xref: /third_party/python/Modules/gcmodule.c (revision 7db96d56)
1/*
2
3  Reference Cycle Garbage Collection
4  ==================================
5
6  Neil Schemenauer <nas@arctrix.com>
7
8  Based on a post on the python-dev list.  Ideas from Guido van Rossum,
9  Eric Tiedemann, and various others.
10
11  http://www.arctrix.com/nas/python/gc/
12
13  The following mailing list threads provide a historical perspective on
14  the design of this module.  Note that a fair amount of refinement has
15  occurred since those discussions.
16
17  http://mail.python.org/pipermail/python-dev/2000-March/002385.html
18  http://mail.python.org/pipermail/python-dev/2000-March/002434.html
19  http://mail.python.org/pipermail/python-dev/2000-March/002497.html
20
21  For a highlevel view of the collection process, read the collect
22  function.
23
24*/
25
26#include "Python.h"
27#include "pycore_context.h"
28#include "pycore_initconfig.h"
29#include "pycore_interp.h"      // PyInterpreterState.gc
30#include "pycore_object.h"
31#include "pycore_pyerrors.h"
32#include "pycore_pystate.h"     // _PyThreadState_GET()
33#include "pydtrace.h"
34
35typedef struct _gc_runtime_state GCState;
36
37/*[clinic input]
38module gc
39[clinic start generated code]*/
40/*[clinic end generated code: output=da39a3ee5e6b4b0d input=b5c9690ecc842d79]*/
41
42
43#ifdef Py_DEBUG
44#  define GC_DEBUG
45#endif
46
47#define GC_NEXT _PyGCHead_NEXT
48#define GC_PREV _PyGCHead_PREV
49
50// update_refs() set this bit for all objects in current generation.
51// subtract_refs() and move_unreachable() uses this to distinguish
52// visited object is in GCing or not.
53//
54// move_unreachable() removes this flag from reachable objects.
55// Only unreachable objects have this flag.
56//
57// No objects in interpreter have this flag after GC ends.
58#define PREV_MASK_COLLECTING   _PyGC_PREV_MASK_COLLECTING
59
60// Lowest bit of _gc_next is used for UNREACHABLE flag.
61//
62// This flag represents the object is in unreachable list in move_unreachable()
63//
64// Although this flag is used only in move_unreachable(), move_unreachable()
65// doesn't clear this flag to skip unnecessary iteration.
66// move_legacy_finalizers() removes this flag instead.
67// Between them, unreachable list is not normal list and we can not use
68// most gc_list_* functions for it.
69#define NEXT_MASK_UNREACHABLE  (1)
70
71/* Get an object's GC head */
72#define AS_GC(o) ((PyGC_Head *)(((char *)(o))-sizeof(PyGC_Head)))
73
74/* Get the object given the GC head */
75#define FROM_GC(g) ((PyObject *)(((char *)(g))+sizeof(PyGC_Head)))
76
77static inline int
78gc_is_collecting(PyGC_Head *g)
79{
80    return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
81}
82
83static inline void
84gc_clear_collecting(PyGC_Head *g)
85{
86    g->_gc_prev &= ~PREV_MASK_COLLECTING;
87}
88
89static inline Py_ssize_t
90gc_get_refs(PyGC_Head *g)
91{
92    return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
93}
94
95static inline void
96gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
97{
98    g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
99        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
100}
101
102static inline void
103gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
104{
105    g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
106        | PREV_MASK_COLLECTING
107        | ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
108}
109
110static inline void
111gc_decref(PyGC_Head *g)
112{
113    _PyObject_ASSERT_WITH_MSG(FROM_GC(g),
114                              gc_get_refs(g) > 0,
115                              "refcount is too small");
116    g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
117}
118
119/* set for debugging information */
120#define DEBUG_STATS             (1<<0) /* print collection statistics */
121#define DEBUG_COLLECTABLE       (1<<1) /* print collectable objects */
122#define DEBUG_UNCOLLECTABLE     (1<<2) /* print uncollectable objects */
123#define DEBUG_SAVEALL           (1<<5) /* save all garbage in gc.garbage */
124#define DEBUG_LEAK              DEBUG_COLLECTABLE | \
125                DEBUG_UNCOLLECTABLE | \
126                DEBUG_SAVEALL
127
128#define GEN_HEAD(gcstate, n) (&(gcstate)->generations[n].head)
129
130
131static GCState *
132get_gc_state(void)
133{
134    PyInterpreterState *interp = _PyInterpreterState_GET();
135    return &interp->gc;
136}
137
138
139void
140_PyGC_InitState(GCState *gcstate)
141{
142#define INIT_HEAD(GEN) \
143    do { \
144        GEN.head._gc_next = (uintptr_t)&GEN.head; \
145        GEN.head._gc_prev = (uintptr_t)&GEN.head; \
146    } while (0)
147
148    for (int i = 0; i < NUM_GENERATIONS; i++) {
149        assert(gcstate->generations[i].count == 0);
150        INIT_HEAD(gcstate->generations[i]);
151    };
152    gcstate->generation0 = GEN_HEAD(gcstate, 0);
153    INIT_HEAD(gcstate->permanent_generation);
154
155#undef INIT_HEAD
156}
157
158
159PyStatus
160_PyGC_Init(PyInterpreterState *interp)
161{
162    GCState *gcstate = &interp->gc;
163
164    gcstate->garbage = PyList_New(0);
165    if (gcstate->garbage == NULL) {
166        return _PyStatus_NO_MEMORY();
167    }
168
169    gcstate->callbacks = PyList_New(0);
170    if (gcstate->callbacks == NULL) {
171        return _PyStatus_NO_MEMORY();
172    }
173
174    return _PyStatus_OK();
175}
176
177
178/*
179_gc_prev values
180---------------
181
182Between collections, _gc_prev is used for doubly linked list.
183
184Lowest two bits of _gc_prev are used for flags.
185PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
186or _PyObject_GC_UNTRACK() is called.
187
188During a collection, _gc_prev is temporary used for gc_refs, and the gc list
189is singly linked until _gc_prev is restored.
190
191gc_refs
192    At the start of a collection, update_refs() copies the true refcount
193    to gc_refs, for each object in the generation being collected.
194    subtract_refs() then adjusts gc_refs so that it equals the number of
195    times an object is referenced directly from outside the generation
196    being collected.
197
198PREV_MASK_COLLECTING
199    Objects in generation being collected are marked PREV_MASK_COLLECTING in
200    update_refs().
201
202
203_gc_next values
204---------------
205
206_gc_next takes these values:
207
2080
209    The object is not tracked
210
211!= 0
212    Pointer to the next object in the GC list.
213    Additionally, lowest bit is used temporary for
214    NEXT_MASK_UNREACHABLE flag described below.
215
216NEXT_MASK_UNREACHABLE
217    move_unreachable() then moves objects not reachable (whether directly or
218    indirectly) from outside the generation into an "unreachable" set and
219    set this flag.
220
221    Objects that are found to be reachable have gc_refs set to 1.
222    When this flag is set for the reachable object, the object must be in
223    "unreachable" set.
224    The flag is unset and the object is moved back to "reachable" set.
225
226    move_legacy_finalizers() will remove this flag from "unreachable" set.
227*/
228
229/*** list functions ***/
230
231static inline void
232gc_list_init(PyGC_Head *list)
233{
234    // List header must not have flags.
235    // We can assign pointer by simple cast.
236    list->_gc_prev = (uintptr_t)list;
237    list->_gc_next = (uintptr_t)list;
238}
239
240static inline int
241gc_list_is_empty(PyGC_Head *list)
242{
243    return (list->_gc_next == (uintptr_t)list);
244}
245
246/* Append `node` to `list`. */
247static inline void
248gc_list_append(PyGC_Head *node, PyGC_Head *list)
249{
250    PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
251
252    // last <-> node
253    _PyGCHead_SET_PREV(node, last);
254    _PyGCHead_SET_NEXT(last, node);
255
256    // node <-> list
257    _PyGCHead_SET_NEXT(node, list);
258    list->_gc_prev = (uintptr_t)node;
259}
260
261/* Remove `node` from the gc list it's currently in. */
262static inline void
263gc_list_remove(PyGC_Head *node)
264{
265    PyGC_Head *prev = GC_PREV(node);
266    PyGC_Head *next = GC_NEXT(node);
267
268    _PyGCHead_SET_NEXT(prev, next);
269    _PyGCHead_SET_PREV(next, prev);
270
271    node->_gc_next = 0; /* object is not currently tracked */
272}
273
274/* Move `node` from the gc list it's currently in (which is not explicitly
275 * named here) to the end of `list`.  This is semantically the same as
276 * gc_list_remove(node) followed by gc_list_append(node, list).
277 */
278static void
279gc_list_move(PyGC_Head *node, PyGC_Head *list)
280{
281    /* Unlink from current list. */
282    PyGC_Head *from_prev = GC_PREV(node);
283    PyGC_Head *from_next = GC_NEXT(node);
284    _PyGCHead_SET_NEXT(from_prev, from_next);
285    _PyGCHead_SET_PREV(from_next, from_prev);
286
287    /* Relink at end of new list. */
288    // list must not have flags.  So we can skip macros.
289    PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
290    _PyGCHead_SET_PREV(node, to_prev);
291    _PyGCHead_SET_NEXT(to_prev, node);
292    list->_gc_prev = (uintptr_t)node;
293    _PyGCHead_SET_NEXT(node, list);
294}
295
296/* append list `from` onto list `to`; `from` becomes an empty list */
297static void
298gc_list_merge(PyGC_Head *from, PyGC_Head *to)
299{
300    assert(from != to);
301    if (!gc_list_is_empty(from)) {
302        PyGC_Head *to_tail = GC_PREV(to);
303        PyGC_Head *from_head = GC_NEXT(from);
304        PyGC_Head *from_tail = GC_PREV(from);
305        assert(from_head != from);
306        assert(from_tail != from);
307
308        _PyGCHead_SET_NEXT(to_tail, from_head);
309        _PyGCHead_SET_PREV(from_head, to_tail);
310
311        _PyGCHead_SET_NEXT(from_tail, to);
312        _PyGCHead_SET_PREV(to, from_tail);
313    }
314    gc_list_init(from);
315}
316
317static Py_ssize_t
318gc_list_size(PyGC_Head *list)
319{
320    PyGC_Head *gc;
321    Py_ssize_t n = 0;
322    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
323        n++;
324    }
325    return n;
326}
327
328/* Walk the list and mark all objects as non-collecting */
329static inline void
330gc_list_clear_collecting(PyGC_Head *collectable)
331{
332    PyGC_Head *gc;
333    for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
334        gc_clear_collecting(gc);
335    }
336}
337
338/* Append objects in a GC list to a Python list.
