1#include "pycore_interp.h" // _PyInterpreterState.threads.stacksize 2 3/* Posix threads interface */ 4 5#include <stdlib.h> 6#include <string.h> 7#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) 8#define destructor xxdestructor 9#endif 10#ifndef HAVE_PTHREAD_STUBS 11# include <pthread.h> 12#endif 13#if defined(__APPLE__) || defined(HAVE_PTHREAD_DESTRUCTOR) 14#undef destructor 15#endif 16#include <signal.h> 17 18#if defined(__linux__) 19# include <sys/syscall.h> /* syscall(SYS_gettid) */ 20#elif defined(__FreeBSD__) 21# include <pthread_np.h> /* pthread_getthreadid_np() */ 22#elif defined(__OpenBSD__) 23# include <unistd.h> /* getthrid() */ 24#elif defined(_AIX) 25# include <sys/thread.h> /* thread_self() */ 26#elif defined(__NetBSD__) 27# include <lwp.h> /* _lwp_self() */ 28#endif 29 30/* The POSIX spec requires that use of pthread_attr_setstacksize 31 be conditional on _POSIX_THREAD_ATTR_STACKSIZE being defined. */ 32#ifdef _POSIX_THREAD_ATTR_STACKSIZE 33#ifndef THREAD_STACK_SIZE 34#define THREAD_STACK_SIZE 0 /* use default stack size */ 35#endif 36 37/* The default stack size for new threads on BSD is small enough that 38 * we'll get hard crashes instead of 'maximum recursion depth exceeded' 39 * exceptions. 40 * 41 * The default stack size below is the empirically determined minimal stack 42 * sizes where a simple recursive function doesn't cause a hard crash. 43 * 44 * For macOS the value of THREAD_STACK_SIZE is determined in configure.ac 45 * as it also depends on the other configure options like chosen sanitizer 46 * runtimes. 47 */ 48#if defined(__FreeBSD__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 49#undef THREAD_STACK_SIZE 50#define THREAD_STACK_SIZE 0x400000 51#endif 52#if defined(_AIX) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 53#undef THREAD_STACK_SIZE 54#define THREAD_STACK_SIZE 0x200000 55#endif 56/* bpo-38852: test_threading.test_recursion_limit() checks that 1000 recursive 57 Python calls (default recursion limit) doesn't crash, but raise a regular 58 RecursionError exception. In debug mode, Python function calls allocates 59 more memory on the stack, so use a stack of 8 MiB. */ 60#if defined(__ANDROID__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 61# ifdef Py_DEBUG 62# undef THREAD_STACK_SIZE 63# define THREAD_STACK_SIZE 0x800000 64# endif 65#endif 66#if defined(__VXWORKS__) && defined(THREAD_STACK_SIZE) && THREAD_STACK_SIZE == 0 67#undef THREAD_STACK_SIZE 68#define THREAD_STACK_SIZE 0x100000 69#endif 70/* for safety, ensure a viable minimum stacksize */ 71#define THREAD_STACK_MIN 0x8000 /* 32 KiB */ 72#else /* !_POSIX_THREAD_ATTR_STACKSIZE */ 73#ifdef THREAD_STACK_SIZE 74#error "THREAD_STACK_SIZE defined but _POSIX_THREAD_ATTR_STACKSIZE undefined" 75#endif 76#endif 77 78/* The POSIX spec says that implementations supporting the sem_* 79 family of functions must indicate this by defining 80 _POSIX_SEMAPHORES. */ 81#ifdef _POSIX_SEMAPHORES 82/* On FreeBSD 4.x, _POSIX_SEMAPHORES is defined empty, so 83 we need to add 0 to make it work there as well. */ 84#if (_POSIX_SEMAPHORES+0) == -1 85#define HAVE_BROKEN_POSIX_SEMAPHORES 86#else 87#include <semaphore.h> 88#include <errno.h> 