1/* statistics accelerator C extension: _statistics module. */ 2 3#include "Python.h" 4#include "clinic/_statisticsmodule.c.h" 5 6/*[clinic input] 7module _statistics 8 9[clinic start generated code]*/ 10/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ 11 12/* 13 * There is no closed-form solution to the inverse CDF for the normal 14 * distribution, so we use a rational approximation instead: 15 * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the 16 * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 17 * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. 18 */ 19 20/*[clinic input] 21_statistics._normal_dist_inv_cdf -> double 22 p: double 23 mu: double 24 sigma: double 25 / 26[clinic start generated code]*/ 27 28static double 29_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, 30 double sigma) 31/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ 32{ 33 double q, num, den, r, x; 34 if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) { 35 goto error; 36 } 37 38 q = p - 0.5; 39 if(fabs(q) <= 0.425) { 40 r = 0.180625 - q * q; 41 // Hash sum-55.8831928806149014439 42 num = (((((((2.5090809287301226727e+3 * r + 43 3.3430575583588128105e+4) * r + 44 6.7265770927008700853e+4) * r + 45 4.5921953931549871457e+4) * r + 46 1.3731693765509461125e+4) * r + 47 1.9715909503065514427e+3) * r + 48 1.3314166789178437745e+2) * r + 49 3.3871328727963666080e+0) * q; 50 den = (((((((5.2264952788528545610e+3 * r + 51 2.8729085735721942674e+4) * r + 52 3.9307895800092710610e+4) * r + 53 2.1213794301586595867e+4) * r + 54 5.3941960214247511077e+3) * r + 55 6.8718700749205790830e+2) * r + 56 4.2313330701600911252e+1) * r + 57 1.0); 58 if (den == 0.0) { 59 goto error; 60 } 61 x = num / den; 62 return mu + (x * sigma); 63 } 64 r = (q <= 0.0) ? p : (1.0 - p); 65 if (r <= 0.0 || r >= 1.0) { 66 goto error; 67 } 68 r = sqrt(-log(r)); 69 if (r <= 5.0) { 70 r = r - 1.6; 71 // Hash sum-49.33206503301610289036 72 num = (((((((7.74545014278341407640e-4 * r + 73 2.27238449892691845833e-2) * r + 74 2.41780725177450611770e-1) * r + 75 1.27045825245236838258e+0) * r + 76 3.64784832476320460504e+0) * r + 77 5.76949722146069140550e+0) * r + 78 4.63033784615654529590e+0) * r + 79 1.42343711074968357734e+0); 80 den = (((((((1.05075007164441684324e-9 * r + 81 5.47593808499534494600e-4) * r + 82 1.51986665636164571966e-2) * r + 83 1.48103976427480074590e-1) * r + 84 6.89767334985100004550e-1) * r + 85 1.67638483018380384940e+0) * r + 86 2.05319162663775882187e+0) * r + 87 1.0); 88 } else { 89 r -= 5.0; 90 // Hash sum-47.52583317549289671629 91 num = (((((((2.01033439929228813265e-7 * r + 92 2.71155556874348757815e-5) * r + 93 1.24266094738807843860e-3) * r + 94 2.65321895265761230930e-2) * r + 95 2.96560571828504891230e-1) * r + 96 1.78482653991729133580e+0) * r + 97 5.46378491116411436990e+0) * r + 98 6.65790464350110377720e+0); 99 den = (((((((2.04426310338993978564e-15 * r + 100 1.42151175831644588870e-7) * r + 101 1.84631831751005468180e-5) * r + 102 7.86869131145613259100e-4) * r + 103 1.48753612908506148525e-2) * r + 104 1.36929880922735805310e-1) * r + 105 5.99832206555887937690e-1) * r + 106 1.0); 107 } 108 if (den == 0.0) { 109 goto error; 110 } 111 x = num / den; 112 if (q < 0.0) { 113 x = -x; 114 } 115 return mu + (x * sigma); 116 117 error: 118 PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); 119 return -1.0; 120} 121 122 123static PyMethodDef statistics_methods[] = { 124 _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF 125 {NULL, NULL, 0, NULL} 126}; 127 128PyDoc_STRVAR(statistics_doc, 129"Accelerators for the statistics module.\n"); 130 131static struct PyModuleDef_Slot _statisticsmodule_slots[] = { 132 {0, NULL} 133}; 134 135static struct PyModuleDef statisticsmodule = { 136 PyModuleDef_HEAD_INIT, 137 "_statistics", 138 statistics_doc, 139 0, 140 statistics_methods, 141 _statisticsmodule_slots, 142 NULL, 143 NULL, 144 NULL 145}; 146 147PyMODINIT_FUNC 148PyInit__statistics(void) 149{ 150 return PyModuleDef_Init(&statisticsmodule); 151} 152