339 * Return 0 if all OK, < 0 if error (out of memory for list)
340 */
341static int
342append_objects(PyObject *py_list, PyGC_Head *gc_list)
343{
344    PyGC_Head *gc;
345    for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
346        PyObject *op = FROM_GC(gc);
347        if (op != py_list) {
348            if (PyList_Append(py_list, op)) {
349                return -1; /* exception */
350            }
351        }
352    }
353    return 0;
354}
355
356// Constants for validate_list's flags argument.
357enum flagstates {collecting_clear_unreachable_clear,
358                 collecting_clear_unreachable_set,
359                 collecting_set_unreachable_clear,
360                 collecting_set_unreachable_set};
361
362#ifdef GC_DEBUG
363// validate_list checks list consistency.  And it works as document
364// describing when flags are expected to be set / unset.
365// `head` must be a doubly-linked gc list, although it's fine (expected!) if
366// the prev and next pointers are "polluted" with flags.
367// What's checked:
368// - The `head` pointers are not polluted.
369// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
370//   `set or clear, as specified by the 'flags' argument.
371// - The prev and next pointers are mutually consistent.
372static void
373validate_list(PyGC_Head *head, enum flagstates flags)
374{
375    assert((head->_gc_prev & PREV_MASK_COLLECTING) == 0);
376    assert((head->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
377    uintptr_t prev_value = 0, next_value = 0;
378    switch (flags) {
379        case collecting_clear_unreachable_clear:
380            break;
381        case collecting_set_unreachable_clear:
382            prev_value = PREV_MASK_COLLECTING;
383            break;
384        case collecting_clear_unreachable_set:
385            next_value = NEXT_MASK_UNREACHABLE;
386            break;
387        case collecting_set_unreachable_set:
388            prev_value = PREV_MASK_COLLECTING;
389            next_value = NEXT_MASK_UNREACHABLE;
390            break;
391        default:
392            assert(! "bad internal flags argument");
393    }
394    PyGC_Head *prev = head;
395    PyGC_Head *gc = GC_NEXT(head);
396    while (gc != head) {
397        PyGC_Head *trueprev = GC_PREV(gc);
398        PyGC_Head *truenext = (PyGC_Head *)(gc->_gc_next  & ~NEXT_MASK_UNREACHABLE);
399        assert(truenext != NULL);
400        assert(trueprev == prev);
401        assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
402        assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
403        prev = gc;
404        gc = truenext;
405    }
406    assert(prev == GC_PREV(head));
407}
408#else
409#define validate_list(x, y) do{}while(0)
410#endif
411
412/*** end of list stuff ***/
413
414
415/* Set all gc_refs = ob_refcnt.  After this, gc_refs is > 0 and
416 * PREV_MASK_COLLECTING bit is set for all objects in containers.
417 */
418static void
419update_refs(PyGC_Head *containers)
420{
421    PyGC_Head *gc = GC_NEXT(containers);
422    for (; gc != containers; gc = GC_NEXT(gc)) {
423        gc_reset_refs(gc, Py_REFCNT(FROM_GC(gc)));
424        /* Python's cyclic gc should never see an incoming refcount
425         * of 0:  if something decref'ed to 0, it should have been
426         * deallocated immediately at that time.
427         * Possible cause (if the assert triggers):  a tp_dealloc
428         * routine left a gc-aware object tracked during its teardown
429         * phase, and did something-- or allowed something to happen --
430         * that called back into Python.  gc can trigger then, and may
431         * see the still-tracked dying object.  Before this assert
432         * was added, such mistakes went on to allow gc to try to
433         * delete the object again.  In a debug build, that caused
434         * a mysterious segfault, when _Py_ForgetReference tried
435         * to remove the object from the doubly-linked list of all
436         * objects a second time.  In a release build, an actual
437         * double deallocation occurred, which leads to corruption
438         * of the allocator's internal bookkeeping pointers.  That's
439         * so serious that maybe this should be a release-build
440         * check instead of an assert?
441         */
442        _PyObject_ASSERT(FROM_GC(gc), gc_get_refs(gc) != 0);
443    }
444}
445
446/* A traversal callback for subtract_refs. */
447static int
448visit_decref(PyObject *op, void *parent)
449{
450    _PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
451
452    if (_PyObject_IS_GC(op)) {
453        PyGC_Head *gc = AS_GC(op);
454        /* We're only interested in gc_refs for objects in the
455         * generation being collected, which can be recognized
456         * because only they have positive gc_refs.
457         */
458        if (gc_is_collecting(gc)) {
459            gc_decref(gc);
460        }
461    }
462    return 0;
463}
464
465/* Subtract internal references from gc_refs.  After this, gc_refs is >= 0
466 * for all objects in containers, and is GC_REACHABLE for all tracked gc
467 * objects not in containers.  The ones with gc_refs > 0 are directly
468 * reachable from outside containers, and so can't be collected.
469 */
470static void
471subtract_refs(PyGC_Head *containers)
472{
473    traverseproc traverse;
474    PyGC_Head *gc = GC_NEXT(containers);
475    for (; gc != containers; gc = GC_NEXT(gc)) {
476        PyObject *op = FROM_GC(gc);
477        traverse = Py_TYPE(op)->tp_traverse;
478        (void) traverse(op,
479                        (visitproc)visit_decref,
480                        op);
481    }
482}
483
484/* A traversal callback for move_unreachable. */
485static int
486visit_reachable(PyObject *op, PyGC_Head *reachable)
487{
488    if (!_PyObject_IS_GC(op)) {
489        return 0;
490    }
491
492    PyGC_Head *gc = AS_GC(op);
493    const Py_ssize_t gc_refs = gc_get_refs(gc);
494
495    // Ignore objects in other generation.
496    // This also skips objects "to the left" of the current position in
497    // move_unreachable's scan of the 'young' list - they've already been
498    // traversed, and no longer have the PREV_MASK_COLLECTING flag.
499    if (! gc_is_collecting(gc)) {
500        return 0;
501    }
502    // It would be a logic error elsewhere if the collecting flag were set on
503    // an untracked object.
504    assert(gc->_gc_next != 0);
505
506    if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
507        /* This had gc_refs = 0 when move_unreachable got
508         * to it, but turns out it's reachable after all.
509         * Move it back to move_unreachable's 'young' list,
510         * and move_unreachable will eventually get to it
511         * again.
512         */
513        // Manually unlink gc from unreachable list because the list functions
514        // don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
515        PyGC_Head *prev = GC_PREV(gc);
516        PyGC_Head *next = (PyGC_Head*)(gc->_gc_next & ~NEXT_MASK_UNREACHABLE);
517        _PyObject_ASSERT(FROM_GC(prev),
518                         prev->_gc_next & NEXT_MASK_UNREACHABLE);
519        _PyObject_ASSERT(FROM_GC(next),
520                         next->_gc_next & NEXT_MASK_UNREACHABLE);
521        prev->_gc_next = gc->_gc_next;  // copy NEXT_MASK_UNREACHABLE
522        _PyGCHead_SET_PREV(next, prev);
523
524        gc_list_append(gc, reachable);
525        gc_set_refs(gc, 1);
526    }
527    else if (gc_refs == 0) {
528        /* This is in move_unreachable's 'young' list, but
529         * the traversal hasn't yet gotten to it.  All
530         * we need to do is tell move_unreachable that it's
531         * reachable.
532         */
533        gc_set_refs(gc, 1);
534    }
535    /* Else there's nothing to do.
536     * If gc_refs > 0, it must be in move_unreachable's 'young'
537     * list, and move_unreachable will eventually get to it.
538     */
539    else {
540        _PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
541    }
542    return 0;
543}
544
545/* Move the unreachable objects from young to unreachable.  After this,
546 * all objects in young don't have PREV_MASK_COLLECTING flag and
547 * unreachable have the flag.
548 * All objects in young after this are directly or indirectly reachable
549 * from outside the original young; and all objects in unreachable are
550 * not.
551 *
552 * This function restores _gc_prev pointer.  young and unreachable are
553 * doubly linked list after this function.
554 * But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
555 * So we can not gc_list_* functions for unreachable until we remove the flag.
556 */
557static void
558move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
559{
560    // previous elem in the young list, used for restore gc_prev.
561    PyGC_Head *prev = young;
562    PyGC_Head *gc = GC_NEXT(young);
563
564    /* Invariants:  all objects "to the left" of us in young are reachable
565     * (directly or indirectly) from outside the young list as it was at entry.
566     *
567     * All other objects from the original young "to the left" of us are in
568     * unreachable now, and have NEXT_MASK_UNREACHABLE.  All objects to the
569     * left of us in 'young' now have been scanned, and no objects here
570     * or to the right have been scanned yet.
571     */
572
573    while (gc != young) {
574        if (gc_get_refs(gc)) {
575            /* gc is definitely reachable from outside the
576             * original 'young'.  Mark it as such, and traverse
577             * its pointers to find any other objects that may
578             * be directly reachable from it.  Note that the
579             * call to tp_traverse may append objects to young,
580             * so we have to wait until it returns to determine
581             * the next object to visit.
582             */
583            PyObject *op = FROM_GC(gc);
584            traverseproc traverse = Py_TYPE(op)->tp_traverse;
585            _PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
586                                      "refcount is too small");
587            // NOTE: visit_reachable may change gc->_gc_next when
588            // young->_gc_prev == gc.  Don't do gc = GC_NEXT(gc) before!
589            (void) traverse(op,
590                    (visitproc)visit_reachable,
591                    (void *)young);
592            // relink gc_prev to prev element.
593            _PyGCHead_SET_PREV(gc, prev);
594            // gc is not COLLECTING state after here.
595            gc_clear_collecting(gc);
596            prev = gc;
597        }
598        else {
599            /* This *may* be unreachable.  To make progress,
600             * assume it is.  gc isn't directly reachable from
601             * any object we've already traversed, but may be
602             * reachable from an object we haven't gotten to yet.
603             * visit_reachable will eventually move gc back into
604             * young if that's so, and we'll see it again.
605             */
606            // Move gc to unreachable.
607            // No need to gc->next->prev = prev because it is single linked.
608            prev->_gc_next = gc->_gc_next;
609
610            // We can't use gc_list_append() here because we use
611            // NEXT_MASK_UNREACHABLE here.
612            PyGC_Head *last = GC_PREV(unreachable);
613            // NOTE: Since all objects in unreachable set has
614            // NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
615            // But this may pollute the unreachable list head's 'next' pointer
616            // too. That's semantically senseless but expedient here - the
617            // damage is repaired when this function ends.
618            last->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)gc);
619            _PyGCHead_SET_PREV(gc, last);
620            gc->_gc_next = (NEXT_MASK_UNREACHABLE | (uintptr_t)unreachable);
621            unreachable->_gc_prev = (uintptr_t)gc;
622        }
623        gc = (PyGC_Head*)prev->_gc_next;
624    }
625    // young->_gc_prev must be last element remained in the list.
