1#ifndef Py_OBJECT_H 2#define Py_OBJECT_H 3#ifdef __cplusplus 4extern "C" { 5#endif 6 7 8/* Object and type object interface */ 9 10/* 11Objects are structures allocated on the heap. Special rules apply to 12the use of objects to ensure they are properly garbage-collected. 13Objects are never allocated statically or on the stack; they must be 14accessed through special macros and functions only. (Type objects are 15exceptions to the first rule; the standard types are represented by 16statically initialized type objects, although work on type/class unification 17for Python 2.2 made it possible to have heap-allocated type objects too). 18 19An object has a 'reference count' that is increased or decreased when a 20pointer to the object is copied or deleted; when the reference count 21reaches zero there are no references to the object left and it can be 22removed from the heap. 23 24An object has a 'type' that determines what it represents and what kind 25of data it contains. An object's type is fixed when it is created. 26Types themselves are represented as objects; an object contains a 27pointer to the corresponding type object. The type itself has a type 28pointer pointing to the object representing the type 'type', which 29contains a pointer to itself!. 30 31Objects do not float around in memory; once allocated an object keeps 32the same size and address. Objects that must hold variable-size data 33can contain pointers to variable-size parts of the object. Not all 34objects of the same type have the same size; but the size cannot change 35after allocation. (These restrictions are made so a reference to an 36object can be simply a pointer -- moving an object would require 37updating all the pointers, and changing an object's size would require 38moving it if there was another object right next to it.) 39 40Objects are always accessed through pointers of the type 'PyObject *'. 41The type 'PyObject' is a structure that only contains the reference count 42and the type pointer. The actual memory allocated for an object 43contains other data that can only be accessed after casting the pointer 44to a pointer to a longer structure type. This longer type must start 45with the reference count and type fields; the macro PyObject_HEAD should be 46used for this (to accommodate for future changes). The implementation 47of a particular object type can cast the object pointer to the proper 48type and back. 49 50A standard interface exists for objects that contain an array of items 51whose size is determined when the object is allocated. 52*/ 53 54/* Py_DEBUG implies Py_REF_DEBUG. */ 55#if defined(Py_DEBUG) && !defined(Py_REF_DEBUG) 56# define Py_REF_DEBUG 57#endif 58 59#if defined(Py_LIMITED_API) && defined(Py_TRACE_REFS) 60# error Py_LIMITED_API is incompatible with Py_TRACE_REFS 61#endif 62 63#ifdef Py_TRACE_REFS 64/* Define pointers to support a doubly-linked list of all live heap objects. */ 65#define _PyObject_HEAD_EXTRA \ 66 PyObject *_ob_next; \ 67 PyObject *_ob_prev; 68 69#define _PyObject_EXTRA_INIT _Py_NULL, _Py_NULL, 70 71#else 72# define _PyObject_HEAD_EXTRA 73# define _PyObject_EXTRA_INIT 74#endif 75 76/* PyObject_HEAD defines the initial segment of every PyObject. */ 77#define PyObject_HEAD PyObject ob_base; 78 79#define PyObject_HEAD_INIT(type) \ 80 { _PyObject_EXTRA_INIT \ 81 1, type }, 82 83#define PyVarObject_HEAD_INIT(type, size) \ 84 { PyObject_HEAD_INIT(type) size }, 85 86/* PyObject_VAR_HEAD defines the initial segment of all variable-size 87 * container objects. These end with a declaration of an array with 1 88 * element, but enough space is malloc'ed so that the array actually 89 * has room for ob_size elements. Note that ob_size is an element count, 90 * not necessarily a byte count. 