17db96d56Sopenharmony_ci/*
27db96d56Sopenharmony_ci * Copyright (c) 2008-2020 Stefan Krah. All rights reserved.
37db96d56Sopenharmony_ci *
47db96d56Sopenharmony_ci * Redistribution and use in source and binary forms, with or without
57db96d56Sopenharmony_ci * modification, are permitted provided that the following conditions
67db96d56Sopenharmony_ci * are met:
77db96d56Sopenharmony_ci *
87db96d56Sopenharmony_ci * 1. Redistributions of source code must retain the above copyright
97db96d56Sopenharmony_ci *    notice, this list of conditions and the following disclaimer.
107db96d56Sopenharmony_ci *
117db96d56Sopenharmony_ci * 2. Redistributions in binary form must reproduce the above copyright
127db96d56Sopenharmony_ci *    notice, this list of conditions and the following disclaimer in the
137db96d56Sopenharmony_ci *    documentation and/or other materials provided with the distribution.
147db96d56Sopenharmony_ci *
157db96d56Sopenharmony_ci * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
167db96d56Sopenharmony_ci * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
177db96d56Sopenharmony_ci * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
187db96d56Sopenharmony_ci * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
197db96d56Sopenharmony_ci * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
207db96d56Sopenharmony_ci * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
217db96d56Sopenharmony_ci * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
227db96d56Sopenharmony_ci * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
237db96d56Sopenharmony_ci * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
247db96d56Sopenharmony_ci * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
257db96d56Sopenharmony_ci * SUCH DAMAGE.
267db96d56Sopenharmony_ci */
277db96d56Sopenharmony_ci
287db96d56Sopenharmony_ci
297db96d56Sopenharmony_ci#include "mpdecimal.h"
307db96d56Sopenharmony_ci#include "bits.h"
317db96d56Sopenharmony_ci#include "constants.h"
327db96d56Sopenharmony_ci#include "convolute.h"
337db96d56Sopenharmony_ci#include "fnt.h"
347db96d56Sopenharmony_ci#include "fourstep.h"
357db96d56Sopenharmony_ci#include "numbertheory.h"
367db96d56Sopenharmony_ci#include "sixstep.h"
377db96d56Sopenharmony_ci#include "umodarith.h"
387db96d56Sopenharmony_ci
397db96d56Sopenharmony_ci
407db96d56Sopenharmony_ci/* Bignum: Fast convolution using the Number Theoretic Transform. Used for
417db96d56Sopenharmony_ci   the multiplication of very large coefficients. */
427db96d56Sopenharmony_ci
437db96d56Sopenharmony_ci
447db96d56Sopenharmony_ci/* Convolute the data in c1 and c2. Result is in c1. */
457db96d56Sopenharmony_ciint
467db96d56Sopenharmony_cifnt_convolute(mpd_uint_t *c1, mpd_uint_t *c2, mpd_size_t n, int modnum)
477db96d56Sopenharmony_ci{
487db96d56Sopenharmony_ci    int (*fnt)(mpd_uint_t *, mpd_size_t, int);