626    young->_gc_prev = (uintptr_t)prev;
627    // don't let the pollution of the list head's next pointer leak
628    unreachable->_gc_next &= ~NEXT_MASK_UNREACHABLE;
629}
630
631static void
632untrack_tuples(PyGC_Head *head)
633{
634    PyGC_Head *next, *gc = GC_NEXT(head);
635    while (gc != head) {
636        PyObject *op = FROM_GC(gc);
637        next = GC_NEXT(gc);
638        if (PyTuple_CheckExact(op)) {
639            _PyTuple_MaybeUntrack(op);
640        }
641        gc = next;
642    }
643}
644
645/* Try to untrack all currently tracked dictionaries */
646static void
647untrack_dicts(PyGC_Head *head)
648{
649    PyGC_Head *next, *gc = GC_NEXT(head);
650    while (gc != head) {
651        PyObject *op = FROM_GC(gc);
652        next = GC_NEXT(gc);
653        if (PyDict_CheckExact(op)) {
654            _PyDict_MaybeUntrack(op);
655        }
656        gc = next;
657    }
658}
659
660/* Return true if object has a pre-PEP 442 finalization method. */
661static int
662has_legacy_finalizer(PyObject *op)
663{
664    return Py_TYPE(op)->tp_del != NULL;
665}
666
667/* Move the objects in unreachable with tp_del slots into `finalizers`.
668 *
669 * This function also removes NEXT_MASK_UNREACHABLE flag
670 * from _gc_next in unreachable.
671 */
672static void
673move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
674{
675    PyGC_Head *gc, *next;
676    assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
677
678    /* March over unreachable.  Move objects with finalizers into
679     * `finalizers`.
680     */
681    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
682        PyObject *op = FROM_GC(gc);
683
684        _PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
685        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
686        next = (PyGC_Head*)gc->_gc_next;
687
688        if (has_legacy_finalizer(op)) {
689            gc_clear_collecting(gc);
690            gc_list_move(gc, finalizers);
691        }
692    }
693}
694
695static inline void
696clear_unreachable_mask(PyGC_Head *unreachable)
697{
698    /* Check that the list head does not have the unreachable bit set */
699    assert(((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
700
701    PyGC_Head *gc, *next;
702    assert((unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
703    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
704        _PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
705        gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
706        next = (PyGC_Head*)gc->_gc_next;
707    }
708    validate_list(unreachable, collecting_set_unreachable_clear);
709}
710
711/* A traversal callback for move_legacy_finalizer_reachable. */
712static int
713visit_move(PyObject *op, PyGC_Head *tolist)
714{
715    if (_PyObject_IS_GC(op)) {
716        PyGC_Head *gc = AS_GC(op);
717        if (gc_is_collecting(gc)) {
718            gc_list_move(gc, tolist);
719            gc_clear_collecting(gc);
720        }
721    }
722    return 0;
723}
724
725/* Move objects that are reachable from finalizers, from the unreachable set
726 * into finalizers set.
727 */
728static void
729move_legacy_finalizer_reachable(PyGC_Head *finalizers)
730{
731    traverseproc traverse;
732    PyGC_Head *gc = GC_NEXT(finalizers);
733    for (; gc != finalizers; gc = GC_NEXT(gc)) {
734        /* Note that the finalizers list may grow during this. */
735        traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
736        (void) traverse(FROM_GC(gc),
737                        (visitproc)visit_move,
738                        (void *)finalizers);
739    }
740}
741
742/* Clear all weakrefs to unreachable objects, and if such a weakref has a
743 * callback, invoke it if necessary.  Note that it's possible for such
744 * weakrefs to be outside the unreachable set -- indeed, those are precisely
745 * the weakrefs whose callbacks must be invoked.  See gc_weakref.txt for
746 * overview & some details.  Some weakrefs with callbacks may be reclaimed
747 * directly by this routine; the number reclaimed is the return value.  Other
748 * weakrefs with callbacks may be moved into the `old` generation.  Objects
749 * moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
750 * unreachable are left at GC_TENTATIVELY_UNREACHABLE.  When this returns,
751 * no object in `unreachable` is weakly referenced anymore.
752 */
753static int
754handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
755{
756    PyGC_Head *gc;
757    PyObject *op;               /* generally FROM_GC(gc) */
758    PyWeakReference *wr;        /* generally a cast of op */
759    PyGC_Head wrcb_to_call;     /* weakrefs with callbacks to call */
760    PyGC_Head *next;
761    int num_freed = 0;
762
763    gc_list_init(&wrcb_to_call);
764
765    /* Clear all weakrefs to the objects in unreachable.  If such a weakref
766     * also has a callback, move it into `wrcb_to_call` if the callback
767     * needs to be invoked.  Note that we cannot invoke any callbacks until
768     * all weakrefs to unreachable objects are cleared, lest the callback
769     * resurrect an unreachable object via a still-active weakref.  We
770     * make another pass over wrcb_to_call, invoking callbacks, after this
771     * pass completes.
772     */
773    for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
774        PyWeakReference **wrlist;
775
776        op = FROM_GC(gc);
777        next = GC_NEXT(gc);
778
779        if (PyWeakref_Check(op)) {
780            /* A weakref inside the unreachable set must be cleared.  If we
781             * allow its callback to execute inside delete_garbage(), it
782             * could expose objects that have tp_clear already called on
783             * them.  Or, it could resurrect unreachable objects.  One way
784             * this can happen is if some container objects do not implement
785             * tp_traverse.  Then, wr_object can be outside the unreachable
786             * set but can be deallocated as a result of breaking the
787             * reference cycle.  If we don't clear the weakref, the callback
788             * will run and potentially cause a crash.  See bpo-38006 for
789             * one example.
790             */
791            _PyWeakref_ClearRef((PyWeakReference *)op);
792        }
793
794        if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op)))
795            continue;
796
797        /* It supports weakrefs.  Does it have any? */
798        wrlist = (PyWeakReference **)
799                                _PyObject_GET_WEAKREFS_LISTPTR(op);
800
801        /* `op` may have some weakrefs.  March over the list, clear
802         * all the weakrefs, and move the weakrefs with callbacks
803         * that must be called into wrcb_to_call.
804         */
805        for (wr = *wrlist; wr != NULL; wr = *wrlist) {
806            PyGC_Head *wrasgc;                  /* AS_GC(wr) */
807
808            /* _PyWeakref_ClearRef clears the weakref but leaves
809             * the callback pointer intact.  Obscure:  it also
810             * changes *wrlist.
811             */
812            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
813            _PyWeakref_ClearRef(wr);
814            _PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
815            if (wr->wr_callback == NULL) {
816                /* no callback */
817                continue;
818            }
819
820            /* Headache time.  `op` is going away, and is weakly referenced by
821             * `wr`, which has a callback.  Should the callback be invoked?  If wr
822             * is also trash, no:
823             *
824             * 1. There's no need to call it.  The object and the weakref are
825             *    both going away, so it's legitimate to pretend the weakref is
826             *    going away first.  The user has to ensure a weakref outlives its
827             *    referent if they want a guarantee that the wr callback will get
828             *    invoked.
829             *
830             * 2. It may be catastrophic to call it.  If the callback is also in
831             *    cyclic trash (CT), then although the CT is unreachable from
832             *    outside the current generation, CT may be reachable from the
833             *    callback.  Then the callback could resurrect insane objects.
834             *
835             * Since the callback is never needed and may be unsafe in this case,
836             * wr is simply left in the unreachable set.  Note that because we
837             * already called _PyWeakref_ClearRef(wr), its callback will never
838             * trigger.
839             *
840             * OTOH, if wr isn't part of CT, we should invoke the callback:  the
841             * weakref outlived the trash.  Note that since wr isn't CT in this
842             * case, its callback can't be CT either -- wr acted as an external
843             * root to this generation, and therefore its callback did too.  So
844             * nothing in CT is reachable from the callback either, so it's hard
845             * to imagine how calling it later could create a problem for us.  wr
846             * is moved to wrcb_to_call in this case.
847             */
848            if (gc_is_collecting(AS_GC(wr))) {
849                /* it should already have been cleared above */
850                assert(wr->wr_object == Py_None);
851                continue;
852            }
853
854            /* Create a new reference so that wr can't go away
855             * before we can process it again.
856             */
857            Py_INCREF(wr);
858
859            /* Move wr to wrcb_to_call, for the next pass. */
860            wrasgc = AS_GC(wr);
861            assert(wrasgc != next); /* wrasgc is reachable, but
862                                       next isn't, so they can't
863                                       be the same */
864            gc_list_move(wrasgc, &wrcb_to_call);
865        }
866    }
867
868    /* Invoke the callbacks we decided to honor.  It's safe to invoke them
869     * because they can't reference unreachable objects.
870     */
871    while (! gc_list_is_empty(&wrcb_to_call)) {
872        PyObject *temp;
873        PyObject *callback;
874
875        gc = (PyGC_Head*)wrcb_to_call._gc_next;
876        op = FROM_GC(gc);
877        _PyObject_ASSERT(op, PyWeakref_Check(op));
878        wr = (PyWeakReference *)op;
879        callback = wr->wr_callback;
880        _PyObject_ASSERT(op, callback != NULL);
881
882        /* copy-paste of weakrefobject.c's handle_callback() */
883        temp = PyObject_CallOneArg(callback, (PyObject *)wr);
884        if (temp == NULL)
885            PyErr_WriteUnraisable(callback);
886        else
887            Py_DECREF(temp);
888
889        /* Give up the reference we created in the first pass.  When
890         * op's refcount hits 0 (which it may or may not do right now),
891         * op's tp_dealloc will decref op->wr_callback too.  Note
892         * that the refcount probably will hit 0 now, and because this
893         * weakref was reachable to begin with, gc didn't already
894         * add it to its count of freed objects.  Example:  a reachable
895         * weak value dict maps some key to this reachable weakref.
896         * The callback removes this key->weakref mapping from the
897         * dict, leaving no other references to the weakref (excepting
898         * ours).
899         */
900        Py_DECREF(op);
901        if (wrcb_to_call._gc_next == (uintptr_t)gc) {
902            /* object is still alive -- move it */
903            gc_list_move(gc, old);
904        }
905        else {
906            ++num_freed;
907        }
908    }
909
910    return num_freed;
911}
912
913static void
914debug_cycle(const char *msg, PyObject *op)
915{
916    PySys_FormatStderr("gc: %s <%s %p>\n",
917                       msg, Py_TYPE(op)->tp_name, op);
918}
919
920/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
921 * only from such cycles).