91 */ 92#define PyObject_VAR_HEAD PyVarObject ob_base; 93#define Py_INVALID_SIZE (Py_ssize_t)-1 94 95/* Nothing is actually declared to be a PyObject, but every pointer to 96 * a Python object can be cast to a PyObject*. This is inheritance built 97 * by hand. Similarly every pointer to a variable-size Python object can, 98 * in addition, be cast to PyVarObject*. 99 */ 100struct _object { 101 _PyObject_HEAD_EXTRA 102 Py_ssize_t ob_refcnt; 103 PyTypeObject *ob_type; 104}; 105 106/* Cast argument to PyObject* type. */ 107#define _PyObject_CAST(op) _Py_CAST(PyObject*, (op)) 108 109typedef struct { 110 PyObject ob_base; 111 Py_ssize_t ob_size; /* Number of items in variable part */ 112} PyVarObject; 113 114/* Cast argument to PyVarObject* type. */ 115#define _PyVarObject_CAST(op) _Py_CAST(PyVarObject*, (op)) 116 117 118// Test if the 'x' object is the 'y' object, the same as "x is y" in Python. 119PyAPI_FUNC(int) Py_Is(PyObject *x, PyObject *y); 120#define Py_Is(x, y) ((x) == (y)) 121 122 123static inline Py_ssize_t Py_REFCNT(PyObject *ob) { 124 return ob->ob_refcnt; 125} 126#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 127# define Py_REFCNT(ob) Py_REFCNT(_PyObject_CAST(ob)) 128#endif 129 130 131// bpo-39573: The Py_SET_TYPE() function must be used to set an object type. 132static inline PyTypeObject* Py_TYPE(PyObject *ob) { 133 return ob->ob_type; 134} 135#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 136# define Py_TYPE(ob) Py_TYPE(_PyObject_CAST(ob)) 137#endif 138 139// bpo-39573: The Py_SET_SIZE() function must be used to set an object size. 140static inline Py_ssize_t Py_SIZE(PyObject *ob) { 141 PyVarObject *var_ob = _PyVarObject_CAST(ob); 142 return var_ob->ob_size; 143} 144#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 145# define Py_SIZE(ob) Py_SIZE(_PyObject_CAST(ob)) 146#endif 147 148 149static inline int Py_IS_TYPE(PyObject *ob, PyTypeObject *type) { 150 return Py_TYPE(ob) == type; 151} 152#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 153# define Py_IS_TYPE(ob, type) Py_IS_TYPE(_PyObject_CAST(ob), type) 154#endif 155 156 157static inline void Py_SET_REFCNT(PyObject *ob, Py_ssize_t refcnt) { 158 ob->ob_refcnt = refcnt; 159} 160#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 161# define Py_SET_REFCNT(ob, refcnt) Py_SET_REFCNT(_PyObject_CAST(ob), refcnt) 162#endif 163 164 165static inline void Py_SET_TYPE(PyObject *ob, PyTypeObject *type) { 166 ob->ob_type = type; 167} 168#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 169# define Py_SET_TYPE(ob, type) Py_SET_TYPE(_PyObject_CAST(ob), type) 170#endif 171 172 173static inline void Py_SET_SIZE(PyVarObject *ob, Py_ssize_t size) { 174 ob->ob_size = size; 175} 176#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 177# define Py_SET_SIZE(ob, size) Py_SET_SIZE(_PyVarObject_CAST(ob), size) 178#endif 179 180 181/* 182Type objects contain a string containing the type name (to help somewhat 183in debugging), the allocation parameters (see PyObject_New() and 184PyObject_NewVar()), 185and methods for accessing objects of the type. Methods are optional, a 186nil pointer meaning that particular kind of access is not available for 187this type. The Py_DECREF() macro uses the tp_dealloc method without 188checking for a nil pointer; it should always be implemented except if 189the implementation can guarantee that the reference count will never 190reach zero (e.g., for statically allocated type objects). 191 192NB: the methods for certain type groups are now contained in separate 193method blocks. 