1/* 2 * Copyright (c) 2008-2020 Stefan Krah. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 29#include "mpdecimal.h" 30 31#include <assert.h> 32#include <stdlib.h> 33 34#include "bits.h" 35#include "numbertheory.h" 36#include "umodarith.h" 37 38 39/* Bignum: Initialize the Number Theoretic Transform. */ 40 41 42/* 43 * Return the nth root of unity in F(p). This corresponds to e**((2*pi*i)/n) 44 * in the Fourier transform. We have w**n == 1 (mod p). 45 * n := transform length. 46 * sign := -1 for forward transform, 1 for backward transform. 47 * modnum := one of {P1, P2, P3}. 48 */ 49mpd_uint_t 50_mpd_getkernel(mpd_uint_t n, int sign, int modnum) 51{ 52 mpd_uint_t umod, p, r, xi; 53#ifdef PPRO 54 double dmod; 55 uint32_t dinvmod[3]; 56#endif 57 58 SETMODULUS(modnum); 59 r = mpd_roots[modnum]; /* primitive root of F(p) */ 60 p = umod; 61 xi = (p-1) / n; 62 63 if (sign == -1) 64 return POWMOD(r, (p-1-xi)); 65 else 66 return POWMOD(r, xi); 67} 68 69/* 70 * Initialize and return transform parameters. 71 * n := transform length. 72 * sign := -1 for forward transform, 1 for backward transform. 73 * modnum := one of {P1, P2, P3}. 74 */ 75struct fnt_params * 76_mpd_init_fnt_params(mpd_size_t n, int sign, int modnum) 77{ 78 struct fnt_params *tparams; 79 mpd_uint_t umod; 80#ifdef PPRO 81 double dmod; 82 uint32_t dinvmod[3]; 83#endif 84 mpd_uint_t kernel, w; 85 mpd_uint_t i; 86 mpd_size_t nhalf; 87 88 assert(ispower2(n)); 89 assert(sign == -1 || sign == 1); 90 assert(P1 <= modnum && modnum <= P3); 91 92 nhalf = n/2; 93 tparams = mpd_sh_alloc(sizeof *tparams, nhalf, sizeof (mpd_uint_t)); 94 if (tparams == NULL) { 95 return NULL; 96 } 97 98 SETMODULUS(modnum); 99 kernel = _mpd_getkernel(n, sign, modnum); 100 101 tparams->modnum = modnum; 102 tparams->modulus = umod; 103 tparams->kernel = kernel; 104 105 /* wtable[] := w**0, w**1, ..., w**(nhalf-1) */ 106 w = 1; 107 for (i = 0; i < nhalf; i++) { 108 tparams->wtable[i] = w; 109 w = MULMOD(w, kernel); 110 } 111 112 return tparams; 113} 114 115/* Initialize wtable of size three. */ 116void 117_mpd_init_w3table(mpd_uint_t w3table[3], int sign, int modnum) 118{ 119 mpd_uint_t umod; 120#ifdef PPRO 121 double dmod; 122 uint32_t dinvmod[3]; 123#endif 124 mpd_uint_t kernel; 125 126 SETMODULUS(modnum); 127 kernel = _mpd_getkernel(3, sign, modnum); 128 129 w3table[0] = 1; 130 w3table[1] = kernel; 131 w3table[2] = POWMOD(kernel, 2); 132} 133