xref: /third_party/python/Python/thread_nt.h (revision 7db96d56)
1#include "pycore_interp.h"    // _PyInterpreterState.threads.stacksize
2
3/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
4/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
5/* Eliminated some memory leaks, gsw@agere.com */
6
7#include <windows.h>
8#include <limits.h>
9#ifdef HAVE_PROCESS_H
10#include <process.h>
11#endif
12
13/* options */
14#ifndef _PY_USE_CV_LOCKS
15#define _PY_USE_CV_LOCKS 1     /* use locks based on cond vars */
16#endif
17
18/* Now, define a non-recursive mutex using either condition variables
19 * and critical sections (fast) or using operating system mutexes
20 * (slow)
21 */
22
23#if _PY_USE_CV_LOCKS
24
25#include "condvar.h"
26
27typedef struct _NRMUTEX
28{
29    PyMUTEX_T cs;
30    PyCOND_T cv;
31    int locked;
32} NRMUTEX;
33typedef NRMUTEX *PNRMUTEX;
34
35static PNRMUTEX
36AllocNonRecursiveMutex(void)
37{
38    PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
39    if (!m)
40        return NULL;
41    if (PyCOND_INIT(&m->cv))
42        goto fail;
43    if (PyMUTEX_INIT(&m->cs)) {
44        PyCOND_FINI(&m->cv);
45        goto fail;
46    }
47    m->locked = 0;
48    return m;
49fail:
50    PyMem_RawFree(m);
51    return NULL;
52}
53
54static VOID
55FreeNonRecursiveMutex(PNRMUTEX mutex)
56{
57    if (mutex) {
58        PyCOND_FINI(&mutex->cv);
59        PyMUTEX_FINI(&mutex->cs);
60        PyMem_RawFree(mutex);
61    }
62}
63
64static DWORD
65EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
66{
67    DWORD result = WAIT_OBJECT_0;
68    if (PyMUTEX_LOCK(&mutex->cs))
69        return WAIT_FAILED;
70    if (milliseconds == INFINITE) {
71        while (mutex->locked) {
72            if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
73                result = WAIT_FAILED;
74                break;
75            }
76        }
77    } else if (milliseconds != 0) {
78        /* wait at least until the deadline */
79        _PyTime_t nanoseconds = _PyTime_FromNanoseconds((_PyTime_t)milliseconds * 1000000);
80        _PyTime_t deadline = _PyTime_Add(_PyTime_GetPerfCounter(), nanoseconds);
81        while (mutex->locked) {
82            _PyTime_t microseconds = _PyTime_AsMicroseconds(nanoseconds,
83                                                            _PyTime_ROUND_TIMEOUT);
84            if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, microseconds) < 0) {
85                result = WAIT_FAILED;
86                break;
87            }
88            nanoseconds = deadline - _PyTime_GetPerfCounter();
89            if (nanoseconds <= 0) {
90                break;
91            }
92        }
93    }
94    if (!mutex->locked) {
95        mutex->locked = 1;
96        result = WAIT_OBJECT_0;
97    } else if (result == WAIT_OBJECT_0)
98        result = WAIT_TIMEOUT;
99    /* else, it is WAIT_FAILED */
100    PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
101    return result;
102}
103
104static BOOL
105LeaveNonRecursiveMutex(PNRMUTEX mutex)
106{
107    BOOL result;
108    if (PyMUTEX_LOCK(&mutex->cs))
109        return FALSE;
110    mutex->locked = 0;
111    /* condvar APIs return 0 on success. We need to return TRUE on success. */
112    result = !PyCOND_SIGNAL(&mutex->cv);
113    PyMUTEX_UNLOCK(&mutex->cs);
114    return result;
115}
116
117#else /* if ! _PY_USE_CV_LOCKS */
118
119/* NR-locks based on a kernel mutex */
120#define PNRMUTEX HANDLE
121
122static PNRMUTEX
123AllocNonRecursiveMutex(void)
124{
125    return CreateSemaphore(NULL, 1, 1, NULL);
126}
127
128static VOID
129FreeNonRecursiveMutex(PNRMUTEX mutex)
130{
131    /* No in-use check */
132    CloseHandle(mutex);
133}
134
135static DWORD
136EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
137{
138    return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
139}
140
141static BOOL
142LeaveNonRecursiveMutex(PNRMUTEX mutex)
143{
144    return ReleaseSemaphore(mutex, 1, NULL);
145}
146#endif /* _PY_USE_CV_LOCKS */
147
148unsigned long PyThread_get_thread_ident(void);
149
150#ifdef PY_HAVE_THREAD_NATIVE_ID
151unsigned long PyThread_get_thread_native_id(void);
152#endif
153
154/*
155 * Initialization of the C package, should not be needed.