194*/ 195 196typedef PyObject * (*unaryfunc)(PyObject *); 197typedef PyObject * (*binaryfunc)(PyObject *, PyObject *); 198typedef PyObject * (*ternaryfunc)(PyObject *, PyObject *, PyObject *); 199typedef int (*inquiry)(PyObject *); 200typedef Py_ssize_t (*lenfunc)(PyObject *); 201typedef PyObject *(*ssizeargfunc)(PyObject *, Py_ssize_t); 202typedef PyObject *(*ssizessizeargfunc)(PyObject *, Py_ssize_t, Py_ssize_t); 203typedef int(*ssizeobjargproc)(PyObject *, Py_ssize_t, PyObject *); 204typedef int(*ssizessizeobjargproc)(PyObject *, Py_ssize_t, Py_ssize_t, PyObject *); 205typedef int(*objobjargproc)(PyObject *, PyObject *, PyObject *); 206 207typedef int (*objobjproc)(PyObject *, PyObject *); 208typedef int (*visitproc)(PyObject *, void *); 209typedef int (*traverseproc)(PyObject *, visitproc, void *); 210 211 212typedef void (*freefunc)(void *); 213typedef void (*destructor)(PyObject *); 214typedef PyObject *(*getattrfunc)(PyObject *, char *); 215typedef PyObject *(*getattrofunc)(PyObject *, PyObject *); 216typedef int (*setattrfunc)(PyObject *, char *, PyObject *); 217typedef int (*setattrofunc)(PyObject *, PyObject *, PyObject *); 218typedef PyObject *(*reprfunc)(PyObject *); 219typedef Py_hash_t (*hashfunc)(PyObject *); 220typedef PyObject *(*richcmpfunc) (PyObject *, PyObject *, int); 221typedef PyObject *(*getiterfunc) (PyObject *); 222typedef PyObject *(*iternextfunc) (PyObject *); 223typedef PyObject *(*descrgetfunc) (PyObject *, PyObject *, PyObject *); 224typedef int (*descrsetfunc) (PyObject *, PyObject *, PyObject *); 225typedef int (*initproc)(PyObject *, PyObject *, PyObject *); 226typedef PyObject *(*newfunc)(PyTypeObject *, PyObject *, PyObject *); 227typedef PyObject *(*allocfunc)(PyTypeObject *, Py_ssize_t); 228 229typedef struct{ 230 int slot; /* slot id, see below */ 231 void *pfunc; /* function pointer */ 232} PyType_Slot; 233 234typedef struct{ 235 const char* name; 236 int basicsize; 237 int itemsize; 238 unsigned int flags; 239 PyType_Slot *slots; /* terminated by slot==0. */ 240} PyType_Spec; 241 242PyAPI_FUNC(PyObject*) PyType_FromSpec(PyType_Spec*); 243#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 244PyAPI_FUNC(PyObject*) PyType_FromSpecWithBases(PyType_Spec*, PyObject*); 245#endif 246#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03040000 247PyAPI_FUNC(void*) PyType_GetSlot(PyTypeObject*, int); 248#endif 249#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03090000 250PyAPI_FUNC(PyObject*) PyType_FromModuleAndSpec(PyObject *, PyType_Spec *, PyObject *); 251PyAPI_FUNC(PyObject *) PyType_GetModule(PyTypeObject *); 252PyAPI_FUNC(void *) PyType_GetModuleState(PyTypeObject *); 253#endif 254#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030B0000 255PyAPI_FUNC(PyObject *) PyType_GetName(PyTypeObject *); 256PyAPI_FUNC(PyObject *) PyType_GetQualName(PyTypeObject *); 257#endif 258 259/* Generic type check */ 260PyAPI_FUNC(int) PyType_IsSubtype(PyTypeObject *, PyTypeObject *); 261 262static inline int PyObject_TypeCheck(PyObject *ob, PyTypeObject *type) { 263 return Py_IS_TYPE(ob, type) || PyType_IsSubtype(Py_TYPE(ob), type); 264} 265#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 266# define PyObject_TypeCheck(ob, type) PyObject_TypeCheck(_PyObject_CAST(ob), type) 267#endif 268 269PyAPI_DATA(PyTypeObject) PyType_Type; /* built-in 'type' */ 270PyAPI_DATA(PyTypeObject) PyBaseObject_Type; /* built-in 'object' */ 271PyAPI_DATA(PyTypeObject) PySuper_Type; /* built-in 'super' */ 272 273PyAPI_FUNC(unsigned long) PyType_GetFlags(PyTypeObject*); 274 275PyAPI_FUNC(int) PyType_Ready(PyTypeObject *); 276PyAPI_FUNC(PyObject *) PyType_GenericAlloc(PyTypeObject *, Py_ssize_t); 277PyAPI_FUNC(PyObject *) PyType_GenericNew(PyTypeObject *, 278 PyObject *, PyObject *); 279PyAPI_FUNC(unsigned int) PyType_ClearCache(void); 280PyAPI_FUNC(void) PyType_Modified(PyTypeObject *); 281 282/* Generic operations on objects */ 283PyAPI_FUNC(PyObject *) PyObject_Repr(PyObject *); 284PyAPI_FUNC(PyObject *) PyObject_Str(PyObject *); 285PyAPI_FUNC(PyObject *) PyObject_ASCII(PyObject *); 286PyAPI_FUNC(PyObject *) PyObject_Bytes(PyObject *); 287PyAPI_FUNC(PyObject *) PyObject_RichCompare(PyObject *, PyObject *, int); 288PyAPI_FUNC(int) PyObject_RichCompareBool(PyObject *, PyObject *, int); 289PyAPI_FUNC(PyObject *) PyObject_GetAttrString(PyObject *, const char *); 290PyAPI_FUNC(int) PyObject_SetAttrString(PyObject *, const char *, PyObject *); 291PyAPI_FUNC(int) PyObject_HasAttrString(PyObject *, const char *); 292PyAPI_FUNC(PyObject *) PyObject_GetAttr(PyObject *, PyObject *); 293PyAPI_FUNC(int) PyObject_SetAttr(PyObject *, PyObject *, PyObject *); 294PyAPI_FUNC(int) PyObject_HasAttr(PyObject *, PyObject *); 295PyAPI_FUNC(PyObject *) PyObject_SelfIter(PyObject *); 296PyAPI_FUNC(PyObject *) PyObject_GenericGetAttr(PyObject *, PyObject *); 297PyAPI_FUNC(int) PyObject_GenericSetAttr(PyObject *, PyObject *, PyObject *); 298#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x03030000 299PyAPI_FUNC(int) PyObject_GenericSetDict(PyObject *, PyObject *, void *); 300#endif 301PyAPI_FUNC(Py_hash_t) PyObject_Hash(PyObject *); 302PyAPI_FUNC(Py_hash_t) PyObject_HashNotImplemented(PyObject *); 303PyAPI_FUNC(int) PyObject_IsTrue(PyObject *); 304PyAPI_FUNC(int) PyObject_Not(PyObject *); 305PyAPI_FUNC(int) PyCallable_Check(PyObject *); 306PyAPI_FUNC(void) PyObject_ClearWeakRefs(PyObject *); 307 308/* PyObject_Dir(obj) acts like Python builtins.dir(obj), returning a 309 list of strings. PyObject_Dir(NULL) is like builtins.dir(), 310 returning the names of the current locals. In this case, if there are 311 no current locals, NULL is returned, and PyErr_Occurred() is false. 312*/ 313PyAPI_FUNC(PyObject *) PyObject_Dir(PyObject *); 314 315/* Pickle support. */ 316#ifndef Py_LIMITED_API 317PyAPI_FUNC(PyObject *) _PyObject_GetState(PyObject *); 318#endif 319 320 321/* Helpers for printing recursive container types */ 322PyAPI_FUNC(int) Py_ReprEnter(PyObject *); 323PyAPI_FUNC(void) Py_ReprLeave(PyObject *); 324 325/* Flag bits for printing: */ 326#define Py_PRINT_RAW 1 /* No string quotes etc. */ 327 328/* 329Type flags (tp_flags) 330 331These flags are used to change expected features and behavior for a 332particular type. 333 334Arbitration of the flag bit positions will need to be coordinated among 335all extension writers who publicly release their extensions (this will 336be fewer than you might expect!). 337 338Most flags were removed as of Python 3.0 to make room for new flags. (Some 339flags are not for backwards compatibility but to indicate the presence of an 340optional feature; these flags remain of course.) 341 342Type definitions should use Py_TPFLAGS_DEFAULT for their tp_flags value. 343 344Code can use PyType_HasFeature(type_ob, flag_value) to test whether the 345given type object has a specified feature. 346*/ 347 348#ifndef Py_LIMITED_API 349 350/* Placement of dict (and values) pointers are managed by the VM, not by the type. 351 * The VM will automatically set tp_dictoffset. Should not be used for variable sized 352 * classes, such as classes that extend tuple. 353 */ 354#define Py_TPFLAGS_MANAGED_DICT (1 << 4) 355 356/* Set if instances of the type object are treated as sequences for pattern matching */ 357#define Py_TPFLAGS_SEQUENCE (1 << 5) 358/* Set if instances of the type object are treated as mappings for pattern matching */ 359#define Py_TPFLAGS_MAPPING (1 << 6) 360#endif 361 362/* Disallow creating instances of the type: set tp_new to NULL and don't create 363 * the "__new__" key in the type dictionary. */ 364#define Py_TPFLAGS_DISALLOW_INSTANTIATION (1UL << 7) 365 366/* Set if the type object is immutable: type attributes cannot be set nor deleted */ 367#define Py_TPFLAGS_IMMUTABLETYPE (1UL << 8) 