922 * If DEBUG_SAVEALL, all objects in finalizers are appended to the module
923 * garbage list (a Python list), else only the objects in finalizers with
924 * __del__ methods are appended to garbage.  All objects in finalizers are
925 * merged into the old list regardless.
926 */
927static void
928handle_legacy_finalizers(PyThreadState *tstate,
929                         GCState *gcstate,
930                         PyGC_Head *finalizers, PyGC_Head *old)
931{
932    assert(!_PyErr_Occurred(tstate));
933    assert(gcstate->garbage != NULL);
934
935    PyGC_Head *gc = GC_NEXT(finalizers);
936    for (; gc != finalizers; gc = GC_NEXT(gc)) {
937        PyObject *op = FROM_GC(gc);
938
939        if ((gcstate->debug & DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
940            if (PyList_Append(gcstate->garbage, op) < 0) {
941                _PyErr_Clear(tstate);
942                break;
943            }
944        }
945    }
946
947    gc_list_merge(finalizers, old);
948}
949
950/* Run first-time finalizers (if any) on all the objects in collectable.
951 * Note that this may remove some (or even all) of the objects from the
952 * list, due to refcounts falling to 0.
953 */
954static void
955finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
956{
957    destructor finalize;
958    PyGC_Head seen;
959
960    /* While we're going through the loop, `finalize(op)` may cause op, or
961     * other objects, to be reclaimed via refcounts falling to zero.  So
962     * there's little we can rely on about the structure of the input
963     * `collectable` list across iterations.  For safety, we always take the
964     * first object in that list and move it to a temporary `seen` list.
965     * If objects vanish from the `collectable` and `seen` lists we don't
966     * care.
967     */
968    gc_list_init(&seen);
969
970    while (!gc_list_is_empty(collectable)) {
971        PyGC_Head *gc = GC_NEXT(collectable);
972        PyObject *op = FROM_GC(gc);
973        gc_list_move(gc, &seen);
974        if (!_PyGCHead_FINALIZED(gc) &&
975                (finalize = Py_TYPE(op)->tp_finalize) != NULL) {
976            _PyGCHead_SET_FINALIZED(gc);
977            Py_INCREF(op);
978            finalize(op);
979            assert(!_PyErr_Occurred(tstate));
980            Py_DECREF(op);
981        }
982    }
983    gc_list_merge(&seen, collectable);
984}
985
986/* Break reference cycles by clearing the containers involved.  This is
987 * tricky business as the lists can be changing and we don't know which
988 * objects may be freed.  It is possible I screwed something up here.
989 */
990static void
991delete_garbage(PyThreadState *tstate, GCState *gcstate,
992               PyGC_Head *collectable, PyGC_Head *old)
993{
994    assert(!_PyErr_Occurred(tstate));
995
996    while (!gc_list_is_empty(collectable)) {
997        PyGC_Head *gc = GC_NEXT(collectable);
998        PyObject *op = FROM_GC(gc);
999
1000        _PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
1001                                  "refcount is too small");
1002
1003        if (gcstate->debug & DEBUG_SAVEALL) {
1004            assert(gcstate->garbage != NULL);
1005            if (PyList_Append(gcstate->garbage, op) < 0) {
1006                _PyErr_Clear(tstate);
1007            }
1008        }
1009        else {
1010            inquiry clear;
1011            if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
1012                Py_INCREF(op);
1013                (void) clear(op);
1014                if (_PyErr_Occurred(tstate)) {
1015                    _PyErr_WriteUnraisableMsg("in tp_clear of",
1016                                              (PyObject*)Py_TYPE(op));
1017                }
1018                Py_DECREF(op);
1019            }
1020        }
1021        if (GC_NEXT(collectable) == gc) {
1022            /* object is still alive, move it, it may die later */
1023            gc_clear_collecting(gc);
1024            gc_list_move(gc, old);
1025        }
1026    }
1027}
1028
1029/* Clear all free lists
1030 * All free lists are cleared during the collection of the highest generation.
1031 * Allocated items in the free list may keep a pymalloc arena occupied.
1032 * Clearing the free lists may give back memory to the OS earlier.
1033 */
1034static void
1035clear_freelists(PyInterpreterState *interp)
1036{
1037    _PyTuple_ClearFreeList(interp);
1038    _PyFloat_ClearFreeList(interp);
1039    _PyList_ClearFreeList(interp);
1040    _PyDict_ClearFreeList(interp);
1041    _PyAsyncGen_ClearFreeLists(interp);
1042    _PyContext_ClearFreeList(interp);
1043}
1044
1045// Show stats for objects in each generations
1046static void
1047show_stats_each_generations(GCState *gcstate)
1048{
1049    char buf[100];
1050    size_t pos = 0;
1051
1052    for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
1053        pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
1054                             " %zd",
1055                             gc_list_size(GEN_HEAD(gcstate, i)));
1056    }
1057
1058    PySys_FormatStderr(
1059        "gc: objects in each generation:%s\n"
1060        "gc: objects in permanent generation: %zd\n",
1061        buf, gc_list_size(&gcstate->permanent_generation.head));
1062}
1063
1064/* Deduce which objects among "base" are unreachable from outside the list
1065   and move them to 'unreachable'. The process consist in the following steps:
1066
10671. Copy all reference counts to a different field (gc_prev is used to hold
1068   this copy to save memory).
10692. Traverse all objects in "base" and visit all referred objects using
1070   "tp_traverse" and for every visited object, subtract 1 to the reference
1071   count (the one that we copied in the previous step). After this step, all
1072   objects that can be reached directly from outside must have strictly positive
1073   reference count, while all unreachable objects must have a count of exactly 0.
10743. Identify all unreachable objects (the ones with 0 reference count) and move
1075   them to the "unreachable" list. This step also needs to move back to "base" all
1076   objects that were initially marked as unreachable but are referred transitively
1077   by the reachable objects (the ones with strictly positive reference count).
1078
1079Contracts:
1080
1081    * The "base" has to be a valid list with no mask set.
1082
1083    * The "unreachable" list must be uninitialized (this function calls
1084      gc_list_init over 'unreachable').
1085
1086IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
1087flag set but it does not clear it to skip unnecessary iteration. Before the
1088flag is cleared (for example, by using 'clear_unreachable_mask' function or
1089by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
1090list and we can not use most gc_list_* functions for it. */
1091static inline void
1092deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
1093    validate_list(base, collecting_clear_unreachable_clear);
1094    /* Using ob_refcnt and gc_refs, calculate which objects in the
1095     * container set are reachable from outside the set (i.e., have a
1096     * refcount greater than 0 when all the references within the
1097     * set are taken into account).
1098     */
1099    update_refs(base);  // gc_prev is used for gc_refs
1100    subtract_refs(base);
1101
1102    /* Leave everything reachable from outside base in base, and move
1103     * everything else (in base) to unreachable.
1104     *
1105     * NOTE:  This used to move the reachable objects into a reachable
1106     * set instead.  But most things usually turn out to be reachable,
1107     * so it's more efficient to move the unreachable things.  It "sounds slick"
1108     * to move the unreachable objects, until you think about it - the reason it
1109     * pays isn't actually obvious.
1110     *
1111     * Suppose we create objects A, B, C in that order.  They appear in the young
1112     * generation in the same order.  If B points to A, and C to B, and C is
1113     * reachable from outside, then the adjusted refcounts will be 0, 0, and 1
1114     * respectively.
1115     *
1116     * When move_unreachable finds A, A is moved to the unreachable list.  The
1117     * same for B when it's first encountered.  Then C is traversed, B is moved
1118     * _back_ to the reachable list.  B is eventually traversed, and then A is
1119     * moved back to the reachable list.
1120     *
1121     * So instead of not moving at all, the reachable objects B and A are moved
1122     * twice each.  Why is this a win?  A straightforward algorithm to move the
1123     * reachable objects instead would move A, B, and C once each.
1124     *
1125     * The key is that this dance leaves the objects in order C, B, A - it's
1126     * reversed from the original order.  On all _subsequent_ scans, none of
1127     * them will move.  Since most objects aren't in cycles, this can save an
1128     * unbounded number of moves across an unbounded number of later collections.
1129     * It can cost more only the first time the chain is scanned.
1130     *
1131     * Drawback:  move_unreachable is also used to find out what's still trash
1132     * after finalizers may resurrect objects.  In _that_ case most unreachable
1133     * objects will remain unreachable, so it would be more efficient to move
1134     * the reachable objects instead.  But this is a one-time cost, probably not
1135     * worth complicating the code to speed just a little.
1136     */
1137    gc_list_init(unreachable);
1138    move_unreachable(base, unreachable);  // gc_prev is pointer again
1139    validate_list(base, collecting_clear_unreachable_clear);
1140    validate_list(unreachable, collecting_set_unreachable_set);
1141}
1142
1143/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
1144   them to 'old_generation' and placing the rest on 'still_unreachable'.
1145
1146   Contracts:
1147       * After this function 'unreachable' must not be used anymore and 'still_unreachable'
1148         will contain the objects that did not resurrect.
1149
1150       * The "still_unreachable" list must be uninitialized (this function calls
1151         gc_list_init over 'still_unreachable').
1152
1153IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
1154PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
1155we can skip the expense of clearing the flag to avoid extra iteration. */
1156static inline void
1157handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
1158                           PyGC_Head *old_generation)
1159{
1160    // Remove the PREV_MASK_COLLECTING from unreachable
1161    // to prepare it for a new call to 'deduce_unreachable'
1162    gc_list_clear_collecting(unreachable);
1163
1164    // After the call to deduce_unreachable, the 'still_unreachable' set will
1165    // have the PREV_MARK_COLLECTING set, but the objects are going to be
1166    // removed so we can skip the expense of clearing the flag.
1167    PyGC_Head* resurrected = unreachable;
1168    deduce_unreachable(resurrected, still_unreachable);
1169    clear_unreachable_mask(still_unreachable);
1170
1171    // Move the resurrected objects to the old generation for future collection.