89#endif 90#endif 91 92 93/* Whether or not to use semaphores directly rather than emulating them with 94 * mutexes and condition variables: 95 */ 96#if (defined(_POSIX_SEMAPHORES) && !defined(HAVE_BROKEN_POSIX_SEMAPHORES) && \ 97 (defined(HAVE_SEM_TIMEDWAIT) || defined(HAVE_SEM_CLOCKWAIT))) 98# define USE_SEMAPHORES 99#else 100# undef USE_SEMAPHORES 101#endif 102 103 104/* On platforms that don't use standard POSIX threads pthread_sigmask() 105 * isn't present. DEC threads uses sigprocmask() instead as do most 106 * other UNIX International compliant systems that don't have the full 107 * pthread implementation. 108 */ 109#if defined(HAVE_PTHREAD_SIGMASK) && !defined(HAVE_BROKEN_PTHREAD_SIGMASK) 110# define SET_THREAD_SIGMASK pthread_sigmask 111#else 112# define SET_THREAD_SIGMASK sigprocmask 113#endif 114 115 116#define MICROSECONDS_TO_TIMESPEC(microseconds, ts) \ 117do { \ 118 struct timeval tv; \ 119 gettimeofday(&tv, NULL); \ 120 tv.tv_usec += microseconds % 1000000; \ 121 tv.tv_sec += microseconds / 1000000; \ 122 tv.tv_sec += tv.tv_usec / 1000000; \ 123 tv.tv_usec %= 1000000; \ 124 ts.tv_sec = tv.tv_sec; \ 125 ts.tv_nsec = tv.tv_usec * 1000; \ 126} while(0) 127 128 129/* 130 * pthread_cond support 131 */ 132 133#if defined(HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined(HAVE_CLOCK_GETTIME) && defined(CLOCK_MONOTONIC) 134// monotonic is supported statically. It doesn't mean it works on runtime. 135#define CONDATTR_MONOTONIC 136#endif 137 138// NULL when pthread_condattr_setclock(CLOCK_MONOTONIC) is not supported. 139static pthread_condattr_t *condattr_monotonic = NULL; 140 141static void 142init_condattr(void) 143{ 144#ifdef CONDATTR_MONOTONIC 145 static pthread_condattr_t ca; 146 pthread_condattr_init(&ca); 147 if (pthread_condattr_setclock(&ca, CLOCK_MONOTONIC) == 0) { 148 condattr_monotonic = &ca; // Use monotonic clock 149 } 150#endif 151} 152 153int 154_PyThread_cond_init(PyCOND_T *cond) 155{ 156 return pthread_cond_init(cond, condattr_monotonic); 157} 158 159void 160_PyThread_cond_after(long long us, struct timespec *abs) 161{ 162#ifdef CONDATTR_MONOTONIC 163 if (condattr_monotonic) { 164 clock_gettime(CLOCK_MONOTONIC, abs); 165 abs->tv_sec += us / 1000000; 166 abs->tv_nsec += (us % 1000000) * 1000; 167 abs->tv_sec += abs->tv_nsec / 1000000000; 168 abs->tv_nsec %= 1000000000; 169 return; 170 } 171#endif 172 173 struct timespec ts; 174 MICROSECONDS_TO_TIMESPEC(us, ts); 175 *abs = ts; 176} 177 178 179/* A pthread mutex isn't sufficient to model the Python lock type 180 * because, according to Draft 5 of the docs (P1003.4a/D5), both of the 181 * following are undefined: 182 * -> a thread tries to lock a mutex it already has locked 183 * -> a thread tries to unlock a mutex locked by a different thread 184 * pthread mutexes are designed for serializing threads over short pieces 185 * of code anyway, so wouldn't be an appropriate implementation of 186 * Python's locks regardless. 187 * 188 * The pthread_lock struct implements a Python lock as a "locked?" bit 189 * and a <condition, mutex> pair. In general, if the bit can be acquired 190 * instantly, it is, else the pair is used to block the thread until the 191 * bit is cleared. 