71            Api::Impl(imp) => check_api_impl(cx, imp),
72        }
73    }
74}
75
76impl Check<'_> {
77    pub(crate) fn error(&mut self, sp: impl ToTokens, msg: impl Display) {
78        self.errors.error(sp, msg);
79    }
80}
81
82fn check_type_ident(cx: &mut Check, name: &NamedType) {
83    let ident = &name.rust;
84    if Atom::from(ident).is_none()
85        && !cx.types.structs.contains_key(ident)
86        && !cx.types.enums.contains_key(ident)
87        && !cx.types.cxx.contains(ident)
88        && !cx.types.rust.contains(ident)
89    {
90        let msg = format!("unsupported type: {}", ident);
91        cx.error(ident, msg);
92    }
93}
94
95fn check_type_box(cx: &mut Check, ptr: &Ty1) {
96    if let Type::Ident(ident) = &ptr.inner {
97        if cx.types.cxx.contains(&ident.rust)
98            && !cx.types.aliases.contains_key(&ident.rust)
99            && !cx.types.structs.contains_key(&ident.rust)
100            && !cx.types.enums.contains_key(&ident.rust)
101        {
102            cx.error(ptr, error::BOX_CXX_TYPE.msg);
103        }
104
105        if Atom::from(&ident.rust).is_none() {
106            return;
107        }
108    }
109
110    cx.error(ptr, "unsupported target type of Box");
111}
112
113fn check_type_rust_vec(cx: &mut Check, ty: &Ty1) {
114    match &ty.inner {
115        Type::Ident(ident) => {
116            if cx.types.cxx.contains(&ident.rust)
117                && !cx.types.aliases.contains_key(&ident.rust)
118                && !cx.types.structs.contains_key(&ident.rust)
119                && !cx.types.enums.contains_key(&ident.rust)
120            {
121                cx.error(ty, "Rust Vec containing C++ type is not supported yet");
122                return;
123            }
124
125            match Atom::from(&ident.rust) {
126                None | Some(Bool) | Some(Char) | Some(U8) | Some(U16) | Some(U32) | Some(U64)
127                | Some(Usize) | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize)
128                | Some(F32) | Some(F64) | Some(RustString) => return,
129                Some(CxxString) => {}
130            }
131        }
132        Type::Str(_) => return,
133        _ => {}
134    }
135
136    cx.error(ty, "unsupported element type of Vec");
137}
138
139fn check_type_unique_ptr(cx: &mut Check, ptr: &Ty1) {
140    if let Type::Ident(ident) = &ptr.inner {
141        if cx.types.rust.contains(&ident.rust) {
142            cx.error(ptr, "unique_ptr of a Rust type is not supported yet");
143            return;
144        }
145
146        match Atom::from(&ident.rust) {
147            None | Some(CxxString) => return,
148            _ => {}
149        }
150    } else if let Type::CxxVector(_) = &ptr.inner {
151        return;
152    }
153
154    cx.error(ptr, "unsupported unique_ptr target type");
155}
156
157fn check_type_shared_ptr(cx: &mut Check, ptr: &Ty1) {
158    if let Type::Ident(ident) = &ptr.inner {
159        if cx.types.rust.contains(&ident.rust) {
160            cx.error(ptr, "shared_ptr of a Rust type is not supported yet");
161            return;
162        }
163
164        match Atom::from(&ident.rust) {
165            None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
166            | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
167            | Some(F64) | Some(CxxString) => return,
168            Some(Char) | Some(RustString) => {}
169        }
170    } else if let Type::CxxVector(_) = &ptr.inner {
171        cx.error(ptr, "std::shared_ptr<std::vector> is not supported yet");
172        return;
173    }
174
175    cx.error(ptr, "unsupported shared_ptr target type");
176}
177
178fn check_type_weak_ptr(cx: &mut Check, ptr: &Ty1) {
179    if let Type::Ident(ident) = &ptr.inner {
180        if cx.types.rust.contains(&ident.rust) {
181            cx.error(ptr, "weak_ptr of a Rust type is not supported yet");
182            return;
183        }
184
185        match Atom::from(&ident.rust) {
186            None | Some(Bool) | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize)