1172    gc_list_merge(resurrected, old_generation);
1173}
1174
1175/* This is the main function.  Read this to understand how the
1176 * collection process works. */
1177static Py_ssize_t
1178gc_collect_main(PyThreadState *tstate, int generation,
1179                Py_ssize_t *n_collected, Py_ssize_t *n_uncollectable,
1180                int nofail)
1181{
1182    int i;
1183    Py_ssize_t m = 0; /* # objects collected */
1184    Py_ssize_t n = 0; /* # unreachable objects that couldn't be collected */
1185    PyGC_Head *young; /* the generation we are examining */
1186    PyGC_Head *old; /* next older generation */
1187    PyGC_Head unreachable; /* non-problematic unreachable trash */
1188    PyGC_Head finalizers;  /* objects with, & reachable from, __del__ */
1189    PyGC_Head *gc;
1190    _PyTime_t t1 = 0;   /* initialize to prevent a compiler warning */
1191    GCState *gcstate = &tstate->interp->gc;
1192
1193    // gc_collect_main() must not be called before _PyGC_Init
1194    // or after _PyGC_Fini()
1195    assert(gcstate->garbage != NULL);
1196    assert(!_PyErr_Occurred(tstate));
1197
1198    if (gcstate->debug & DEBUG_STATS) {
1199        PySys_WriteStderr("gc: collecting generation %d...\n", generation);
1200        show_stats_each_generations(gcstate);
1201        t1 = _PyTime_GetPerfCounter();
1202    }
1203
1204    if (PyDTrace_GC_START_ENABLED())
1205        PyDTrace_GC_START(generation);
1206
1207    /* update collection and allocation counters */
1208    if (generation+1 < NUM_GENERATIONS)
1209        gcstate->generations[generation+1].count += 1;
1210    for (i = 0; i <= generation; i++)
1211        gcstate->generations[i].count = 0;
1212
1213    /* merge younger generations with one we are currently collecting */
1214    for (i = 0; i < generation; i++) {
1215        gc_list_merge(GEN_HEAD(gcstate, i), GEN_HEAD(gcstate, generation));
1216    }
1217
1218    /* handy references */
1219    young = GEN_HEAD(gcstate, generation);
1220    if (generation < NUM_GENERATIONS-1)
1221        old = GEN_HEAD(gcstate, generation+1);
1222    else
1223        old = young;
1224    validate_list(old, collecting_clear_unreachable_clear);
1225
1226    deduce_unreachable(young, &unreachable);
1227
1228    untrack_tuples(young);
1229    /* Move reachable objects to next generation. */
1230    if (young != old) {
1231        if (generation == NUM_GENERATIONS - 2) {
1232            gcstate->long_lived_pending += gc_list_size(young);
1233        }
1234        gc_list_merge(young, old);
1235    }
1236    else {
1237        /* We only un-track dicts in full collections, to avoid quadratic
1238           dict build-up. See issue #14775. */
1239        untrack_dicts(young);
1240        gcstate->long_lived_pending = 0;
1241        gcstate->long_lived_total = gc_list_size(young);
1242    }
1243
1244    /* All objects in unreachable are trash, but objects reachable from
1245     * legacy finalizers (e.g. tp_del) can't safely be deleted.
1246     */
1247    gc_list_init(&finalizers);
1248    // NEXT_MASK_UNREACHABLE is cleared here.
1249    // After move_legacy_finalizers(), unreachable is normal list.
1250    move_legacy_finalizers(&unreachable, &finalizers);
1251    /* finalizers contains the unreachable objects with a legacy finalizer;
1252     * unreachable objects reachable *from* those are also uncollectable,
1253     * and we move those into the finalizers list too.
1254     */
1255    move_legacy_finalizer_reachable(&finalizers);
1256
1257    validate_list(&finalizers, collecting_clear_unreachable_clear);
1258    validate_list(&unreachable, collecting_set_unreachable_clear);
1259
1260    /* Print debugging information. */
1261    if (gcstate->debug & DEBUG_COLLECTABLE) {
1262        for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
1263            debug_cycle("collectable", FROM_GC(gc));
1264        }
1265    }
1266
1267    /* Clear weakrefs and invoke callbacks as necessary. */
1268    m += handle_weakrefs(&unreachable, old);
1269
1270    validate_list(old, collecting_clear_unreachable_clear);
1271    validate_list(&unreachable, collecting_set_unreachable_clear);
1272
1273    /* Call tp_finalize on objects which have one. */
1274    finalize_garbage(tstate, &unreachable);
1275
1276    /* Handle any objects that may have resurrected after the call
1277     * to 'finalize_garbage' and continue the collection with the
1278     * objects that are still unreachable */
1279    PyGC_Head final_unreachable;
1280    handle_resurrected_objects(&unreachable, &final_unreachable, old);
1281
1282    /* Call tp_clear on objects in the final_unreachable set.  This will cause
1283    * the reference cycles to be broken.  It may also cause some objects
1284    * in finalizers to be freed.
1285    */
1286    m += gc_list_size(&final_unreachable);
1287    delete_garbage(tstate, gcstate, &final_unreachable, old);
1288
1289    /* Collect statistics on uncollectable objects found and print
1290     * debugging information. */
1291    for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
1292        n++;
1293        if (gcstate->debug & DEBUG_UNCOLLECTABLE)
1294            debug_cycle("uncollectable", FROM_GC(gc));
1295    }
1296    if (gcstate->debug & DEBUG_STATS) {
1297        double d = _PyTime_AsSecondsDouble(_PyTime_GetPerfCounter() - t1);
1298        PySys_WriteStderr(
1299            "gc: done, %zd unreachable, %zd uncollectable, %.4fs elapsed\n",
1300            n+m, n, d);
1301    }
1302
1303    /* Append instances in the uncollectable set to a Python
1304     * reachable list of garbage.  The programmer has to deal with
1305     * this if they insist on creating this type of structure.
1306     */
1307    handle_legacy_finalizers(tstate, gcstate, &finalizers, old);
1308    validate_list(old, collecting_clear_unreachable_clear);
1309
1310    /* Clear free list only during the collection of the highest
1311     * generation */
1312    if (generation == NUM_GENERATIONS-1) {
1313        clear_freelists(tstate->interp);
1314    }
1315
1316    if (_PyErr_Occurred(tstate)) {
1317        if (nofail) {
1318            _PyErr_Clear(tstate);
1319        }
1320        else {
1321            _PyErr_WriteUnraisableMsg("in garbage collection", NULL);
1322        }
1323    }
1324
1325    /* Update stats */
1326    if (n_collected) {
1327        *n_collected = m;
1328    }
1329    if (n_uncollectable) {
1330        *n_uncollectable = n;
1331    }
1332
1333    struct gc_generation_stats *stats = &gcstate->generation_stats[generation];
1334    stats->collections++;
1335    stats->collected += m;
1336    stats->uncollectable += n;
1337
1338    if (PyDTrace_GC_DONE_ENABLED()) {
1339        PyDTrace_GC_DONE(n + m);
1340    }
1341
1342    assert(!_PyErr_Occurred(tstate));
1343    return n + m;
1344}
1345
1346/* Invoke progress callbacks to notify clients that garbage collection
1347 * is starting or stopping
1348 */
1349static void
1350invoke_gc_callback(PyThreadState *tstate, const char *phase,
1351                   int generation, Py_ssize_t collected,
1352                   Py_ssize_t uncollectable)
1353{
1354    assert(!_PyErr_Occurred(tstate));
1355
1356    /* we may get called very early */
1357    GCState *gcstate = &tstate->interp->gc;
1358    if (gcstate->callbacks == NULL) {
1359        return;
1360    }
1361
1362    /* The local variable cannot be rebound, check it for sanity */
1363    assert(PyList_CheckExact(gcstate->callbacks));
1364    PyObject *info = NULL;
1365    if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
1366        info = Py_BuildValue("{sisnsn}",
1367            "generation", generation,
1368            "collected", collected,
1369            "uncollectable", uncollectable);
1370        if (info == NULL) {
1371            PyErr_WriteUnraisable(NULL);
1372            return;
1373        }
1374    }
1375    for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
1376        PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
1377        Py_INCREF(cb); /* make sure cb doesn't go away */
1378        r = PyObject_CallFunction(cb, "sO", phase, info);
1379        if (r == NULL) {
1380            PyErr_WriteUnraisable(cb);
1381        }
1382        else {
1383            Py_DECREF(r);
1384        }
1385        Py_DECREF(cb);
1386    }
1387    Py_XDECREF(info);
1388    assert(!_PyErr_Occurred(tstate));
1389}
1390
1391/* Perform garbage collection of a generation and invoke
1392 * progress callbacks.
1393 */
1394static Py_ssize_t
1395gc_collect_with_callback(PyThreadState *tstate, int generation)
1396{
1397    assert(!_PyErr_Occurred(tstate));
1398    Py_ssize_t result, collected, uncollectable;
1399    invoke_gc_callback(tstate, "start", generation, 0, 0);
1400    result = gc_collect_main(tstate, generation, &collected, &uncollectable, 0);
1401    invoke_gc_callback(tstate, "stop", generation, collected, uncollectable);
1402    assert(!_PyErr_Occurred(tstate));
1403    return result;
1404}
1405
1406static Py_ssize_t
1407gc_collect_generations(PyThreadState *tstate)
1408{
1409    GCState *gcstate = &tstate->interp->gc;
1410    /* Find the oldest generation (highest numbered) where the count
1411     * exceeds the threshold.  Objects in the that generation and
1412     * generations younger than it will be collected. */
1413    Py_ssize_t n = 0;
1414    for (int i = NUM_GENERATIONS-1; i >= 0; i--) {
1415        if (gcstate->generations[i].count > gcstate->generations[i].threshold) {
1416            /* Avoid quadratic performance degradation in number
1417               of tracked objects (see also issue #4074):
1418
1419               To limit the cost of garbage collection, there are two strategies;
1420                 - make each collection faster, e.g. by scanning fewer objects
1421                 - do less collections
1422               This heuristic is about the latter strategy.
1423
1424               In addition to the various configurable thresholds, we only trigger a
1425               full collection if the ratio
1426
1427                long_lived_pending / long_lived_total
1428
1429               is above a given value (hardwired to 25%).
1430
1431               The reason is that, while "non-full" collections (i.e., collections of
1432               the young and middle generations) will always examine roughly the same
1433               number of objects -- determined by the aforementioned thresholds --,
1434               the cost of a full collection is proportional to the total number of
1435               long-lived objects, which is virtually unbounded.
1436
1437               Indeed, it has been remarked that doing a full collection every
1438               <constant number> of object creations entails a dramatic performance
1439               degradation in workloads which consist in creating and storing lots of
1440               long-lived objects (e.g. building a large list of GC-tracked objects would
1441               show quadratic performance, instead of linear as expected: see issue #4074).
1442
1443               Using the above ratio, instead, yields amortized linear performance in
1444               the total number of objects (the effect of which can be summarized
1445               thusly: "each full garbage collection is more and more costly as the
1446               number of objects grows, but we do fewer and fewer of them").
1447
1448               This heuristic was suggested by Martin von Löwis on python-dev in
1449               June 2008. His original analysis and proposal can be found at:
1450               http://mail.python.org/pipermail/python-dev/2008-June/080579.html
1451            */
1452            if (i == NUM_GENERATIONS - 1
1453                && gcstate->long_lived_pending < gcstate->long_lived_total / 4)
1454                continue;
1455            n = gc_collect_with_callback(tstate, i);
1456            break;
1457        }
1458    }
1459    return n;
1460}
1461
1462#include "clinic/gcmodule.c.h"
1463
1464/*[clinic input]
1465gc.enable
1466
1467Enable automatic garbage collection.