156 */
157static void
158PyThread__init_thread(void)
159{
160}
161
162/*
163 * Thread support.
164 */
165
166typedef struct {
167    void (*func)(void*);
168    void *arg;
169} callobj;
170
171/* thunker to call adapt between the function type used by the system's
172thread start function and the internally used one. */
173static unsigned __stdcall
174bootstrap(void *call)
175{
176    callobj *obj = (callobj*)call;
177    void (*func)(void*) = obj->func;
178    void *arg = obj->arg;
179    HeapFree(GetProcessHeap(), 0, obj);
180    func(arg);
181    return 0;
182}
183
184unsigned long
185PyThread_start_new_thread(void (*func)(void *), void *arg)
186{
187    HANDLE hThread;
188    unsigned threadID;
189    callobj *obj;
190
191    dprintf(("%lu: PyThread_start_new_thread called\n",
192             PyThread_get_thread_ident()));
193    if (!initialized)
194        PyThread_init_thread();
195
196    obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
197    if (!obj)
198        return PYTHREAD_INVALID_THREAD_ID;
199    obj->func = func;
200    obj->arg = arg;
201    PyThreadState *tstate = _PyThreadState_GET();
202    size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0;
203    hThread = (HANDLE)_beginthreadex(0,
204                      Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int),
205                      bootstrap, obj,
206                      0, &threadID);
207    if (hThread == 0) {
208        /* I've seen errno == EAGAIN here, which means "there are
209         * too many threads".
210         */
211        int e = errno;
212        dprintf(("%lu: PyThread_start_new_thread failed, errno %d\n",
213                 PyThread_get_thread_ident(), e));
214        threadID = (unsigned)-1;
215        HeapFree(GetProcessHeap(), 0, obj);
216    }
217    else {
218        dprintf(("%lu: PyThread_start_new_thread succeeded: %p\n",
219                 PyThread_get_thread_ident(), (void*)hThread));
220        CloseHandle(hThread);
221    }
222    return threadID;
223}
224
225/*
226 * Return the thread Id instead of a handle. The Id is said to uniquely identify the
227 * thread in the system
228 */
229unsigned long
230PyThread_get_thread_ident(void)
231{
232    if (!initialized)
233        PyThread_init_thread();
234
235    return GetCurrentThreadId();
236}
237
238#ifdef PY_HAVE_THREAD_NATIVE_ID
239/*
240 * Return the native Thread ID (TID) of the calling thread.
241 * The native ID of a thread is valid and guaranteed to be unique system-wide
242 * from the time the thread is created until the thread has been terminated.
243 */
244unsigned long
245PyThread_get_thread_native_id(void)
246{
247    if (!initialized) {
248        PyThread_init_thread();
249    }
250
251    DWORD native_id;
252    native_id = GetCurrentThreadId();
253    return (unsigned long) native_id;
254}
255#endif
256
257void _Py_NO_RETURN
258PyThread_exit_thread(void)
259{
260    dprintf(("%lu: PyThread_exit_thread called\n", PyThread_get_thread_ident()));
261    if (!initialized)
262        exit(0);
263    _endthreadex(0);
264}
265
266/*
267 * Lock support. It has to be implemented as semaphores.