187            | Some(I8) | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32)
188            | Some(F64) | Some(CxxString) => return,
189            Some(Char) | Some(RustString) => {}
190        }
191    } else if let Type::CxxVector(_) = &ptr.inner {
192        cx.error(ptr, "std::weak_ptr<std::vector> is not supported yet");
193        return;
194    }
195
196    cx.error(ptr, "unsupported weak_ptr target type");
197}
198
199fn check_type_cxx_vector(cx: &mut Check, ptr: &Ty1) {
200    if let Type::Ident(ident) = &ptr.inner {
201        if cx.types.rust.contains(&ident.rust) {
202            cx.error(
203                ptr,
204                "C++ vector containing a Rust type is not supported yet",
205            );
206            return;
207        }
208
209        match Atom::from(&ident.rust) {
210            None | Some(U8) | Some(U16) | Some(U32) | Some(U64) | Some(Usize) | Some(I8)
211            | Some(I16) | Some(I32) | Some(I64) | Some(Isize) | Some(F32) | Some(F64)
212            | Some(CxxString) => return,
213            Some(Char) => { /* todo */ }
214            Some(Bool) | Some(RustString) => {}
215        }
216    }
217
218    cx.error(ptr, "unsupported vector element type");
219}
220
221fn check_type_ref(cx: &mut Check, ty: &Ref) {
222    if ty.mutable && !ty.pinned {
223        if let Some(requires_pin) = match &ty.inner {
224            Type::Ident(ident) if ident.rust == CxxString || is_opaque_cxx(cx, &ident.rust) => {
225                Some(ident.rust.to_string())
226            }
227            Type::CxxVector(_) => Some("CxxVector<...>".to_owned()),
228            _ => None,
229        } {
230            cx.error(
231                ty,
232                format!(
233                    "mutable reference to C++ type requires a pin -- use Pin<&mut {}>",
234                    requires_pin,
235                ),
236            );
237        }
238    }
239
240    match ty.inner {
241        Type::Fn(_) | Type::Void(_) => {}
242        Type::Ref(_) => {
243            cx.error(ty, "C++ does not allow references to references");
244            return;
245        }
246        _ => return,
247    }
248
249    cx.error(ty, "unsupported reference type");
250}
251
252fn check_type_ptr(cx: &mut Check, ty: &Ptr) {
253    match ty.inner {
254        Type::Fn(_) | Type::Void(_) => {}
255        Type::Ref(_) => {
256            cx.error(ty, "C++ does not allow pointer to reference as a type");
257            return;
258        }
259        _ => return,
260    }
261
262    cx.error(ty, "unsupported pointer type");
263}
264
265fn check_type_slice_ref(cx: &mut Check, ty: &SliceRef) {
266    let supported = !is_unsized(cx, &ty.inner)
267        || match &ty.inner {
268            Type::Ident(ident) => {
269                cx.types.rust.contains(&ident.rust) || cx.types.aliases.contains_key(&ident.rust)
270            }
271            _ => false,
272        };
273
274    if !supported {
275        let mutable = if ty.mutable { "mut " } else { "" };
276        let mut msg = format!("unsupported &{}[T] element type", mutable);
277        if let Type::Ident(ident) = &ty.inner {
278            if is_opaque_cxx(cx, &ident.rust) {
279                msg += ": opaque C++ type is not supported yet";
280            }
281        }
282        cx.error(ty, msg);
283    }
284}
285
286fn check_type_array(cx: &mut Check, ty: &Array) {
287    let supported = !is_unsized(cx, &ty.inner);
288
289    if !supported {
290        cx.error(ty, "unsupported array element type");
291    }
292}
293
294fn check_type_fn(cx: &mut Check, ty: &Signature) {
295    if ty.throws {
296        cx.error(ty, "function pointer returning Result is not supported yet");
297    }
298
299    for arg in &ty.args {
300        if let Type::Ptr(_) = arg.ty {
301            if ty.unsafety.is_none() {
302                cx.error(
303                    arg,
304                    "pointer argument requires that the function pointer be marked unsafe",
305                );
306            }
307        }
308    }
309}
310