1468[clinic start generated code]*/
1469
1470static PyObject *
1471gc_enable_impl(PyObject *module)
1472/*[clinic end generated code: output=45a427e9dce9155c input=81ac4940ca579707]*/
1473{
1474    PyGC_Enable();
1475    Py_RETURN_NONE;
1476}
1477
1478/*[clinic input]
1479gc.disable
1480
1481Disable automatic garbage collection.
1482[clinic start generated code]*/
1483
1484static PyObject *
1485gc_disable_impl(PyObject *module)
1486/*[clinic end generated code: output=97d1030f7aa9d279 input=8c2e5a14e800d83b]*/
1487{
1488    PyGC_Disable();
1489    Py_RETURN_NONE;
1490}
1491
1492/*[clinic input]
1493gc.isenabled -> bool
1494
1495Returns true if automatic garbage collection is enabled.
1496[clinic start generated code]*/
1497
1498static int
1499gc_isenabled_impl(PyObject *module)
1500/*[clinic end generated code: output=1874298331c49130 input=30005e0422373b31]*/
1501{
1502    return PyGC_IsEnabled();
1503}
1504
1505/*[clinic input]
1506gc.collect -> Py_ssize_t
1507
1508    generation: int(c_default="NUM_GENERATIONS - 1") = 2
1509
1510Run the garbage collector.
1511
1512With no arguments, run a full collection.  The optional argument
1513may be an integer specifying which generation to collect.  A ValueError
1514is raised if the generation number is invalid.
1515
1516The number of unreachable objects is returned.
1517[clinic start generated code]*/
1518
1519static Py_ssize_t
1520gc_collect_impl(PyObject *module, int generation)
1521/*[clinic end generated code: output=b697e633043233c7 input=40720128b682d879]*/
1522{
1523    PyThreadState *tstate = _PyThreadState_GET();
1524
1525    if (generation < 0 || generation >= NUM_GENERATIONS) {
1526        _PyErr_SetString(tstate, PyExc_ValueError, "invalid generation");
1527        return -1;
1528    }
1529
1530    GCState *gcstate = &tstate->interp->gc;
1531    Py_ssize_t n;
1532    if (gcstate->collecting) {
1533        /* already collecting, don't do anything */
1534        n = 0;
1535    }
1536    else {
1537        gcstate->collecting = 1;
1538        n = gc_collect_with_callback(tstate, generation);
1539        gcstate->collecting = 0;
1540    }
1541    return n;
1542}
1543
1544/*[clinic input]
1545gc.set_debug
1546
1547    flags: int
1548        An integer that can have the following bits turned on:
1549          DEBUG_STATS - Print statistics during collection.
1550          DEBUG_COLLECTABLE - Print collectable objects found.
1551          DEBUG_UNCOLLECTABLE - Print unreachable but uncollectable objects
1552            found.
1553          DEBUG_SAVEALL - Save objects to gc.garbage rather than freeing them.
1554          DEBUG_LEAK - Debug leaking programs (everything but STATS).
1555    /
1556
1557Set the garbage collection debugging flags.
1558
1559Debugging information is written to sys.stderr.
1560[clinic start generated code]*/
1561
1562static PyObject *
1563gc_set_debug_impl(PyObject *module, int flags)
1564/*[clinic end generated code: output=7c8366575486b228 input=5e5ce15e84fbed15]*/
1565{
1566    GCState *gcstate = get_gc_state();
1567    gcstate->debug = flags;
1568    Py_RETURN_NONE;
1569}
1570
1571/*[clinic input]
1572gc.get_debug -> int
1573
1574Get the garbage collection debugging flags.
1575[clinic start generated code]*/
1576
1577static int
1578gc_get_debug_impl(PyObject *module)
1579/*[clinic end generated code: output=91242f3506cd1e50 input=91a101e1c3b98366]*/
1580{
1581    GCState *gcstate = get_gc_state();
1582    return gcstate->debug;
1583}
1584
1585PyDoc_STRVAR(gc_set_thresh__doc__,
1586"set_threshold(threshold0, [threshold1, threshold2]) -> None\n"
1587"\n"
1588"Sets the collection thresholds.  Setting threshold0 to zero disables\n"
1589"collection.\n");
1590
1591static PyObject *
1592gc_set_threshold(PyObject *self, PyObject *args)
1593{
1594    GCState *gcstate = get_gc_state();
1595    if (!PyArg_ParseTuple(args, "i|ii:set_threshold",
1596                          &gcstate->generations[0].threshold,
1597                          &gcstate->generations[1].threshold,
1598                          &gcstate->generations[2].threshold))
1599        return NULL;
1600    for (int i = 3; i < NUM_GENERATIONS; i++) {
1601        /* generations higher than 2 get the same threshold */
1602        gcstate->generations[i].threshold = gcstate->generations[2].threshold;
1603    }
1604    Py_RETURN_NONE;
1605}
1606
1607/*[clinic input]
1608gc.get_threshold
1609
1610Return the current collection thresholds.
1611[clinic start generated code]*/
1612
1613static PyObject *
1614gc_get_threshold_impl(PyObject *module)
1615/*[clinic end generated code: output=7902bc9f41ecbbd8 input=286d79918034d6e6]*/
1616{
1617    GCState *gcstate = get_gc_state();
1618    return Py_BuildValue("(iii)",
1619                         gcstate->generations[0].threshold,
1620                         gcstate->generations[1].threshold,
1621                         gcstate->generations[2].threshold);
1622}
1623
1624/*[clinic input]
1625gc.get_count
1626
1627Return a three-tuple of the current collection counts.
1628[clinic start generated code]*/
1629
1630static PyObject *
1631gc_get_count_impl(PyObject *module)
1632/*[clinic end generated code: output=354012e67b16398f input=a392794a08251751]*/
1633{
1634    GCState *gcstate = get_gc_state();
1635    return Py_BuildValue("(iii)",
1636                         gcstate->generations[0].count,
1637                         gcstate->generations[1].count,
1638                         gcstate->generations[2].count);
1639}
1640
1641static int
1642referrersvisit(PyObject* obj, PyObject *objs)
1643{
1644    Py_ssize_t i;
1645    for (i = 0; i < PyTuple_GET_SIZE(objs); i++)
1646        if (PyTuple_GET_ITEM(objs, i) == obj)
1647            return 1;
1648    return 0;
1649}
1650
1651static int
1652gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
1653{
1654    PyGC_Head *gc;
1655    PyObject *obj;
1656    traverseproc traverse;
1657    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
1658        obj = FROM_GC(gc);
1659        traverse = Py_TYPE(obj)->tp_traverse;
1660        if (obj == objs || obj == resultlist)
1661            continue;
1662        if (traverse(obj, (visitproc)referrersvisit, objs)) {
1663            if (PyList_Append(resultlist, obj) < 0)
1664                return 0; /* error */
1665        }
1666    }
1667    return 1; /* no error */
1668}
1669
1670PyDoc_STRVAR(gc_get_referrers__doc__,
1671"get_referrers(*objs) -> list\n\
1672Return the list of objects that directly refer to any of objs.");
1673
1674static PyObject *
1675gc_get_referrers(PyObject *self, PyObject *args)
1676{
1677    if (PySys_Audit("gc.get_referrers", "(O)", args) < 0) {
1678        return NULL;
1679    }
1680
1681    PyObject *result = PyList_New(0);
1682    if (!result) {
1683        return NULL;
1684    }
1685
1686    GCState *gcstate = get_gc_state();
1687    for (int i = 0; i < NUM_GENERATIONS; i++) {
1688        if (!(gc_referrers_for(args, GEN_HEAD(gcstate, i), result))) {
1689            Py_DECREF(result);
1690            return NULL;
1691        }
1692    }
1693    return result;
1694}
1695
1696/* Append obj to list; return true if error (out of memory), false if OK. */
1697static int
1698referentsvisit(PyObject *obj, PyObject *list)
1699{
1700    return PyList_Append(list, obj) < 0;
1701}
1702
1703PyDoc_STRVAR(gc_get_referents__doc__,
1704"get_referents(*objs) -> list\n\
1705Return the list of objects that are directly referred to by objs.");
1706
1707static PyObject *
1708gc_get_referents(PyObject *self, PyObject *args)
1709{
1710    Py_ssize_t i;
1711    if (PySys_Audit("gc.get_referents", "(O)", args) < 0) {
1712        return NULL;
1713    }
1714    PyObject *result = PyList_New(0);
1715
1716    if (result == NULL)
1717        return NULL;
1718
1719    for (i = 0; i < PyTuple_GET_SIZE(args); i++) {
1720        traverseproc traverse;
1721        PyObject *obj = PyTuple_GET_ITEM(args, i);
1722
1723        if (!_PyObject_IS_GC(obj))
1724            continue;
1725        traverse = Py_TYPE(obj)->tp_traverse;
1726        if (! traverse)
1727            continue;
1728        if (traverse(obj, (visitproc)referentsvisit, result)) {
1729            Py_DECREF(result);
1730            return NULL;
1731        }
1732    }
1733    return result;
1734}
1735
1736/*[clinic input]
1737gc.get_objects
1738    generation: Py_ssize_t(accept={int, NoneType}, c_default="-1") = None
1739        Generation to extract the objects from.
1740
1741Return a list of objects tracked by the collector (excluding the list returned).
1742
1743If generation is not None, return only the objects tracked by the collector
1744that are in that generation.
1745[clinic start generated code]*/
1746
1747static PyObject *
1748gc_get_objects_impl(PyObject *module, Py_ssize_t generation)
1749/*[clinic end generated code: output=48b35fea4ba6cb0e input=ef7da9df9806754c]*/
1750{
1751    PyThreadState *tstate = _PyThreadState_GET();
1752    int i;
1753    PyObject* result;
1754    GCState *gcstate = &tstate->interp->gc;
1755
1756    if (PySys_Audit("gc.get_objects", "n", generation) < 0) {
1757        return NULL;
1758    }
1759
1760    result = PyList_New(0);
1761    if (result == NULL) {
1762        return NULL;
1763    }
1764
1765    /* If generation is passed, we extract only that generation */
1766    if (generation != -1) {
1767        if (generation >= NUM_GENERATIONS) {
1768            _PyErr_Format(tstate, PyExc_ValueError,
1769                          "generation parameter must be less than the number of "
1770                          "available generations (%i)",
1771                           NUM_GENERATIONS);
1772            goto error;
1773        }
1774
1775        if (generation < 0) {
1776            _PyErr_SetString(tstate, PyExc_ValueError,
1777                             "generation parameter cannot be negative");
1778            goto error;
1779        }
1780
1781        if (append_objects(result, GEN_HEAD(gcstate, generation))) {
1782            goto error;
1783        }
1784
1785        return result;
1786    }
1787
1788    /* If generation is not passed or None, get all objects from all generations */
1789    for (i = 0; i < NUM_GENERATIONS; i++) {
1790        if (append_objects(result, GEN_HEAD(gcstate, i))) {
1791            goto error;
1792        }
1793    }
1794    return result;
1795
1796error:
1797    Py_DECREF(result);
1798    return NULL;
1799}
1800
1801/*[clinic input]
1802gc.get_stats
1803
1804Return a list of dictionaries containing per-generation statistics.
