17db96d56Sopenharmony_ci/* statistics accelerator C extension: _statistics module. */ 27db96d56Sopenharmony_ci 37db96d56Sopenharmony_ci#include "Python.h" 47db96d56Sopenharmony_ci#include "clinic/_statisticsmodule.c.h" 57db96d56Sopenharmony_ci 67db96d56Sopenharmony_ci/*[clinic input] 77db96d56Sopenharmony_cimodule _statistics 87db96d56Sopenharmony_ci 97db96d56Sopenharmony_ci[clinic start generated code]*/ 107db96d56Sopenharmony_ci/*[clinic end generated code: output=da39a3ee5e6b4b0d input=864a6f59b76123b2]*/ 117db96d56Sopenharmony_ci 127db96d56Sopenharmony_ci/* 137db96d56Sopenharmony_ci * There is no closed-form solution to the inverse CDF for the normal 147db96d56Sopenharmony_ci * distribution, so we use a rational approximation instead: 157db96d56Sopenharmony_ci * Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the 167db96d56Sopenharmony_ci * Normal Distribution". Applied Statistics. Blackwell Publishing. 37 177db96d56Sopenharmony_ci * (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. 187db96d56Sopenharmony_ci */ 197db96d56Sopenharmony_ci 207db96d56Sopenharmony_ci/*[clinic input] 217db96d56Sopenharmony_ci_statistics._normal_dist_inv_cdf -> double 227db96d56Sopenharmony_ci p: double 237db96d56Sopenharmony_ci mu: double 247db96d56Sopenharmony_ci sigma: double 257db96d56Sopenharmony_ci / 267db96d56Sopenharmony_ci[clinic start generated code]*/ 277db96d56Sopenharmony_ci 287db96d56Sopenharmony_cistatic double 297db96d56Sopenharmony_ci_statistics__normal_dist_inv_cdf_impl(PyObject *module, double p, double mu, 307db96d56Sopenharmony_ci double sigma) 317db96d56Sopenharmony_ci/*[clinic end generated code: output=02fd19ddaab36602 input=24715a74be15296a]*/ 327db96d56Sopenharmony_ci{ 337db96d56Sopenharmony_ci double q, num, den, r, x; 347db96d56Sopenharmony_ci if (p <= 0.0 || p >= 1.0 || sigma <= 0.0) { 357db96d56Sopenharmony_ci goto error; 367db96d56Sopenharmony_ci } 377db96d56Sopenharmony_ci 387db96d56Sopenharmony_ci q = p - 0.5; 397db96d56Sopenharmony_ci if(fabs(q) <= 0.425) { 407db96d56Sopenharmony_ci r = 0.180625 - q * q; 417db96d56Sopenharmony_ci // Hash sum-55.8831928806149014439 427db96d56Sopenharmony_ci num = (((((((2.5090809287301226727e+3 * r + 437db96d56Sopenharmony_ci 3.3430575583588128105e+4) * r + 447db96d56Sopenharmony_ci 6.7265770927008700853e+4) * r + 457db96d56Sopenharmony_ci 4.5921953931549871457e+4) * r + 467db96d56Sopenharmony_ci 1.3731693765509461125e+4) * r + 477db96d56Sopenharmony_ci 1.9715909503065514427e+3) * r + 487db96d56Sopenharmony_ci 1.3314166789178437745e+2) * r + 497db96d56Sopenharmony_ci 3.3871328727963666080e+0) * q; 507db96d56Sopenharmony_ci den = (((((((5.2264952788528545610e+3 * r + 517db96d56Sopenharmony_ci 2.8729085735721942674e+4) * r + 527db96d56Sopenharmony_ci 3.9307895800092710610e+4) * r + 537db96d56Sopenharmony_ci 2.1213794301586595867e+4) * r + 547db96d56Sopenharmony_ci 5.3941960214247511077e+3) * r + 557db96d56Sopenharmony_ci 6.8718700749205790830e+2) * r + 567db96d56Sopenharmony_ci 4.2313330701600911252e+1) * r + 577db96d56Sopenharmony_ci 1.0); 587db96d56Sopenharmony_ci if (den == 0.0) { 597db96d56Sopenharmony_ci goto error; 607db96d56Sopenharmony_ci } 617db96d56Sopenharmony_ci x = num / den; 627db96d56Sopenharmony_ci return mu + (x * sigma); 637db96d56Sopenharmony_ci } 647db96d56Sopenharmony_ci r = (q <= 0.0) ? p : (1.0 - p); 657db96d56Sopenharmony_ci if (r <= 0.0 || r >= 1.0) { 667db96d56Sopenharmony_ci goto error; 677db96d56Sopenharmony_ci } 687db96d56Sopenharmony_ci r = sqrt(-log(r)); 697db96d56Sopenharmony_ci if (r <= 5.0) { 707db96d56Sopenharmony_ci r = r - 1.6; 717db96d56Sopenharmony_ci // Hash sum-49.33206503301610289036 727db96d56Sopenharmony_ci num = (((((((7.74545014278341407640e-4 * r + 737db96d56Sopenharmony_ci 2.27238449892691845833e-2) * r + 747db96d56Sopenharmony_ci 