311fn check_api_struct(cx: &mut Check, strct: &Struct) {
312    let name = &strct.name;
313    check_reserved_name(cx, &name.rust);
314    check_lifetimes(cx, &strct.generics);
315
316    if strct.fields.is_empty() {
317        let span = span_for_struct_error(strct);
318        cx.error(span, "structs without any fields are not supported");
319    }
320
321    if cx.types.cxx.contains(&name.rust) {
322        if let Some(ety) = cx.types.untrusted.get(&name.rust) {
323            let msg = "extern shared struct must be declared in an `unsafe extern` block";
324            cx.error(ety, msg);
325        }
326    }
327
328    for derive in &strct.derives {
329        if derive.what == Trait::ExternType {
330            let msg = format!("derive({}) on shared struct is not supported", derive);
331            cx.error(derive, msg);
332        }
333    }
334
335    for field in &strct.fields {
336        if let Type::Fn(_) = field.ty {
337            cx.error(
338                field,
339                "function pointers in a struct field are not implemented yet",
340            );
341        } else if is_unsized(cx, &field.ty) {
342            let desc = describe(cx, &field.ty);
343            let msg = format!("using {} by value is not supported", desc);
344            cx.error(field, msg);
345        }
346    }
347}
348
349fn check_api_enum(cx: &mut Check, enm: &Enum) {
350    check_reserved_name(cx, &enm.name.rust);
351    check_lifetimes(cx, &enm.generics);
352
353    if enm.variants.is_empty() && !enm.explicit_repr && !enm.variants_from_header {
354        let span = span_for_enum_error(enm);
355        cx.error(
356            span,
357            "explicit #[repr(...)] is required for enum without any variants",
358        );
359    }
360
361    for derive in &enm.derives {
362        if derive.what == Trait::Default || derive.what == Trait::ExternType {
363            let msg = format!("derive({}) on shared enum is not supported", derive);
364            cx.error(derive, msg);
365        }
366    }
367}
368
369fn check_api_type(cx: &mut Check, ety: &ExternType) {
370    check_reserved_name(cx, &ety.name.rust);
371    check_lifetimes(cx, &ety.generics);
372
373    for derive in &ety.derives {
374        if derive.what == Trait::ExternType && ety.lang == Lang::Rust {
375            continue;
376        }
377        let lang = match ety.lang {
378            Lang::Rust => "Rust",
379            Lang::Cxx => "C++",
380        };
381        let msg = format!(
382            "derive({}) on opaque {} type is not supported yet",
383            derive, lang,
384        );
385        cx.error(derive, msg);
386    }
387
388    if !ety.bounds.is_empty() {
389        let bounds = &ety.bounds;
390        let span = quote!(#(#bounds)*);
391        cx.error(span, "extern type bounds are not implemented yet");
392    }
393
394    if let Some(reasons) = cx.types.required_trivial.get(&ety.name.rust) {
395        let msg = format!(
396            "needs a cxx::ExternType impl in order to be used as {}",
397            trivial::as_what(&ety.name, reasons),
398        );
399        cx.error(ety, msg);
400    }
401}
402
403fn check_api_fn(cx: &mut Check, efn: &ExternFn) {
404    match efn.lang {
405        Lang::Cxx => {
406            if !efn.generics.params.is_empty() && !efn.trusted {
407                let ref span = span_for_generics_error(efn);
408                cx.error(span, "extern C++ function with lifetimes must be declared in `unsafe extern \"C++\"` block");
409            }
410        }
411        Lang::Rust => {
412            if !efn.generics.params.is_empty() && efn.unsafety.is_none() {
413                let ref span = span_for_generics_error(efn);
414                let message = format!(
415                    "must be `unsafe fn {}` in order to expose explicit lifetimes to C++",
416                    efn.name.rust,
417                );
418                cx.error(span, message);
419            }
420        }
421    }
422
423    check_generics(cx, &efn.sig.generics);
424
425    if let Some(receiver) = &efn.receiver {