1805[clinic start generated code]*/
1806
1807static PyObject *
1808gc_get_stats_impl(PyObject *module)
1809/*[clinic end generated code: output=a8ab1d8a5d26f3ab input=1ef4ed9d17b1a470]*/
1810{
1811    int i;
1812    struct gc_generation_stats stats[NUM_GENERATIONS], *st;
1813
1814    /* To get consistent values despite allocations while constructing
1815       the result list, we use a snapshot of the running stats. */
1816    GCState *gcstate = get_gc_state();
1817    for (i = 0; i < NUM_GENERATIONS; i++) {
1818        stats[i] = gcstate->generation_stats[i];
1819    }
1820
1821    PyObject *result = PyList_New(0);
1822    if (result == NULL)
1823        return NULL;
1824
1825    for (i = 0; i < NUM_GENERATIONS; i++) {
1826        PyObject *dict;
1827        st = &stats[i];
1828        dict = Py_BuildValue("{snsnsn}",
1829                             "collections", st->collections,
1830                             "collected", st->collected,
1831                             "uncollectable", st->uncollectable
1832                            );
1833        if (dict == NULL)
1834            goto error;
1835        if (PyList_Append(result, dict)) {
1836            Py_DECREF(dict);
1837            goto error;
1838        }
1839        Py_DECREF(dict);
1840    }
1841    return result;
1842
1843error:
1844    Py_XDECREF(result);
1845    return NULL;
1846}
1847
1848
1849/*[clinic input]
1850gc.is_tracked
1851
1852    obj: object
1853    /
1854
1855Returns true if the object is tracked by the garbage collector.
1856
1857Simple atomic objects will return false.
1858[clinic start generated code]*/
1859
1860static PyObject *
1861gc_is_tracked(PyObject *module, PyObject *obj)
1862/*[clinic end generated code: output=14f0103423b28e31 input=d83057f170ea2723]*/
1863{
1864    PyObject *result;
1865
1866    if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj))
1867        result = Py_True;
1868    else
1869        result = Py_False;
1870    Py_INCREF(result);
1871    return result;
1872}
1873
1874/*[clinic input]
1875gc.is_finalized
1876
1877    obj: object
1878    /
1879
1880Returns true if the object has been already finalized by the GC.
1881[clinic start generated code]*/
1882
1883static PyObject *
1884gc_is_finalized(PyObject *module, PyObject *obj)
1885/*[clinic end generated code: output=e1516ac119a918ed input=201d0c58f69ae390]*/
1886{
1887    if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
1888         Py_RETURN_TRUE;
1889    }
1890    Py_RETURN_FALSE;
1891}
1892
1893/*[clinic input]
1894gc.freeze
1895
1896Freeze all current tracked objects and ignore them for future collections.
1897
1898This can be used before a POSIX fork() call to make the gc copy-on-write friendly.
1899Note: collection before a POSIX fork() call may free pages for future allocation
1900which can cause copy-on-write.
1901[clinic start generated code]*/
1902
1903static PyObject *
1904gc_freeze_impl(PyObject *module)
1905/*[clinic end generated code: output=502159d9cdc4c139 input=b602b16ac5febbe5]*/
1906{
1907    GCState *gcstate = get_gc_state();
1908    for (int i = 0; i < NUM_GENERATIONS; ++i) {
1909        gc_list_merge(GEN_HEAD(gcstate, i), &gcstate->permanent_generation.head);
1910        gcstate->generations[i].count = 0;
1911    }
1912    Py_RETURN_NONE;
1913}
1914
1915/*[clinic input]
1916gc.unfreeze
1917
1918Unfreeze all objects in the permanent generation.
1919
1920Put all objects in the permanent generation back into oldest generation.
1921[clinic start generated code]*/
1922
1923static PyObject *
1924gc_unfreeze_impl(PyObject *module)
1925/*[clinic end generated code: output=1c15f2043b25e169 input=2dd52b170f4cef6c]*/
1926{
1927    GCState *gcstate = get_gc_state();
1928    gc_list_merge(&gcstate->permanent_generation.head,
1929                  GEN_HEAD(gcstate, NUM_GENERATIONS-1));
1930    Py_RETURN_NONE;
1931}
1932
1933/*[clinic input]
1934gc.get_freeze_count -> Py_ssize_t
1935
1936Return the number of objects in the permanent generation.
1937[clinic start generated code]*/
1938
1939static Py_ssize_t
1940gc_get_freeze_count_impl(PyObject *module)
1941/*[clinic end generated code: output=61cbd9f43aa032e1 input=45ffbc65cfe2a6ed]*/
1942{
1943    GCState *gcstate = get_gc_state();
1944    return gc_list_size(&gcstate->permanent_generation.head);
1945}
1946
1947
1948PyDoc_STRVAR(gc__doc__,
1949"This module provides access to the garbage collector for reference cycles.\n"
1950"\n"
1951"enable() -- Enable automatic garbage collection.\n"
1952"disable() -- Disable automatic garbage collection.\n"
1953"isenabled() -- Returns true if automatic collection is enabled.\n"
1954"collect() -- Do a full collection right now.\n"
1955"get_count() -- Return the current collection counts.\n"
1956"get_stats() -- Return list of dictionaries containing per-generation stats.\n"
1957"set_debug() -- Set debugging flags.\n"
1958"get_debug() -- Get debugging flags.\n"
1959"set_threshold() -- Set the collection thresholds.\n"
1960"get_threshold() -- Return the current the collection thresholds.\n"
1961"get_objects() -- Return a list of all objects tracked by the collector.\n"
1962"is_tracked() -- Returns true if a given object is tracked.\n"
1963"is_finalized() -- Returns true if a given object has been already finalized.\n"
1964"get_referrers() -- Return the list of objects that refer to an object.\n"
1965"get_referents() -- Return the list of objects that an object refers to.\n"
1966"freeze() -- Freeze all tracked objects and ignore them for future collections.\n"
1967"unfreeze() -- Unfreeze all objects in the permanent generation.\n"
1968"get_freeze_count() -- Return the number of objects in the permanent generation.\n");
1969
1970static PyMethodDef GcMethods[] = {
1971    GC_ENABLE_METHODDEF
1972    GC_DISABLE_METHODDEF
1973    GC_ISENABLED_METHODDEF
1974    GC_SET_DEBUG_METHODDEF
1975    GC_GET_DEBUG_METHODDEF
1976    GC_GET_COUNT_METHODDEF
1977    {"set_threshold",  gc_set_threshold, METH_VARARGS, gc_set_thresh__doc__},
1978    GC_GET_THRESHOLD_METHODDEF
1979    GC_COLLECT_METHODDEF
1980    GC_GET_OBJECTS_METHODDEF
1981    GC_GET_STATS_METHODDEF
1982    GC_IS_TRACKED_METHODDEF
1983    GC_IS_FINALIZED_METHODDEF
1984    {"get_referrers",  gc_get_referrers, METH_VARARGS,
1985        gc_get_referrers__doc__},
1986    {"get_referents",  gc_get_referents, METH_VARARGS,
1987        gc_get_referents__doc__},
1988    GC_FREEZE_METHODDEF
1989    GC_UNFREEZE_METHODDEF
1990    GC_GET_FREEZE_COUNT_METHODDEF
1991    {NULL,      NULL}           /* Sentinel */
1992};
1993
1994static int
1995gcmodule_exec(PyObject *module)
1996{
1997    GCState *gcstate = get_gc_state();
1998
1999    /* garbage and callbacks are initialized by _PyGC_Init() early in
2000     * interpreter lifecycle. */
2001    assert(gcstate->garbage != NULL);
2002    if (PyModule_AddObjectRef(module, "garbage", gcstate->garbage) < 0) {
2003        return -1;
2004    }
2005    assert(gcstate->callbacks != NULL);
2006    if (PyModule_AddObjectRef(module, "callbacks", gcstate->callbacks) < 0) {
2007        return -1;
2008    }
2009
2010#define ADD_INT(NAME) if (PyModule_AddIntConstant(module, #NAME, NAME) < 0) { return -1; }
2011    ADD_INT(DEBUG_STATS);
2012    ADD_INT(DEBUG_COLLECTABLE);
2013    ADD_INT(DEBUG_UNCOLLECTABLE);
2014    ADD_INT(DEBUG_SAVEALL);
2015    ADD_INT(DEBUG_LEAK);
2016#undef ADD_INT
2017    return 0;
2018}
2019
2020static PyModuleDef_Slot gcmodule_slots[] = {
2021    {Py_mod_exec, gcmodule_exec},
2022    {0, NULL}
2023};
2024
2025static struct PyModuleDef gcmodule = {
2026    PyModuleDef_HEAD_INIT,
2027    .m_name = "gc",
2028    .m_doc = gc__doc__,
2029    .m_size = 0,  // per interpreter state, see: get_gc_state()
2030    .m_methods = GcMethods,
2031    .m_slots = gcmodule_slots
2032};
2033
2034PyMODINIT_FUNC
2035PyInit_gc(void)
2036{
2037    return PyModuleDef_Init(&gcmodule);
2038}
2039
2040/* C API for controlling the state of the garbage collector */
2041int
2042PyGC_Enable(void)
2043{
2044    GCState *gcstate = get_gc_state();
2045    int old_state = gcstate->enabled;
2046    gcstate->enabled = 1;
2047    return old_state;
2048}
2049
2050int
2051PyGC_Disable(void)
2052{
2053    GCState *gcstate = get_gc_state();
2054    int old_state = gcstate->enabled;
2055    gcstate->enabled = 0;
2056    return old_state;
2057}
2058
2059int
2060PyGC_IsEnabled(void)
2061{
2062    GCState *gcstate = get_gc_state();
2063    return gcstate->enabled;
2064}
2065
2066/* Public API to invoke gc.collect() from C */
2067Py_ssize_t
2068PyGC_Collect(void)
2069{
2070    PyThreadState *tstate = _PyThreadState_GET();
2071    GCState *gcstate = &tstate->interp->gc;
2072
2073    if (!gcstate->enabled) {
2074        return 0;
2075    }
2076
2077    Py_ssize_t n;
2078    if (gcstate->collecting) {
2079        /* already collecting, don't do anything */
2080        n = 0;
2081    }
2082    else {
2083        PyObject *exc, *value, *tb;
2084        gcstate->collecting = 1;
2085        _PyErr_Fetch(tstate, &exc, &value, &tb);
2086        n = gc_collect_with_callback(tstate, NUM_GENERATIONS - 1);
2087        _PyErr_Restore(tstate, exc, value, tb);
2088        gcstate->collecting = 0;
2089    }
2090
2091    return n;
2092}
2093
2094Py_ssize_t
2095_PyGC_CollectNoFail(PyThreadState *tstate)
2096{
2097    /* Ideally, this function is only called on interpreter shutdown,
2098       and therefore not recursively.  Unfortunately, when there are daemon
2099       threads, a daemon thread can start a cyclic garbage collection
2100       during interpreter shutdown (and then never finish it).