2.41780725177450611770e-1) * r + 757db96d56Sopenharmony_ci 1.27045825245236838258e+0) * r + 767db96d56Sopenharmony_ci 3.64784832476320460504e+0) * r + 777db96d56Sopenharmony_ci 5.76949722146069140550e+0) * r + 787db96d56Sopenharmony_ci 4.63033784615654529590e+0) * r + 797db96d56Sopenharmony_ci 1.42343711074968357734e+0); 807db96d56Sopenharmony_ci den = (((((((1.05075007164441684324e-9 * r + 817db96d56Sopenharmony_ci 5.47593808499534494600e-4) * r + 827db96d56Sopenharmony_ci 1.51986665636164571966e-2) * r + 837db96d56Sopenharmony_ci 1.48103976427480074590e-1) * r + 847db96d56Sopenharmony_ci 6.89767334985100004550e-1) * r + 857db96d56Sopenharmony_ci 1.67638483018380384940e+0) * r + 867db96d56Sopenharmony_ci 2.05319162663775882187e+0) * r + 877db96d56Sopenharmony_ci 1.0); 887db96d56Sopenharmony_ci } else { 897db96d56Sopenharmony_ci r -= 5.0; 907db96d56Sopenharmony_ci // Hash sum-47.52583317549289671629 917db96d56Sopenharmony_ci num = (((((((2.01033439929228813265e-7 * r + 927db96d56Sopenharmony_ci 2.71155556874348757815e-5) * r + 937db96d56Sopenharmony_ci 1.24266094738807843860e-3) * r + 947db96d56Sopenharmony_ci 2.65321895265761230930e-2) * r + 957db96d56Sopenharmony_ci 2.96560571828504891230e-1) * r + 967db96d56Sopenharmony_ci 1.78482653991729133580e+0) * r + 977db96d56Sopenharmony_ci 5.46378491116411436990e+0) * r + 987db96d56Sopenharmony_ci 6.65790464350110377720e+0); 997db96d56Sopenharmony_ci den = (((((((2.04426310338993978564e-15 * r + 1007db96d56Sopenharmony_ci 1.42151175831644588870e-7) * r + 1017db96d56Sopenharmony_ci 1.84631831751005468180e-5) * r + 1027db96d56Sopenharmony_ci 7.86869131145613259100e-4) * r + 1037db96d56Sopenharmony_ci 1.48753612908506148525e-2) * r + 1047db96d56Sopenharmony_ci 1.36929880922735805310e-1) * r + 1057db96d56Sopenharmony_ci 5.99832206555887937690e-1) * r + 1067db96d56Sopenharmony_ci 1.0); 1077db96d56Sopenharmony_ci } 1087db96d56Sopenharmony_ci if (den == 0.0) { 1097db96d56Sopenharmony_ci goto error; 1107db96d56Sopenharmony_ci } 1117db96d56Sopenharmony_ci x = num / den; 1127db96d56Sopenharmony_ci if (q < 0.0) { 1137db96d56Sopenharmony_ci x = -x; 1147db96d56Sopenharmony_ci } 1157db96d56Sopenharmony_ci return mu + (x * sigma); 1167db96d56Sopenharmony_ci 1177db96d56Sopenharmony_ci error: 1187db96d56Sopenharmony_ci PyErr_SetString(PyExc_ValueError, "inv_cdf undefined for these parameters"); 1197db96d56Sopenharmony_ci return -1.0; 1207db96d56Sopenharmony_ci} 1217db96d56Sopenharmony_ci 1227db96d56Sopenharmony_ci 1237db96d56Sopenharmony_cistatic PyMethodDef statistics_methods[] = { 1247db96d56Sopenharmony_ci _STATISTICS__NORMAL_DIST_INV_CDF_METHODDEF 1257db96d56Sopenharmony_ci {NULL, NULL, 0, NULL} 1267db96d56Sopenharmony_ci}; 1277db96d56Sopenharmony_ci 1287db96d56Sopenharmony_ciPyDoc_STRVAR(statistics_doc, 1297db96d56Sopenharmony_ci"Accelerators for the statistics module.\n"); 1307db96d56Sopenharmony_ci 1317db96d56Sopenharmony_cistatic struct PyModuleDef_Slot _statisticsmodule_slots[] = { 1327db96d56Sopenharmony_ci {0, NULL} 1337db96d56Sopenharmony_ci}; 1347db96d56Sopenharmony_ci 1357db96d56Sopenharmony_cistatic struct PyModuleDef statisticsmodule = { 1367db96d56Sopenharmony_ci PyModuleDef_HEAD_INIT, 1377db96d56Sopenharmony_ci "_statistics", 1387db96d56Sopenharmony_ci statistics_doc, 1397db96d56Sopenharmony_ci 0, 1407db96d56Sopenharmony_ci statistics_methods, 1417db96d56Sopenharmony_ci _statisticsmodule_slots, 1427db96d56Sopenharmony_ci NULL, 1437db96d56Sopenharmony_ci NULL, 1447db96d56Sopenharmony_ci NULL 1457db96d56Sopenharmony_ci}; 1467db96d56Sopenharmony_ci 1477db96d56Sopenharmony_ciPyMODINIT_FUNC 1487db96d56Sopenharmony_ciPyInit__statistics(void) 1497db96d56Sopenharmony_ci{ 1507db96d56Sopenharmony_ci return PyModuleDef_Init(&statisticsmodule); 1517db96d56Sopenharmony_ci} 152