426        let ref span = span_for_receiver_error(receiver);
427
428        if receiver.ty.rust == "Self" {
429            let mutability = match receiver.mutable {
430                true => "mut ",
431                false => "",
432            };
433            let msg = format!(
434                "unnamed receiver type is only allowed if the surrounding extern block contains exactly one extern type; use `self: &{mutability}TheType`",
435                mutability = mutability,
436            );
437            cx.error(span, msg);
438        } else if cx.types.enums.contains_key(&receiver.ty.rust) {
439            cx.error(
440                span,
441                "unsupported receiver type; C++ does not allow member functions on enums",
442            );
443        } else if !cx.types.structs.contains_key(&receiver.ty.rust)
444            && !cx.types.cxx.contains(&receiver.ty.rust)
445            && !cx.types.rust.contains(&receiver.ty.rust)
446        {
447            cx.error(span, "unrecognized receiver type");
448        } else if receiver.mutable && !receiver.pinned && is_opaque_cxx(cx, &receiver.ty.rust) {
449            cx.error(
450                span,
451                format!(
452                    "mutable reference to opaque C++ type requires a pin -- use `self: Pin<&mut {}>`",
453                    receiver.ty.rust,
454                ),
455            );
456        }
457    }
458
459    for arg in &efn.args {
460        if let Type::Fn(_) = arg.ty {
461            if efn.lang == Lang::Rust {
462                cx.error(
463                    arg,
464                    "passing a function pointer from C++ to Rust is not implemented yet",
465                );
466            }
467        } else if let Type::Ptr(_) = arg.ty {
468            if efn.sig.unsafety.is_none() {
469                cx.error(
470                    arg,
471                    "pointer argument requires that the function be marked unsafe",
472                );
473            }
474        } else if is_unsized(cx, &arg.ty) {
475            let desc = describe(cx, &arg.ty);
476            let msg = format!("passing {} by value is not supported", desc);
477            cx.error(arg, msg);
478        }
479    }
480
481    if let Some(ty) = &efn.ret {
482        if let Type::Fn(_) = ty {
483            cx.error(ty, "returning a function pointer is not implemented yet");
484        } else if is_unsized(cx, ty) {
485            let desc = describe(cx, ty);
486            let msg = format!("returning {} by value is not supported", desc);
487            cx.error(ty, msg);
488        }
489    }
490
491    if efn.lang == Lang::Cxx {
492        check_mut_return_restriction(cx, efn);
493    }
494}
495
496fn check_api_type_alias(cx: &mut Check, alias: &TypeAlias) {
497    check_lifetimes(cx, &alias.generics);
498
499    for derive in &alias.derives {
500        let msg = format!("derive({}) on extern type alias is not supported", derive);
501        cx.error(derive, msg);
502    }
503}
504
505fn check_api_impl(cx: &mut Check, imp: &Impl) {
506    let ty = &imp.ty;
507
508    check_lifetimes(cx, &imp.impl_generics);
509
510    if let Some(negative) = imp.negative_token {
511        let span = quote!(#negative #ty);
512        cx.error(span, "negative impl is not supported yet");
513        return;
514    }
515
516    match ty {
517        Type::RustBox(ty)
518        | Type::RustVec(ty)
519        | Type::UniquePtr(ty)
520        | Type::SharedPtr(ty)
521        | Type::WeakPtr(ty)
522        | Type::CxxVector(ty) => {
523            if let Type::Ident(inner) = &ty.inner {
524                if Atom::from(&inner.rust).is_none() {
525                    return;
526                }
527            }
528        }
529        _ => {}
530    }
531
532    cx.error(imp, "unsupported Self type of explicit impl");
533}
534
535fn check_mut_return_restriction(cx: &mut Check, efn: &ExternFn) {
536    if efn.sig.unsafety.is_some() {
537        // Unrestricted as long as the function is made unsafe-to-call.