497db96d56Sopenharmony_ci    int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
507db96d56Sopenharmony_ci#ifdef PPRO
517db96d56Sopenharmony_ci    double dmod;
527db96d56Sopenharmony_ci    uint32_t dinvmod[3];
537db96d56Sopenharmony_ci#endif
547db96d56Sopenharmony_ci    mpd_uint_t n_inv, umod;
557db96d56Sopenharmony_ci    mpd_size_t i;
567db96d56Sopenharmony_ci
577db96d56Sopenharmony_ci
587db96d56Sopenharmony_ci    SETMODULUS(modnum);
597db96d56Sopenharmony_ci    n_inv = POWMOD(n, (umod-2));
607db96d56Sopenharmony_ci
617db96d56Sopenharmony_ci    if (ispower2(n)) {
627db96d56Sopenharmony_ci        if (n > SIX_STEP_THRESHOLD) {
637db96d56Sopenharmony_ci            fnt = six_step_fnt;
647db96d56Sopenharmony_ci            inv_fnt = inv_six_step_fnt;
657db96d56Sopenharmony_ci        }
667db96d56Sopenharmony_ci        else {
677db96d56Sopenharmony_ci            fnt = std_fnt;
687db96d56Sopenharmony_ci            inv_fnt = std_inv_fnt;
697db96d56Sopenharmony_ci        }
707db96d56Sopenharmony_ci    }
717db96d56Sopenharmony_ci    else {
727db96d56Sopenharmony_ci        fnt = four_step_fnt;
737db96d56Sopenharmony_ci        inv_fnt = inv_four_step_fnt;
747db96d56Sopenharmony_ci    }
757db96d56Sopenharmony_ci
767db96d56Sopenharmony_ci    if (!fnt(c1, n, modnum)) {
777db96d56Sopenharmony_ci        return 0;
787db96d56Sopenharmony_ci    }
797db96d56Sopenharmony_ci    if (!fnt(c2, n, modnum)) {
807db96d56Sopenharmony_ci        return 0;
817db96d56Sopenharmony_ci    }
827db96d56Sopenharmony_ci    for (i = 0; i < n-1; i += 2) {
837db96d56Sopenharmony_ci        mpd_uint_t x0 = c1[i];
847db96d56Sopenharmony_ci        mpd_uint_t y0 = c2[i];
857db96d56Sopenharmony_ci        mpd_uint_t x1 = c1[i+1];
867db96d56Sopenharmony_ci        mpd_uint_t y1 = c2[i+1];
877db96d56Sopenharmony_ci        MULMOD2(&x0, y0, &x1, y1);
887db96d56Sopenharmony_ci        c1[i] = x0;
897db96d56Sopenharmony_ci        c1[i+1] = x1;
907db96d56Sopenharmony_ci    }
917db96d56Sopenharmony_ci
927db96d56Sopenharmony_ci    if (!inv_fnt(c1, n, modnum)) {
937db96d56Sopenharmony_ci        return 0;
947db96d56Sopenharmony_ci    }
957db96d56Sopenharmony_ci    for (i = 0; i < n-3; i += 4) {
967db96d56Sopenharmony_ci        mpd_uint_t x0 = c1[i];
977db96d56Sopenharmony_ci        mpd_uint_t x1 = c1[i+1];
987db96d56Sopenharmony_ci        mpd_uint_t x2 = c1[i+2];
997db96d56Sopenharmony_ci        mpd_uint_t x3 = c1[i+3];
1007db96d56Sopenharmony_ci        MULMOD2C(&x0, &x1, n_inv);
1017db96d56Sopenharmony_ci        MULMOD2C(&x2, &x3, n_inv);
1027db96d56Sopenharmony_ci        c1[i] = x0;
1037db96d56Sopenharmony_ci        c1[i+1] = x1;
1047db96d56Sopenharmony_ci        c1[i+2] = x2;
1057db96d56Sopenharmony_ci        c1[i+3] = x3;
1067db96d56Sopenharmony_ci    }
1077db96d56Sopenharmony_ci
1087db96d56Sopenharmony_ci    return 1;
1097db96d56Sopenharmony_ci}
1107db96d56Sopenharmony_ci
1117db96d56Sopenharmony_ci/* Autoconvolute the data in c1. Result is in c1. */