9 May 1994 tim@ksr.com 192 */ 193 194typedef struct { 195 char locked; /* 0=unlocked, 1=locked */ 196 /* a <cond, mutex> pair to handle an acquire of a locked lock */ 197 pthread_cond_t lock_released; 198 pthread_mutex_t mut; 199} pthread_lock; 200 201#define CHECK_STATUS(name) if (status != 0) { perror(name); error = 1; } 202#define CHECK_STATUS_PTHREAD(name) if (status != 0) { fprintf(stderr, \ 203 "%s: %s\n", name, strerror(status)); error = 1; } 204 205/* 206 * Initialization. 207 */ 208static void 209PyThread__init_thread(void) 210{ 211#if defined(_AIX) && defined(__GNUC__) 212 extern void pthread_init(void); 213 pthread_init(); 214#endif 215 init_condattr(); 216} 217 218/* 219 * Thread support. 220 */ 221 222/* bpo-33015: pythread_callback struct and pythread_wrapper() cast 223 "void func(void *)" to "void* func(void *)": always return NULL. 224 225 PyThread_start_new_thread() uses "void func(void *)" type, whereas 226 pthread_create() requires a void* return value. */ 227typedef struct { 228 void (*func) (void *); 229 void *arg; 230} pythread_callback; 231 232static void * 233pythread_wrapper(void *arg) 234{ 235 /* copy func and func_arg and free the temporary structure */ 236 pythread_callback *callback = arg; 237 void (*func)(void *) = callback->func; 238 void *func_arg = callback->arg; 239 PyMem_RawFree(arg); 240 241 func(func_arg); 242 return NULL; 243} 244 245unsigned long 246PyThread_start_new_thread(void (*func)(void *), void *arg) 247{ 248 pthread_t th; 249 int status; 250#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) 251 pthread_attr_t attrs; 252#endif 253#if defined(THREAD_STACK_SIZE) 254 size_t tss; 255#endif 256 257 dprintf(("PyThread_start_new_thread called\n")); 258 if (!initialized) 259 PyThread_init_thread(); 260 261#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) 262 if (pthread_attr_init(&attrs) != 0) 263 return PYTHREAD_INVALID_THREAD_ID; 264#endif 265#if defined(THREAD_STACK_SIZE) 266 PyThreadState *tstate = _PyThreadState_GET(); 267 size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0; 268 tss = (stacksize != 0) ? stacksize : THREAD_STACK_SIZE; 269 if (tss != 0) { 270 if (pthread_attr_setstacksize(&attrs, tss) != 0) { 271 pthread_attr_destroy(&attrs); 272 return PYTHREAD_INVALID_THREAD_ID; 273 } 274 } 275#endif 276#if defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) 277 pthread_attr_setscope(&attrs, PTHREAD_SCOPE_SYSTEM); 278#endif 279 280 pythread_callback *callback = PyMem_RawMalloc(sizeof(pythread_callback)); 281 282 if (callback == NULL) { 283 return PYTHREAD_INVALID_THREAD_ID; 284 } 285 286 callback->func = func; 287 callback->arg = arg; 288 289 status = pthread_create(&th, 290#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) 291 &attrs, 292#else 293 (pthread_attr_t*)NULL, 294#endif 295 pythread_wrapper, callback); 296 297#if defined(THREAD_STACK_SIZE) || defined(PTHREAD_SYSTEM_SCHED_SUPPORTED) 298 pthread_attr_destroy(&attrs); 299#endif 300 301 if (status != 0) { 302 PyMem_RawFree(callback); 303 return PYTHREAD_INVALID_THREAD_ID; 304 } 305 306 pthread_detach(th); 307 308#if SIZEOF_PTHREAD_T <= SIZEOF_LONG 309 return (unsigned long) th; 310#else 311 return (unsigned long) *(unsigned long *) &th; 312#endif 313} 314 315/* XXX This implementation is considered (to quote Tim Peters) "inherently 316 hosed" because: 317 - It does not guarantee the promise that a non-zero integer is returned. 