2101       See http://bugs.python.org/issue8713#msg195178 for an example.
2102       */
2103    GCState *gcstate = &tstate->interp->gc;
2104    if (gcstate->collecting) {
2105        return 0;
2106    }
2107
2108    Py_ssize_t n;
2109    gcstate->collecting = 1;
2110    n = gc_collect_main(tstate, NUM_GENERATIONS - 1, NULL, NULL, 1);
2111    gcstate->collecting = 0;
2112    return n;
2113}
2114
2115void
2116_PyGC_DumpShutdownStats(PyInterpreterState *interp)
2117{
2118    GCState *gcstate = &interp->gc;
2119    if (!(gcstate->debug & DEBUG_SAVEALL)
2120        && gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
2121        const char *message;
2122        if (gcstate->debug & DEBUG_UNCOLLECTABLE)
2123            message = "gc: %zd uncollectable objects at " \
2124                "shutdown";
2125        else
2126            message = "gc: %zd uncollectable objects at " \
2127                "shutdown; use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
2128        /* PyErr_WarnFormat does too many things and we are at shutdown,
2129           the warnings module's dependencies (e.g. linecache) may be gone
2130           already. */
2131        if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2132                                     "gc", NULL, message,
2133                                     PyList_GET_SIZE(gcstate->garbage)))
2134            PyErr_WriteUnraisable(NULL);
2135        if (gcstate->debug & DEBUG_UNCOLLECTABLE) {
2136            PyObject *repr = NULL, *bytes = NULL;
2137            repr = PyObject_Repr(gcstate->garbage);
2138            if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr)))
2139                PyErr_WriteUnraisable(gcstate->garbage);
2140            else {
2141                PySys_WriteStderr(
2142                    "      %s\n",
2143                    PyBytes_AS_STRING(bytes)
2144                    );
2145            }
2146            Py_XDECREF(repr);
2147            Py_XDECREF(bytes);
2148        }
2149    }
2150}
2151
2152
2153static void
2154gc_fini_untrack(PyGC_Head *list)
2155{
2156    PyGC_Head *gc;
2157    for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(list)) {
2158        PyObject *op = FROM_GC(gc);
2159        _PyObject_GC_UNTRACK(op);
2160        // gh-92036: If a deallocator function expect the object to be tracked
2161        // by the GC (ex: func_dealloc()), it can crash if called on an object
2162        // which is no longer tracked by the GC. Leak one strong reference on
2163        // purpose so the object is never deleted and its deallocator is not
2164        // called.
2165        Py_INCREF(op);
2166    }
2167}
2168
2169
2170void
2171_PyGC_Fini(PyInterpreterState *interp)
2172{
2173    GCState *gcstate = &interp->gc;
2174    Py_CLEAR(gcstate->garbage);
2175    Py_CLEAR(gcstate->callbacks);
2176
2177    if (!_Py_IsMainInterpreter(interp)) {
2178        // bpo-46070: Explicitly untrack all objects currently tracked by the
2179        // GC. Otherwise, if an object is used later by another interpreter,
2180        // calling PyObject_GC_UnTrack() on the object crashs if the previous
2181        // or the next object of the PyGC_Head structure became a dangling
2182        // pointer.
2183        for (int i = 0; i < NUM_GENERATIONS; i++) {
2184            PyGC_Head *gen = GEN_HEAD(gcstate, i);
2185            gc_fini_untrack(gen);
2186        }
2187    }
2188}
2189
2190/* for debugging */
2191void
2192_PyGC_Dump(PyGC_Head *g)
2193{
2194    _PyObject_Dump(FROM_GC(g));
2195}
2196
2197
2198#ifdef Py_DEBUG
2199static int
2200visit_validate(PyObject *op, void *parent_raw)
2201{
2202    PyObject *parent = _PyObject_CAST(parent_raw);
2203    if (_PyObject_IsFreed(op)) {
2204        _PyObject_ASSERT_FAILED_MSG(parent,
2205                                    "PyObject_GC_Track() object is not valid");
2206    }
2207    return 0;
2208}
2209#endif
2210
2211
2212/* extension modules might be compiled with GC support so these
2213   functions must always be available */
2214
2215void
2216PyObject_GC_Track(void *op_raw)
2217{
2218    PyObject *op = _PyObject_CAST(op_raw);
2219    if (_PyObject_GC_IS_TRACKED(op)) {
2220        _PyObject_ASSERT_FAILED_MSG(op,
2221                                    "object already tracked "
2222                                    "by the garbage collector");
2223    }
2224    _PyObject_GC_TRACK(op);
2225
2226#ifdef Py_DEBUG
2227    /* Check that the object is valid: validate objects traversed
2228       by tp_traverse() */
2229    traverseproc traverse = Py_TYPE(op)->tp_traverse;
2230    (void)traverse(op, visit_validate, op);
2231#endif
2232}
2233
2234void
2235PyObject_GC_UnTrack(void *op_raw)
2236{
2237    PyObject *op = _PyObject_CAST(op_raw);
2238    /* Obscure:  the Py_TRASHCAN mechanism requires that we be able to
2239     * call PyObject_GC_UnTrack twice on an object.
2240     */
2241    if (_PyObject_GC_IS_TRACKED(op)) {
2242        _PyObject_GC_UNTRACK(op);
2243    }
2244}
2245
2246int
2247PyObject_IS_GC(PyObject *obj)
2248{
2249    return _PyObject_IS_GC(obj);
2250}
2251
2252void
2253_PyObject_GC_Link(PyObject *op)
2254{
2255    PyGC_Head *g = AS_GC(op);
2256    assert(((uintptr_t)g & (sizeof(uintptr_t)-1)) == 0);  // g must be correctly aligned
2257
2258    PyThreadState *tstate = _PyThreadState_GET();
2259    GCState *gcstate = &tstate->interp->gc;
2260    g->_gc_next = 0;
2261    g->_gc_prev = 0;
2262    gcstate->generations[0].count++; /* number of allocated GC objects */
2263    if (gcstate->generations[0].count > gcstate->generations[0].threshold &&
2264        gcstate->enabled &&
2265        gcstate->generations[0].threshold &&
2266        !gcstate->collecting &&
2267        !_PyErr_Occurred(tstate))
2268    {
2269        gcstate->collecting = 1;
2270        gc_collect_generations(tstate);
2271        gcstate->collecting = 0;
2272    }
2273}
2274
2275static PyObject *
2276gc_alloc(size_t basicsize, size_t presize)
2277{
2278    PyThreadState *tstate = _PyThreadState_GET();
2279    if (basicsize > PY_SSIZE_T_MAX - presize) {
2280        return _PyErr_NoMemory(tstate);
2281    }
2282    size_t size = presize + basicsize;
2283    char *mem = PyObject_Malloc(size);
2284    if (mem == NULL) {
2285        return _PyErr_NoMemory(tstate);
2286    }
2287    ((PyObject **)mem)[0] = NULL;
2288    ((PyObject **)mem)[1] = NULL;
2289    PyObject *op = (PyObject *)(mem + presize);
2290    _PyObject_GC_Link(op);
2291    return op;
2292}
2293
2294PyObject *
2295_PyObject_GC_New(PyTypeObject *tp)
2296{
2297    size_t presize = _PyType_PreHeaderSize(tp);
2298    PyObject *op = gc_alloc(_PyObject_SIZE(tp), presize);
2299    if (op == NULL) {
2300        return NULL;
2301    }
2302    _PyObject_Init(op, tp);
2303    return op;
2304}
2305
2306PyVarObject *
2307_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
2308{
2309    size_t size;
2310    PyVarObject *op;
2311
2312    if (nitems < 0) {
2313        PyErr_BadInternalCall();
2314        return NULL;
2315    }
2316    size_t presize = _PyType_PreHeaderSize(tp);
2317    size = _PyObject_VAR_SIZE(tp, nitems);
2318    op = (PyVarObject *)gc_alloc(size, presize);
2319    if (op == NULL) {
2320        return NULL;
2321    }
2322    _PyObject_InitVar(op, tp, nitems);
2323    return op;
2324}
2325
2326PyVarObject *
2327_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
2328{
2329    const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
2330    _PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
2331    if (basicsize > PY_SSIZE_T_MAX - sizeof(PyGC_Head)) {
2332        return (PyVarObject *)PyErr_NoMemory();
2333    }
2334
2335    PyGC_Head *g = AS_GC(op);
2336    g = (PyGC_Head *)PyObject_Realloc(g,  sizeof(PyGC_Head) + basicsize);
2337    if (g == NULL)
2338        return (PyVarObject *)PyErr_NoMemory();
2339    op = (PyVarObject *) FROM_GC(g);
2340    Py_SET_SIZE(op, nitems);
2341    return op;
2342}
2343
2344void
2345PyObject_GC_Del(void *op)
2346{
2347    size_t presize = _PyType_PreHeaderSize(((PyObject *)op)->ob_type);
2348    PyGC_Head *g = AS_GC(op);
2349    if (_PyObject_GC_IS_TRACKED(op)) {
2350#ifdef Py_DEBUG
2351        if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
2352                                     "gc", NULL, "Object of type %s is not untracked before destruction",
2353                                     ((PyObject*)op)->ob_type->tp_name)) {
2354            PyErr_WriteUnraisable(NULL);
2355        }
2356#endif
2357        gc_list_remove(g);
2358    }
2359    GCState *gcstate = get_gc_state();
2360    if (gcstate->generations[0].count > 0) {
2361        gcstate->generations[0].count--;
2362    }
2363    PyObject_Free(((char *)op)-presize);
2364}
2365
2366int
2367PyObject_GC_IsTracked(PyObject* obj)
2368{
2369    if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
2370        return 1;
2371    }
2372    return 0;
2373}
2374
2375int
2376PyObject_GC_IsFinalized(PyObject *obj)
2377{
2378    if (_PyObject_IS_GC(obj) && _PyGCHead_FINALIZED(AS_GC(obj))) {
2379         return 1;
2380    }
2381    return 0;
2382}
2383