538        return;
539    }
540
541    match &efn.ret {
542        Some(Type::Ref(ty)) if ty.mutable => {}
543        Some(Type::SliceRef(slice)) if slice.mutable => {}
544        _ => return,
545    }
546
547    if let Some(receiver) = &efn.receiver {
548        if receiver.mutable {
549            return;
550        }
551        let resolve = match cx.types.try_resolve(&receiver.ty) {
552            Some(resolve) => resolve,
553            None => return,
554        };
555        if !resolve.generics.lifetimes.is_empty() {
556            return;
557        }
558    }
559
560    struct FindLifetimeMut<'a> {
561        cx: &'a Check<'a>,
562        found: bool,
563    }
564
565    impl<'t, 'a> Visit<'t> for FindLifetimeMut<'a> {
566        fn visit_type(&mut self, ty: &'t Type) {
567            self.found |= match ty {
568                Type::Ref(ty) => ty.mutable,
569                Type::SliceRef(slice) => slice.mutable,
570                Type::Ident(ident) if Atom::from(&ident.rust).is_none() => {
571                    match self.cx.types.try_resolve(ident) {
572                        Some(resolve) => !resolve.generics.lifetimes.is_empty(),
573                        None => true,
574                    }
575                }
576                _ => false,
577            };
578            visit::visit_type(self, ty);
579        }
580    }
581
582    let mut visitor = FindLifetimeMut { cx, found: false };
583
584    for arg in &efn.args {
585        visitor.visit_type(&arg.ty);
586    }
587
588    if visitor.found {
589        return;
590    }
591
592    cx.error(
593        efn,
594        "&mut return type is not allowed unless there is a &mut argument",
595    );
596}
597
598fn check_reserved_name(cx: &mut Check, ident: &Ident) {
599    if ident == "Box"
600        || ident == "UniquePtr"
601        || ident == "SharedPtr"
602        || ident == "WeakPtr"
603        || ident == "Vec"
604        || ident == "CxxVector"
605        || ident == "str"
606        || Atom::from(ident).is_some()
607    {
608        cx.error(ident, "reserved name");
609    }
610}
611
612fn check_reserved_lifetime(cx: &mut Check, lifetime: &Lifetime) {
613    if lifetime.ident == "static" {
614        match cx.generator {
615            Generator::Macro => { /* rustc already reports this */ }
616            Generator::Build => {
617                cx.error(lifetime, error::RESERVED_LIFETIME);
618            }
619        }
620    }
621}
622
623fn check_lifetimes(cx: &mut Check, generics: &Lifetimes) {
624    for lifetime in &generics.lifetimes {
625        check_reserved_lifetime(cx, lifetime);
626    }
627}
628
629fn check_generics(cx: &mut Check, generics: &Generics) {
630    for generic_param in &generics.params {
631        if let GenericParam::Lifetime(def) = generic_param {
632            check_reserved_lifetime(cx, &def.lifetime);
633        }
634    }
635}
636
637fn is_unsized(cx: &mut Check, ty: &Type) -> bool {
638    match ty {
639        Type::Ident(ident) => {
640            let ident = &ident.rust;
641            ident == CxxString || is_opaque_cxx(cx, ident) || cx.types.rust.contains(ident)
642        }
643        Type::Array(array) => is_unsized(cx, &array.inner),
644        Type::CxxVector(_) | Type::Fn(_) | Type::Void(_) => true,
645        Type::RustBox(_)
646        | Type::RustVec(_)
647        | Type::UniquePtr(_)