318 - The cast to unsigned long is inherently unsafe. 319 - It is not clear that the 'volatile' (for AIX?) are any longer necessary. 320*/ 321unsigned long 322PyThread_get_thread_ident(void) 323{ 324 volatile pthread_t threadid; 325 if (!initialized) 326 PyThread_init_thread(); 327 threadid = pthread_self(); 328 return (unsigned long) threadid; 329} 330 331#ifdef PY_HAVE_THREAD_NATIVE_ID 332unsigned long 333PyThread_get_thread_native_id(void) 334{ 335 if (!initialized) 336 PyThread_init_thread(); 337#ifdef __APPLE__ 338 uint64_t native_id; 339 (void) pthread_threadid_np(NULL, &native_id); 340#elif defined(__linux__) 341 pid_t native_id; 342 native_id = syscall(SYS_gettid); 343#elif defined(__FreeBSD__) 344 int native_id; 345 native_id = pthread_getthreadid_np(); 346#elif defined(__OpenBSD__) 347 pid_t native_id; 348 native_id = getthrid(); 349#elif defined(_AIX) 350 tid_t native_id; 351 native_id = thread_self(); 352#elif defined(__NetBSD__) 353 lwpid_t native_id; 354 native_id = _lwp_self(); 355#endif 356 return (unsigned long) native_id; 357} 358#endif 359 360void _Py_NO_RETURN 361PyThread_exit_thread(void) 362{ 363 dprintf(("PyThread_exit_thread called\n")); 364 if (!initialized) 365 exit(0); 366 pthread_exit(0); 367} 368 369#ifdef USE_SEMAPHORES 370 371/* 372 * Lock support. 373 */ 374 375PyThread_type_lock 376PyThread_allocate_lock(void) 377{ 378 sem_t *lock; 379 int status, error = 0; 380 381 dprintf(("PyThread_allocate_lock called\n")); 382 if (!initialized) 383 PyThread_init_thread(); 384 385 lock = (sem_t *)PyMem_RawMalloc(sizeof(sem_t)); 386 387 if (lock) { 388 status = sem_init(lock,0,1); 389 CHECK_STATUS("sem_init"); 390 391 if (error) { 392 PyMem_RawFree((void *)lock); 393 lock = NULL; 394 } 395 } 396 397 dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock)); 398 return (PyThread_type_lock)lock; 399} 400 401void 402PyThread_free_lock(PyThread_type_lock lock) 403{ 404 sem_t *thelock = (sem_t *)lock; 405 int status, error = 0; 406 407 (void) error; /* silence unused-but-set-variable warning */ 408 dprintf(("PyThread_free_lock(%p) called\n", lock)); 409 410 if (!thelock) 411 return; 412 413 status = sem_destroy(thelock); 414 CHECK_STATUS("sem_destroy"); 415 416 PyMem_RawFree((void *)thelock); 417} 418 419/* 420 * As of February 2002, Cygwin thread implementations mistakenly report error 421 * codes in the return value of the sem_ calls (like the pthread_ functions). 422 * Correct implementations return -1 and put the code in errno. This supports 423 * either. 424 */ 425static int 426fix_status(int status) 427{ 428 return (status == -1) ? errno : status; 429} 430 431PyLockStatus 432PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, 433 int intr_flag) 434{ 435 PyLockStatus success; 436 sem_t *thelock = (sem_t *)lock; 437 int status, error = 0; 438 439 (void) error; /* silence unused-but-set-variable warning */ 440 dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n", 441 lock, microseconds, intr_flag)); 442 443 _PyTime_t timeout; // relative timeout 444 if (microseconds >= 0) { 445 _PyTime_t ns; 446 if (microseconds <= _PyTime_MAX / 1000) { 447 ns = microseconds * 1000; 448 } 449 else { 450 // bpo-41710: PyThread_acquire_lock_timed() cannot report timeout 451 // overflow to the caller, so clamp the timeout to 452 // [_PyTime_MIN, _PyTime_MAX]. 