368 369/* Set if the type object is dynamically allocated */ 370#define Py_TPFLAGS_HEAPTYPE (1UL << 9) 371 372/* Set if the type allows subclassing */ 373#define Py_TPFLAGS_BASETYPE (1UL << 10) 374 375/* Set if the type implements the vectorcall protocol (PEP 590) */ 376#ifndef Py_LIMITED_API 377#define Py_TPFLAGS_HAVE_VECTORCALL (1UL << 11) 378// Backwards compatibility alias for API that was provisional in Python 3.8 379#define _Py_TPFLAGS_HAVE_VECTORCALL Py_TPFLAGS_HAVE_VECTORCALL 380#endif 381 382/* Set if the type is 'ready' -- fully initialized */ 383#define Py_TPFLAGS_READY (1UL << 12) 384 385/* Set while the type is being 'readied', to prevent recursive ready calls */ 386#define Py_TPFLAGS_READYING (1UL << 13) 387 388/* Objects support garbage collection (see objimpl.h) */ 389#define Py_TPFLAGS_HAVE_GC (1UL << 14) 390 391/* These two bits are preserved for Stackless Python, next after this is 17 */ 392#ifdef STACKLESS 393#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION (3UL << 15) 394#else 395#define Py_TPFLAGS_HAVE_STACKLESS_EXTENSION 0 396#endif 397 398/* Objects behave like an unbound method */ 399#define Py_TPFLAGS_METHOD_DESCRIPTOR (1UL << 17) 400 401/* Object has up-to-date type attribute cache */ 402#define Py_TPFLAGS_VALID_VERSION_TAG (1UL << 19) 403 404/* Type is abstract and cannot be instantiated */ 405#define Py_TPFLAGS_IS_ABSTRACT (1UL << 20) 406 407// This undocumented flag gives certain built-ins their unique pattern-matching 408// behavior, which allows a single positional subpattern to match against the 409// subject itself (rather than a mapped attribute on it): 410#define _Py_TPFLAGS_MATCH_SELF (1UL << 22) 411 412/* These flags are used to determine if a type is a subclass. */ 413#define Py_TPFLAGS_LONG_SUBCLASS (1UL << 24) 414#define Py_TPFLAGS_LIST_SUBCLASS (1UL << 25) 415#define Py_TPFLAGS_TUPLE_SUBCLASS (1UL << 26) 416#define Py_TPFLAGS_BYTES_SUBCLASS (1UL << 27) 417#define Py_TPFLAGS_UNICODE_SUBCLASS (1UL << 28) 418#define Py_TPFLAGS_DICT_SUBCLASS (1UL << 29) 419#define Py_TPFLAGS_BASE_EXC_SUBCLASS (1UL << 30) 420#define Py_TPFLAGS_TYPE_SUBCLASS (1UL << 31) 421 422#define Py_TPFLAGS_DEFAULT ( \ 423 Py_TPFLAGS_HAVE_STACKLESS_EXTENSION | \ 424 0) 425 426/* NOTE: Some of the following flags reuse lower bits (removed as part of the 427 * Python 3.0 transition). */ 428 429/* The following flags are kept for compatibility; in previous 430 * versions they indicated presence of newer tp_* fields on the 431 * type struct. 432 * Starting with 3.8, binary compatibility of C extensions across 433 * feature releases of Python is not supported anymore (except when 434 * using the stable ABI, in which all classes are created dynamically, 435 * using the interpreter's memory layout.) 436 * Note that older extensions using the stable ABI set these flags, 437 * so the bits must not be repurposed. 438 */ 439#define Py_TPFLAGS_HAVE_FINALIZE (1UL << 0) 440#define Py_TPFLAGS_HAVE_VERSION_TAG (1UL << 18) 441 442 443/* 444The macros Py_INCREF(op) and Py_DECREF(op) are used to increment or decrement 445reference counts. Py_DECREF calls the object's deallocator function when 446the refcount falls to 0; for 447objects that don't contain references to other objects or heap memory 448this can be the standard function free(). Both macros can be used 449wherever a void expression is allowed. The argument must not be a 450NULL pointer. If it may be NULL, use Py_XINCREF/Py_XDECREF instead. 451The macro _Py_NewReference(op) initialize reference counts to 1, and 452in special builds (Py_REF_DEBUG, Py_TRACE_REFS) performs additional 453bookkeeping appropriate to the special build. 