1127db96d56Sopenharmony_ciint
1137db96d56Sopenharmony_cifnt_autoconvolute(mpd_uint_t *c1, mpd_size_t n, int modnum)
1147db96d56Sopenharmony_ci{
1157db96d56Sopenharmony_ci    int (*fnt)(mpd_uint_t *, mpd_size_t, int);
1167db96d56Sopenharmony_ci    int (*inv_fnt)(mpd_uint_t *, mpd_size_t, int);
1177db96d56Sopenharmony_ci#ifdef PPRO
1187db96d56Sopenharmony_ci    double dmod;
1197db96d56Sopenharmony_ci    uint32_t dinvmod[3];
1207db96d56Sopenharmony_ci#endif
1217db96d56Sopenharmony_ci    mpd_uint_t n_inv, umod;
1227db96d56Sopenharmony_ci    mpd_size_t i;
1237db96d56Sopenharmony_ci
1247db96d56Sopenharmony_ci
1257db96d56Sopenharmony_ci    SETMODULUS(modnum);
1267db96d56Sopenharmony_ci    n_inv = POWMOD(n, (umod-2));
1277db96d56Sopenharmony_ci
1287db96d56Sopenharmony_ci    if (ispower2(n)) {
1297db96d56Sopenharmony_ci        if (n > SIX_STEP_THRESHOLD) {
1307db96d56Sopenharmony_ci            fnt = six_step_fnt;
1317db96d56Sopenharmony_ci            inv_fnt = inv_six_step_fnt;
1327db96d56Sopenharmony_ci        }
1337db96d56Sopenharmony_ci        else {
1347db96d56Sopenharmony_ci            fnt = std_fnt;
1357db96d56Sopenharmony_ci            inv_fnt = std_inv_fnt;
1367db96d56Sopenharmony_ci        }
1377db96d56Sopenharmony_ci    }
1387db96d56Sopenharmony_ci    else {
1397db96d56Sopenharmony_ci        fnt = four_step_fnt;
1407db96d56Sopenharmony_ci        inv_fnt = inv_four_step_fnt;
1417db96d56Sopenharmony_ci    }
1427db96d56Sopenharmony_ci
1437db96d56Sopenharmony_ci    if (!fnt(c1, n, modnum)) {
1447db96d56Sopenharmony_ci        return 0;
1457db96d56Sopenharmony_ci    }
1467db96d56Sopenharmony_ci    for (i = 0; i < n-1; i += 2) {
1477db96d56Sopenharmony_ci        mpd_uint_t x0 = c1[i];
1487db96d56Sopenharmony_ci        mpd_uint_t x1 = c1[i+1];
1497db96d56Sopenharmony_ci        MULMOD2(&x0, x0, &x1, x1);
1507db96d56Sopenharmony_ci        c1[i] = x0;
1517db96d56Sopenharmony_ci        c1[i+1] = x1;
1527db96d56Sopenharmony_ci    }
1537db96d56Sopenharmony_ci
1547db96d56Sopenharmony_ci    if (!inv_fnt(c1, n, modnum)) {
1557db96d56Sopenharmony_ci        return 0;
1567db96d56Sopenharmony_ci    }
1577db96d56Sopenharmony_ci    for (i = 0; i < n-3; i += 4) {
1587db96d56Sopenharmony_ci        mpd_uint_t x0 = c1[i];
1597db96d56Sopenharmony_ci        mpd_uint_t x1 = c1[i+1];
1607db96d56Sopenharmony_ci        mpd_uint_t x2 = c1[i+2];
1617db96d56Sopenharmony_ci        mpd_uint_t x3 = c1[i+3];
1627db96d56Sopenharmony_ci        MULMOD2C(&x0, &x1, n_inv);
1637db96d56Sopenharmony_ci        MULMOD2C(&x2, &x3, n_inv);
1647db96d56Sopenharmony_ci        c1[i] = x0;
1657db96d56Sopenharmony_ci        c1[i+1] = x1;
1667db96d56Sopenharmony_ci        c1[i+2] = x2;
1677db96d56Sopenharmony_ci        c1[i+3] = x3;
1687db96d56Sopenharmony_ci    }
1697db96d56Sopenharmony_ci
1707db96d56Sopenharmony_ci    return 1;
1717db96d56Sopenharmony_ci}
172