453 // 454 // _PyTime_MAX nanoseconds is around 292.3 years. 455 // 456 // _thread.Lock.acquire() and _thread.RLock.acquire() raise an 457 // OverflowError if microseconds is greater than PY_TIMEOUT_MAX. 458 ns = _PyTime_MAX; 459 } 460 timeout = _PyTime_FromNanoseconds(ns); 461 } 462 else { 463 timeout = _PyTime_FromNanoseconds(-1); 464 } 465 466#ifdef HAVE_SEM_CLOCKWAIT 467 struct timespec abs_timeout; 468 // Local scope for deadline 469 { 470 _PyTime_t deadline = _PyTime_Add(_PyTime_GetMonotonicClock(), timeout); 471 _PyTime_AsTimespec_clamp(deadline, &abs_timeout); 472 } 473#else 474 _PyTime_t deadline = 0; 475 if (timeout > 0 && !intr_flag) { 476 deadline = _PyDeadline_Init(timeout); 477 } 478#endif 479 480 while (1) { 481 if (timeout > 0) { 482#ifdef HAVE_SEM_CLOCKWAIT 483 status = fix_status(sem_clockwait(thelock, CLOCK_MONOTONIC, 484 &abs_timeout)); 485#else 486 _PyTime_t abs_time = _PyTime_Add(_PyTime_GetSystemClock(), 487 timeout); 488 struct timespec ts; 489 _PyTime_AsTimespec_clamp(abs_time, &ts); 490 status = fix_status(sem_timedwait(thelock, &ts)); 491#endif 492 } 493 else if (timeout == 0) { 494 status = fix_status(sem_trywait(thelock)); 495 } 496 else { 497 status = fix_status(sem_wait(thelock)); 498 } 499 500 /* Retry if interrupted by a signal, unless the caller wants to be 501 notified. */ 502 if (intr_flag || status != EINTR) { 503 break; 504 } 505 506 // sem_clockwait() uses an absolute timeout, there is no need 507 // to recompute the relative timeout. 508#ifndef HAVE_SEM_CLOCKWAIT 509 if (timeout > 0) { 510 /* wait interrupted by a signal (EINTR): recompute the timeout */ 511 timeout = _PyDeadline_Get(deadline); 512 if (timeout < 0) { 513 status = ETIMEDOUT; 514 break; 515 } 516 } 517#endif 518 } 519 520 /* Don't check the status if we're stopping because of an interrupt. */ 521 if (!(intr_flag && status == EINTR)) { 522 if (timeout > 0) { 523 if (status != ETIMEDOUT) { 524#ifdef HAVE_SEM_CLOCKWAIT 525 CHECK_STATUS("sem_clockwait"); 526#else 527 CHECK_STATUS("sem_timedwait"); 528#endif 529 } 530 } 531 else if (timeout == 0) { 532 if (status != EAGAIN) { 533 CHECK_STATUS("sem_trywait"); 534 } 535 } 536 else { 537 CHECK_STATUS("sem_wait"); 538 } 539 } 540 541 if (status == 0) { 542 success = PY_LOCK_ACQUIRED; 543 } else if (intr_flag && status == EINTR) { 544 success = PY_LOCK_INTR; 545 } else { 546 success = PY_LOCK_FAILURE; 547 } 548 549 dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n", 550 lock, microseconds, intr_flag, success)); 551 return success; 552} 553 554void 555PyThread_release_lock(PyThread_type_lock lock) 556{ 557 sem_t *thelock = (sem_t *)lock; 558 int status, error = 0; 559 560 (void) error; /* silence unused-but-set-variable warning */ 561 dprintf(("PyThread_release_lock(%p) called\n", lock)); 562 563 status = sem_post(thelock); 564 CHECK_STATUS("sem_post"); 565} 566 567#else /* USE_SEMAPHORES */ 568 569/* 570 * Lock support. 