648        | Type::SharedPtr(_)
649        | Type::WeakPtr(_)
650        | Type::Ref(_)
651        | Type::Ptr(_)
652        | Type::Str(_)
653        | Type::SliceRef(_) => false,
654    }
655}
656
657fn is_opaque_cxx(cx: &mut Check, ty: &Ident) -> bool {
658    cx.types.cxx.contains(ty)
659        && !cx.types.structs.contains_key(ty)
660        && !cx.types.enums.contains_key(ty)
661        && !(cx.types.aliases.contains_key(ty) && cx.types.required_trivial.contains_key(ty))
662}
663
664fn span_for_struct_error(strct: &Struct) -> TokenStream {
665    let struct_token = strct.struct_token;
666    let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
667    brace_token.set_span(strct.brace_token.span.join());
668    quote!(#struct_token #brace_token)
669}
670
671fn span_for_enum_error(enm: &Enum) -> TokenStream {
672    let enum_token = enm.enum_token;
673    let mut brace_token = Group::new(Delimiter::Brace, TokenStream::new());
674    brace_token.set_span(enm.brace_token.span.join());
675    quote!(#enum_token #brace_token)
676}
677
678fn span_for_receiver_error(receiver: &Receiver) -> TokenStream {
679    let ampersand = receiver.ampersand;
680    let lifetime = &receiver.lifetime;
681    let mutability = receiver.mutability;
682    if receiver.shorthand {
683        let var = receiver.var;
684        quote!(#ampersand #lifetime #mutability #var)
685    } else {
686        let ty = &receiver.ty;
687        quote!(#ampersand #lifetime #mutability #ty)
688    }
689}
690
691fn span_for_generics_error(efn: &ExternFn) -> TokenStream {
692    let unsafety = efn.unsafety;
693    let fn_token = efn.fn_token;
694    let generics = &efn.generics;
695    quote!(#unsafety #fn_token #generics)
696}
697
698fn describe(cx: &mut Check, ty: &Type) -> String {
699    match ty {
700        Type::Ident(ident) => {
701            if cx.types.structs.contains_key(&ident.rust) {
702                "struct".to_owned()
703            } else if cx.types.enums.contains_key(&ident.rust) {
704                "enum".to_owned()
705            } else if cx.types.aliases.contains_key(&ident.rust) {
706                "C++ type".to_owned()
707            } else if cx.types.cxx.contains(&ident.rust) {
708                "opaque C++ type".to_owned()
709            } else if cx.types.rust.contains(&ident.rust) {
710                "opaque Rust type".to_owned()
711            } else if Atom::from(&ident.rust) == Some(CxxString) {
712                "C++ string".to_owned()
713            } else if Atom::from(&ident.rust) == Some(Char) {
714                "C char".to_owned()
715            } else {
716                ident.rust.to_string()
717            }
718        }
719        Type::RustBox(_) => "Box".to_owned(),
720        Type::RustVec(_) => "Vec".to_owned(),
721        Type::UniquePtr(_) => "unique_ptr".to_owned(),
722        Type::SharedPtr(_) => "shared_ptr".to_owned(),
723        Type::WeakPtr(_) => "weak_ptr".to_owned(),
724        Type::Ref(_) => "reference".to_owned(),
725        Type::Ptr(_) => "raw pointer".to_owned(),
726        Type::Str(_) => "&str".to_owned(),
727        Type::CxxVector(_) => "C++ vector".to_owned(),
728        Type::SliceRef(_) => "slice".to_owned(),
729        Type::Fn(_) => "function pointer".to_owned(),
730        Type::Void(_) => "()".to_owned(),
731        Type::Array(_) => "array".to_owned(),
732    }
733}
734