268 * I [Dag] tried to implement it with mutex but I could find a way to
269 * tell whether a thread already own the lock or not.
270 */
271PyThread_type_lock
272PyThread_allocate_lock(void)
273{
274    PNRMUTEX aLock;
275
276    dprintf(("PyThread_allocate_lock called\n"));
277    if (!initialized)
278        PyThread_init_thread();
279
280    aLock = AllocNonRecursiveMutex() ;
281
282    dprintf(("%lu: PyThread_allocate_lock() -> %p\n", PyThread_get_thread_ident(), aLock));
283
284    return (PyThread_type_lock) aLock;
285}
286
287void
288PyThread_free_lock(PyThread_type_lock aLock)
289{
290    dprintf(("%lu: PyThread_free_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
291
292    FreeNonRecursiveMutex(aLock) ;
293}
294
295// WaitForSingleObject() accepts timeout in milliseconds in the range
296// [0; 0xFFFFFFFE] (DWORD type). INFINITE value (0xFFFFFFFF) means no
297// timeout. 0xFFFFFFFE milliseconds is around 49.7 days.
298const DWORD TIMEOUT_MS_MAX = 0xFFFFFFFE;
299
300/*
301 * Return 1 on success if the lock was acquired
302 *
303 * and 0 if the lock was not acquired. This means a 0 is returned
304 * if the lock has already been acquired by this thread!
305 */
306PyLockStatus
307PyThread_acquire_lock_timed(PyThread_type_lock aLock,
308                            PY_TIMEOUT_T microseconds, int intr_flag)
309{
310    /* Fow now, intr_flag does nothing on Windows, and lock acquires are
311     * uninterruptible.  */
312    PyLockStatus success;
313    PY_TIMEOUT_T milliseconds;
314
315    if (microseconds >= 0) {
316        milliseconds = microseconds / 1000;
317        // Round milliseconds away from zero
318        if (microseconds % 1000 > 0) {
319            milliseconds++;
320        }
321        if (milliseconds > (PY_TIMEOUT_T)TIMEOUT_MS_MAX) {
322            // bpo-41710: PyThread_acquire_lock_timed() cannot report timeout
323            // overflow to the caller, so clamp the timeout to
324            // [0, TIMEOUT_MS_MAX] milliseconds.
325            //
326            // _thread.Lock.acquire() and _thread.RLock.acquire() raise an
327            // OverflowError if microseconds is greater than PY_TIMEOUT_MAX.
328            milliseconds = TIMEOUT_MS_MAX;
329        }
330        assert(milliseconds != INFINITE);
331    }
332    else {
333        milliseconds = INFINITE;
334    }
335
336    dprintf(("%lu: PyThread_acquire_lock_timed(%p, %lld) called\n",
337             PyThread_get_thread_ident(), aLock, microseconds));
338
339    if (aLock && EnterNonRecursiveMutex((PNRMUTEX)aLock,
340                                        (DWORD)milliseconds) == WAIT_OBJECT_0) {
341        success = PY_LOCK_ACQUIRED;
342    }
343    else {
344        success = PY_LOCK_FAILURE;
345    }
346
347    dprintf(("%lu: PyThread_acquire_lock(%p, %lld) -> %d\n",
348             PyThread_get_thread_ident(), aLock, microseconds, success));
349
350    return success;
351}
352int
353PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
354{
355    return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
356}
357
358void
359PyThread_release_lock(PyThread_type_lock aLock)
360{
361    dprintf(("%lu: PyThread_release_lock(%p) called\n", PyThread_get_thread_ident(),aLock));
362
363    if (!(aLock && LeaveNonRecursiveMutex((PNRMUTEX) aLock)))
364        dprintf(("%lu: Could not PyThread_release_lock(%p) error: %ld\n", PyThread_get_thread_ident(), aLock, GetLastError()));
365}
366
367/* minimum/maximum thread stack sizes supported */
368#define THREAD_MIN_STACKSIZE    0x8000          /* 32 KiB */
369#define THREAD_MAX_STACKSIZE    0x10000000      /* 256 MiB */
370
371/* set the thread stack size.