571 */ 572PyThread_type_lock 573PyThread_allocate_lock(void) 574{ 575 pthread_lock *lock; 576 int status, error = 0; 577 578 dprintf(("PyThread_allocate_lock called\n")); 579 if (!initialized) 580 PyThread_init_thread(); 581 582 lock = (pthread_lock *) PyMem_RawCalloc(1, sizeof(pthread_lock)); 583 if (lock) { 584 lock->locked = 0; 585 586 status = pthread_mutex_init(&lock->mut, NULL); 587 CHECK_STATUS_PTHREAD("pthread_mutex_init"); 588 /* Mark the pthread mutex underlying a Python mutex as 589 pure happens-before. We can't simply mark the 590 Python-level mutex as a mutex because it can be 591 acquired and released in different threads, which 592 will cause errors. */ 593 _Py_ANNOTATE_PURE_HAPPENS_BEFORE_MUTEX(&lock->mut); 594 595 status = _PyThread_cond_init(&lock->lock_released); 596 CHECK_STATUS_PTHREAD("pthread_cond_init"); 597 598 if (error) { 599 PyMem_RawFree((void *)lock); 600 lock = 0; 601 } 602 } 603 604 dprintf(("PyThread_allocate_lock() -> %p\n", (void *)lock)); 605 return (PyThread_type_lock) lock; 606} 607 608void 609PyThread_free_lock(PyThread_type_lock lock) 610{ 611 pthread_lock *thelock = (pthread_lock *)lock; 612 int status, error = 0; 613 614 (void) error; /* silence unused-but-set-variable warning */ 615 dprintf(("PyThread_free_lock(%p) called\n", lock)); 616 617 /* some pthread-like implementations tie the mutex to the cond 618 * and must have the cond destroyed first. 619 */ 620 status = pthread_cond_destroy( &thelock->lock_released ); 621 CHECK_STATUS_PTHREAD("pthread_cond_destroy"); 622 623 status = pthread_mutex_destroy( &thelock->mut ); 624 CHECK_STATUS_PTHREAD("pthread_mutex_destroy"); 625 626 PyMem_RawFree((void *)thelock); 627} 628 629PyLockStatus 630PyThread_acquire_lock_timed(PyThread_type_lock lock, PY_TIMEOUT_T microseconds, 631 int intr_flag) 632{ 633 PyLockStatus success = PY_LOCK_FAILURE; 634 pthread_lock *thelock = (pthread_lock *)lock; 635 int status, error = 0; 636 637 dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) called\n", 638 lock, microseconds, intr_flag)); 639 640 if (microseconds == 0) { 641 status = pthread_mutex_trylock( &thelock->mut ); 642 if (status != EBUSY) 643 CHECK_STATUS_PTHREAD("pthread_mutex_trylock[1]"); 644 } 645 else { 646 status = pthread_mutex_lock( &thelock->mut ); 647 CHECK_STATUS_PTHREAD("pthread_mutex_lock[1]"); 648 } 649 if (status == 0) { 650 if (thelock->locked == 0) { 651 success = PY_LOCK_ACQUIRED; 652 } 653 else if (microseconds != 0) { 654 struct timespec abs; 655 if (microseconds > 0) { 656 _PyThread_cond_after(microseconds, &abs); 657 } 658 /* continue trying until we get the lock */ 659 660 /* mut must be locked by me -- part of the condition 661 * protocol */ 662 while (success == PY_LOCK_FAILURE) { 663 if (microseconds > 0) { 664 status = pthread_cond_timedwait( 665 &thelock->lock_released, 666 &thelock->mut, &abs); 667 if (status == 1) { 668 break; 669 } 670 if (status == ETIMEDOUT) 671 break; 672 CHECK_STATUS_PTHREAD("pthread_cond_timedwait"); 673 } 674 else { 675 status = pthread_cond_wait( 676 &thelock->lock_released, 677 &thelock->mut); 