xref: /third_party/python/Modules/_sha3/sha3.c (revision 7db96d56)
1// sha3.c
2// 19-Nov-11  Markku-Juhani O. Saarinen <mjos@iki.fi>
3
4// Revised 07-Aug-15 to match with official release of FIPS PUB 202 "SHA3"
5// Revised 03-Sep-15 for portability + OpenSSL - style API
6
7#include "sha3.h"
8
9// update the state with given number of rounds
10
11static void sha3_keccakf(uint64_t st[25])
12{
13    // constants
14    const uint64_t keccakf_rndc[24] = {
15        0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
16        0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
17        0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
18        0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
19        0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
20        0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
21        0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
22        0x8000000000008080, 0x0000000080000001, 0x8000000080008008
23    };
24    const int keccakf_rotc[24] = {
25        1,  3,  6,  10, 15, 21, 28, 36, 45, 55, 2,  14,
26        27, 41, 56, 8,  25, 43, 62, 18, 39, 61, 20, 44
27    };
28    const int keccakf_piln[24] = {
29        10, 7,  11, 17, 18, 3, 5,  16, 8,  21, 24, 4,
30        15, 23, 19, 13, 12, 2, 20, 14, 22, 9,  6,  1
31    };
32
33    // variables
34    int i, j, r;
35    uint64_t t, bc[5];
36
37#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
38    uint8_t *v;
39
40    // endianess conversion. this is redundant on little-endian targets
41    for (i = 0; i < 25; i++) {
42        v = (uint8_t *) &st[i];
43        st[i] = ((uint64_t) v[0])     | (((uint64_t) v[1]) << 8) |
44            (((uint64_t) v[2]) << 16) | (((uint64_t) v[3]) << 24) |
45            (((uint64_t) v[4]) << 32) | (((uint64_t) v[5]) << 40) |
46            (((uint64_t) v[6]) << 48) | (((uint64_t) v[7]) << 56);
47    }
48#endif
49
50    // actual iteration
51    for (r = 0; r < KECCAKF_ROUNDS; r++) {
52
53        // Theta
54        for (i = 0; i < 5; i++)
55            bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
56
57        for (i = 0; i < 5; i++) {
58            t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
59            for (j = 0; j < 25; j += 5)
60                st[j + i] ^= t;
61        }
62
63        // Rho Pi
64        t = st[1];
65        for (i = 0; i < 24; i++) {
66            j = keccakf_piln[i];
67            bc[0] = st[j];
68            st[j] = ROTL64(t, keccakf_rotc[i]);
69            t = bc[0];
70        }
71
72        //  Chi
73        for (j = 0; j < 25; j += 5) {
74            for (i = 0; i < 5; i++)
75                bc[i] = st[j + i];
76            for (i = 0; i < 5; i++)
77                st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
78        }
79
80        //  Iota
81        st[0] ^= keccakf_rndc[r];
82    }
83
84#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
85    // endianess conversion. this is redundant on little-endian targets
86    for (i = 0; i < 25; i++) {
87        v = (uint8_t *) &st[i];
88        t = st[i];
89        v[0] = t & 0xFF;
90        v[1] = (t >> 8) & 0xFF;
91        v[2] = (t >> 16) & 0xFF;
92        v[3] = (t >> 24) & 0xFF;
93        v[4] = (t >> 32) & 0xFF;
94        v[5] = (t >> 40) & 0xFF;
95        v[6] = (t >> 48) & 0xFF;
96        v[7] = (t >> 56) & 0xFF;
97    }
98#endif
99}
100
101// Initialize the context for SHA3
102
103static int sha3_init(sha3_ctx_t *c, int mdlen)
104{
105    int i;
106
107    for (i = 0; i < 25; i++)
108        c->st.q[i] = 0;
109    c->mdlen = mdlen;
110    c->rsiz = 200 - 2 * mdlen;
111    c->pt = 0;
112
113    return 1;
114}
115
116// update state with more data
117
118static int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
119{
120    size_t i;
121    int j;
122
123    j = c->pt;
124    for (i = 0; i < len; i++) {
125        c->st.b[j++] ^= ((const uint8_t *) data)[i];
126        if (j >= c->rsiz) {
127            sha3_keccakf(c->st.q);
128            j = 0;
129        }
130    }
131    c->pt = j;
132
133    return 1;
134}
135
136// finalize and output a hash
137
138static int sha3_final(void *md, sha3_ctx_t *c)
139{
140    int i;
141
142    c->st.b[c->pt] ^= 0x06;
143    c->st.b[c->rsiz - 1] ^= 0x80;
144    sha3_keccakf(c->st.q);
145
146    for (i = 0; i < c->mdlen; i++) {
147        ((uint8_t *) md)[i] = c->st.b[i];
148    }
149
150    return 1;
151}
152
153#if 0
154// compute a SHA-3 hash (md) of given byte length from "in"
155
156void *sha3(const void *in, size_t inlen, void *md, int mdlen)
157{
158    sha3_ctx_t sha3;
159
160    sha3_init(&sha3, mdlen);
161    sha3_update(&sha3, in, inlen);
162    sha3_final(md, &sha3);
163
164    return md;
165}
166#endif
167
168// SHAKE128 and SHAKE256 extensible-output functionality
169
170static void shake_xof(sha3_ctx_t *c)
171{
172    c->st.b[c->pt] ^= 0x1F;
173    c->st.b[c->rsiz - 1] ^= 0x80;
174    sha3_keccakf(c->st.q);
175    c->pt = 0;
176}
177
178static void shake_out(sha3_ctx_t *c, void *out, size_t len)
179{
180    size_t i;
181    int j;
182
183    j = c->pt;
184    for (i = 0; i < len; i++) {
185        if (j >= c->rsiz) {
186            sha3_keccakf(c->st.q);
187            j = 0;
188        }
189        ((uint8_t *) out)[i] = c->st.b[j++];
190    }
191    c->pt = j;
192}
193
194