372 * Return 0 if size is valid, -1 otherwise.
373 */
374static int
375_pythread_nt_set_stacksize(size_t size)
376{
377    /* set to default */
378    if (size == 0) {
379        _PyInterpreterState_GET()->threads.stacksize = 0;
380        return 0;
381    }
382
383    /* valid range? */
384    if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
385        _PyInterpreterState_GET()->threads.stacksize = size;
386        return 0;
387    }
388
389    return -1;
390}
391
392#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
393
394
395/* Thread Local Storage (TLS) API
396
397   This API is DEPRECATED since Python 3.7.  See PEP 539 for details.
398*/
399
400int
401PyThread_create_key(void)
402{
403    DWORD result = TlsAlloc();
404    if (result == TLS_OUT_OF_INDEXES)
405        return -1;
406    return (int)result;
407}
408
409void
410PyThread_delete_key(int key)
411{
412    TlsFree(key);
413}
414
415int
416PyThread_set_key_value(int key, void *value)
417{
418    BOOL ok = TlsSetValue(key, value);
419    return ok ? 0 : -1;
420}
421
422void *
423PyThread_get_key_value(int key)
424{
425    /* because TLS is used in the Py_END_ALLOW_THREAD macro,
426     * it is necessary to preserve the windows error state, because
427     * it is assumed to be preserved across the call to the macro.
428     * Ideally, the macro should be fixed, but it is simpler to
429     * do it here.
430     */
431    DWORD error = GetLastError();
432    void *result = TlsGetValue(key);
433    SetLastError(error);
434    return result;
435}
436
437void
438PyThread_delete_key_value(int key)
439{
440    /* NULL is used as "key missing", and it is also the default
441     * given by TlsGetValue() if nothing has been set yet.
442     */
443    TlsSetValue(key, NULL);
444}
445
446
447/* reinitialization of TLS is not necessary after fork when using
448 * the native TLS functions.  And forking isn't supported on Windows either.
449 */
450void
451PyThread_ReInitTLS(void)
452{
453}
454
455
456/* Thread Specific Storage (TSS) API
457
458   Platform-specific components of TSS API implementation.
459*/
460
461int
462PyThread_tss_create(Py_tss_t *key)
463{
464    assert(key != NULL);
465    /* If the key has been created, function is silently skipped. */
466    if (key->_is_initialized) {
467        return 0;
468    }
469
470    DWORD result = TlsAlloc();
471    if (result == TLS_OUT_OF_INDEXES) {
472        return -1;
473    }
474    /* In Windows, platform-specific key type is DWORD. */
475    key->_key = result;
476    key->_is_initialized = 1;
477    return 0;
478}
479
480void
481PyThread_tss_delete(Py_tss_t *key)
482{
483    assert(key != NULL);
484    /* If the key has not been created, function is silently skipped. */
485    if (!key->_is_initialized) {
486        return;
487    }
488
489    TlsFree(key->_key);
490    key->_key = TLS_OUT_OF_INDEXES;
491    key->_is_initialized = 0;
492}
493
494int
495PyThread_tss_set(Py_tss_t *key, void *value)
496{
497    assert(key != NULL);
498    BOOL ok = TlsSetValue(key->_key, value);
499    return ok ? 0 : -1;
500}
501
502void *
503PyThread_tss_get(Py_tss_t *key)
504{
505    assert(key != NULL);
506    /* because TSS is used in the Py_END_ALLOW_THREAD macro,
507     * it is necessary to preserve the windows error state, because
508     * it is assumed to be preserved across the call to the macro.
509     * Ideally, the macro should be fixed, but it is simpler to
510     * do it here.
511     */
512    DWORD error = GetLastError();
513    void *result = TlsGetValue(key->_key);
514    SetLastError(error);
515    return result;
516}
517