678 CHECK_STATUS_PTHREAD("pthread_cond_wait"); 679 } 680 681 if (intr_flag && status == 0 && thelock->locked) { 682 /* We were woken up, but didn't get the lock. We probably received 683 * a signal. Return PY_LOCK_INTR to allow the caller to handle 684 * it and retry. */ 685 success = PY_LOCK_INTR; 686 break; 687 } 688 else if (status == 0 && !thelock->locked) { 689 success = PY_LOCK_ACQUIRED; 690 } 691 } 692 } 693 if (success == PY_LOCK_ACQUIRED) thelock->locked = 1; 694 status = pthread_mutex_unlock( &thelock->mut ); 695 CHECK_STATUS_PTHREAD("pthread_mutex_unlock[1]"); 696 } 697 698 if (error) success = PY_LOCK_FAILURE; 699 dprintf(("PyThread_acquire_lock_timed(%p, %lld, %d) -> %d\n", 700 lock, microseconds, intr_flag, success)); 701 return success; 702} 703 704void 705PyThread_release_lock(PyThread_type_lock lock) 706{ 707 pthread_lock *thelock = (pthread_lock *)lock; 708 int status, error = 0; 709 710 (void) error; /* silence unused-but-set-variable warning */ 711 dprintf(("PyThread_release_lock(%p) called\n", lock)); 712 713 status = pthread_mutex_lock( &thelock->mut ); 714 CHECK_STATUS_PTHREAD("pthread_mutex_lock[3]"); 715 716 thelock->locked = 0; 717 718 /* wake up someone (anyone, if any) waiting on the lock */ 719 status = pthread_cond_signal( &thelock->lock_released ); 720 CHECK_STATUS_PTHREAD("pthread_cond_signal"); 721 722 status = pthread_mutex_unlock( &thelock->mut ); 723 CHECK_STATUS_PTHREAD("pthread_mutex_unlock[3]"); 724} 725 726#endif /* USE_SEMAPHORES */ 727 728int 729_PyThread_at_fork_reinit(PyThread_type_lock *lock) 730{ 731 PyThread_type_lock new_lock = PyThread_allocate_lock(); 732 if (new_lock == NULL) { 733 return -1; 734 } 735 736 /* bpo-6721, bpo-40089: The old lock can be in an inconsistent state. 737 fork() can be called in the middle of an operation on the lock done by 738 another thread. So don't call PyThread_free_lock(*lock). 739 740 Leak memory on purpose. Don't release the memory either since the 741 address of a mutex is relevant. Putting two mutexes at the same address 742 can lead to problems. */ 743 744 *lock = new_lock; 745 return 0; 746} 747 748int 749PyThread_acquire_lock(PyThread_type_lock lock, int waitflag) 750{ 751 return PyThread_acquire_lock_timed(lock, waitflag ? -1 : 0, /*intr_flag=*/0); 752} 753 754/* set the thread stack size. 755 * Return 0 if size is valid, -1 if size is invalid, 756 * -2 if setting stack size is not supported. 757 */ 758static int 759_pythread_pthread_set_stacksize(size_t size) 760{ 761#if defined(THREAD_STACK_SIZE) 762 pthread_attr_t attrs; 763 size_t tss_min; 764 int rc = 0; 765#endif 766 767 /* set to default */ 768 if (size == 0) { 769 _PyInterpreterState_GET()->threads.stacksize = 0; 770 return 0; 771 } 772 773#if defined(THREAD_STACK_SIZE) 774#if defined(PTHREAD_STACK_MIN) 775 tss_min = PTHREAD_STACK_MIN > THREAD_STACK_MIN ? PTHREAD_STACK_MIN 776 : THREAD_STACK_MIN; 777#else 778 tss_min = THREAD_STACK_MIN; 779#endif 780 if (size >= tss_min) { 781 /* validate stack size by setting thread attribute */ 782 if (pthread_attr_init(&attrs) == 0) { 783 rc = pthread_attr_setstacksize(&attrs, size); 784 pthread_attr_destroy(&attrs); 785 if (rc == 0) { 786 _PyInterpreterState_GET()->threads.stacksize = size; 787 return 0; 788 } 789 } 790 } 791 return -1; 792#else 793 return -2; 794#endif 795} 796 797#define THREAD_SET_STACKSIZE(x) _pythread_pthread_set_stacksize(x) 798 799 800/* Thread Local Storage (TLS) API 801 802 This API is DEPRECATED since Python 3.7. See PEP 539 for details. 803*/ 804 805/* Issue #25658: On platforms where native TLS key is defined in a way that 806 cannot be safely cast to int, PyThread_create_key returns immediately a 807 failure status and other TLS functions all are no-ops. This indicates 808 clearly that the old API is not supported on platforms where it cannot be 809 used reliably, and that no effort will be made to add such support. 810 811 Note: PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT will be unnecessary after 812 removing this API. 813*/ 814 815int 816PyThread_create_key(void) 817{ 818#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT 819 pthread_key_t key; 820 int fail = pthread_key_create(&key, NULL); 821 if (fail) 822 return -1; 823 if (key > INT_MAX) { 824 /* Issue #22206: handle integer overflow */ 825 pthread_key_delete(key); 826 errno = ENOMEM; 827 return -1; 828 } 829 return (int)key; 830#else 831 return -1; /* never return valid key value. */ 832#endif 833} 834 835void 836PyThread_delete_key(int key) 837{ 838#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT 839 pthread_key_delete(key); 840#endif 841} 842 843void 844PyThread_delete_key_value(int key) 845{ 846#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT 847 pthread_setspecific(key, NULL); 848#endif 849} 850 851int 852PyThread_set_key_value(int key, void *value) 853{ 854#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT 855 int fail = pthread_setspecific(key, value); 856 return fail ? -1 : 0; 857#else 858 return -1; 859#endif 860} 861 862void * 863PyThread_get_key_value(int key) 864{ 865#ifdef PTHREAD_KEY_T_IS_COMPATIBLE_WITH_INT 866 return pthread_getspecific(key); 867#else 868 return NULL; 869#endif 870} 871 872 873void 874PyThread_ReInitTLS(void) 875{ 876} 877 878 879/* Thread Specific Storage (TSS) API 880 881 Platform-specific components of TSS API implementation. 882*/ 883 884int 885PyThread_tss_create(Py_tss_t *key) 886{ 887 assert(key != NULL); 888 /* If the key has been created, function is silently skipped. */ 889 if (key->_is_initialized) { 890 return 0; 891 } 892 893 int fail = pthread_key_create(&(key->_key), NULL); 894 if (fail) { 895 return -1; 896 } 897 key->_is_initialized = 1; 898 return 0; 899} 900 901void 902PyThread_tss_delete(Py_tss_t *key) 903{ 904 assert(key != NULL); 905 /* If the key has not been created, function is silently skipped. */ 906 if (!key->_is_initialized) { 907 return; 908 } 909 910 pthread_key_delete(key->_key); 911 /* pthread has not provided the defined invalid value for the key. */ 912 key->_is_initialized = 0; 913} 914 915int 916PyThread_tss_set(Py_tss_t *key, void *value) 917{ 918 assert(key != NULL); 919 int fail = pthread_setspecific(key->_key, value); 920 return fail ? -1 : 0; 921} 922 923void * 924PyThread_tss_get(Py_tss_t *key) 925{ 926 assert(key != NULL); 927 return pthread_getspecific(key->_key); 928} 929