454 455We assume that the reference count field can never overflow; this can 456be proven when the size of the field is the same as the pointer size, so 457we ignore the possibility. Provided a C int is at least 32 bits (which 458is implicitly assumed in many parts of this code), that's enough for 459about 2**31 references to an object. 460 461XXX The following became out of date in Python 2.2, but I'm not sure 462XXX what the full truth is now. Certainly, heap-allocated type objects 463XXX can and should be deallocated. 464Type objects should never be deallocated; the type pointer in an object 465is not considered to be a reference to the type object, to save 466complications in the deallocation function. (This is actually a 467decision that's up to the implementer of each new type so if you want, 468you can count such references to the type object.) 469*/ 470 471#ifdef Py_REF_DEBUG 472PyAPI_DATA(Py_ssize_t) _Py_RefTotal; 473PyAPI_FUNC(void) _Py_NegativeRefcount(const char *filename, int lineno, 474 PyObject *op); 475#endif /* Py_REF_DEBUG */ 476 477PyAPI_FUNC(void) _Py_Dealloc(PyObject *); 478 479/* 480These are provided as conveniences to Python runtime embedders, so that 481they can have object code that is not dependent on Python compilation flags. 482*/ 483PyAPI_FUNC(void) Py_IncRef(PyObject *); 484PyAPI_FUNC(void) Py_DecRef(PyObject *); 485 486// Similar to Py_IncRef() and Py_DecRef() but the argument must be non-NULL. 487// Private functions used by Py_INCREF() and Py_DECREF(). 488PyAPI_FUNC(void) _Py_IncRef(PyObject *); 489PyAPI_FUNC(void) _Py_DecRef(PyObject *); 490 491static inline void Py_INCREF(PyObject *op) 492{ 493#if defined(Py_REF_DEBUG) && defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000 494 // Stable ABI for Python 3.10 built in debug mode. 495 _Py_IncRef(op); 496#else 497 // Non-limited C API and limited C API for Python 3.9 and older access 498 // directly PyObject.ob_refcnt. 499#ifdef Py_REF_DEBUG 500 _Py_RefTotal++; 501#endif 502 op->ob_refcnt++; 503#endif 504} 505#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 506# define Py_INCREF(op) Py_INCREF(_PyObject_CAST(op)) 507#endif 508 509 510#if defined(Py_REF_DEBUG) && defined(Py_LIMITED_API) && Py_LIMITED_API+0 >= 0x030A0000 511// Stable ABI for limited C API version 3.10 of Python debug build 512static inline void Py_DECREF(PyObject *op) { 513 _Py_DecRef(op); 514} 515#define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op)) 516 517#elif defined(Py_REF_DEBUG) 518static inline void Py_DECREF(const char *filename, int lineno, PyObject *op) 519{ 520 _Py_RefTotal--; 521 if (--op->ob_refcnt != 0) { 522 if (op->ob_refcnt < 0) { 523 _Py_NegativeRefcount(filename, lineno, op); 524 } 525 } 526 else { 527 _Py_Dealloc(op); 528 } 529} 530#define Py_DECREF(op) Py_DECREF(__FILE__, __LINE__, _PyObject_CAST(op)) 531 532#else 533static inline void Py_DECREF(PyObject *op) 534{ 535 // Non-limited C API and limited C API for Python 3.9 and older access 536 // directly PyObject.ob_refcnt. 537 if (--op->ob_refcnt == 0) { 538 _Py_Dealloc(op); 539 } 540} 541#define Py_DECREF(op) Py_DECREF(_PyObject_CAST(op)) 542#endif 543 544 545/* Safely decref `op` and set `op` to NULL, especially useful in tp_clear 546 * and tp_dealloc implementations. 547 * 548 * Note that "the obvious" code can be deadly: 549 * 550 * Py_XDECREF(op); 551 * op = NULL; 552 * 553 * Typically, `op` is something like self->containee, and `self` is done 554 * using its `containee` member. In the code sequence above, suppose 555 * `containee` is non-NULL with a refcount of 1. Its refcount falls to 556 * 0 on the first line, which can trigger an arbitrary amount of code, 557 * possibly including finalizers (like __del__ methods or weakref callbacks) 558 * coded in Python, which in turn can release the GIL and allow other threads 559 * to run, etc. Such code may even invoke methods of `self` again, or cause 560 * cyclic gc to trigger, but-- oops! --self->containee still points to the 561 * object being torn down, and it may be in an insane state while being torn 562 * down. This has in fact been a rich historic source of miserable (rare & 563 * hard-to-diagnose) segfaulting (and other) bugs. 564 * 565 * The safe way is: 566 * 567 * Py_CLEAR(op); 568 * 569 * That arranges to set `op` to NULL _before_ decref'ing, so that any code 570 * triggered as a side-effect of `op` getting torn down no longer believes 571 * `op` points to a valid object. 572 * 573 * There are cases where it's safe to use the naive code, but they're brittle. 574 * For example, if `op` points to a Python integer, you know that destroying 575 * one of those can't cause problems -- but in part that relies on that 576 * Python integers aren't currently weakly referencable. Best practice is 577 * to use Py_CLEAR() even if you can't think of a reason for why you need to. 578 */ 579#define Py_CLEAR(op) \ 580 do { \ 581 PyObject *_py_tmp = _PyObject_CAST(op); \ 582 if (_py_tmp != NULL) { \ 583 (op) = NULL; \ 584 Py_DECREF(_py_tmp); \ 585 } \ 586 } while (0) 587 588/* Function to use in case the object pointer can be NULL: */ 589static inline void Py_XINCREF(PyObject *op) 590{ 591 if (op != _Py_NULL) { 592 Py_INCREF(op); 593 } 594} 595#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 596# define Py_XINCREF(op) Py_XINCREF(_PyObject_CAST(op)) 597#endif 598 599static inline void Py_XDECREF(PyObject *op) 600{ 601 if (op != _Py_NULL) { 602 Py_DECREF(op); 603 } 604} 605#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 606# define Py_XDECREF(op) Py_XDECREF(_PyObject_CAST(op)) 607#endif 608 609// Create a new strong reference to an object: 610// increment the reference count of the object and return the object. 611PyAPI_FUNC(PyObject*) Py_NewRef(PyObject *obj); 612 613// Similar to Py_NewRef(), but the object can be NULL. 614PyAPI_FUNC(PyObject*) Py_XNewRef(PyObject *obj); 615 616static inline PyObject* _Py_NewRef(PyObject *obj) 617{ 618 Py_INCREF(obj); 619 return obj; 620} 621 622static inline PyObject* _Py_XNewRef(PyObject *obj) 623{ 624 Py_XINCREF(obj); 625 return obj; 626} 627 628// Py_NewRef() and Py_XNewRef() are exported as functions for the stable ABI. 629// Names overridden with macros by static inline functions for best 630// performances. 631#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 632# define Py_NewRef(obj) _Py_NewRef(_PyObject_CAST(obj)) 633# define Py_XNewRef(obj) _Py_XNewRef(_PyObject_CAST(obj)) 634#else 635# define Py_NewRef(obj) _Py_NewRef(obj) 636# define Py_XNewRef(obj) _Py_XNewRef(obj) 637#endif 638 639 640/* 641_Py_NoneStruct is an object of undefined type which can be used in contexts 642where NULL (nil) is not suitable (since NULL often means 'error'). 643 644Don't forget to apply Py_INCREF() when returning this value!!! 645*/ 646PyAPI_DATA(PyObject) _Py_NoneStruct; /* Don't use this directly */ 647#define Py_None (&_Py_NoneStruct) 648 649// Test if an object is the None singleton, the same as "x is None" in Python. 650PyAPI_FUNC(int) Py_IsNone(PyObject *x); 651#define Py_IsNone(x) Py_Is((x), Py_None) 652 653/* Macro for returning Py_None from a function */ 654#define Py_RETURN_NONE return Py_NewRef(Py_None) 655 656/* 657Py_NotImplemented is a singleton used to signal that an operation is 658not implemented for a given type combination. 659*/ 660PyAPI_DATA(PyObject) _Py_NotImplementedStruct; /* Don't use this directly */ 661#define Py_NotImplemented (&_Py_NotImplementedStruct) 662 663/* Macro for returning Py_NotImplemented from a function */ 664#define Py_RETURN_NOTIMPLEMENTED return Py_NewRef(Py_NotImplemented) 665 666/* Rich comparison opcodes */ 667#define Py_LT 0 668#define Py_LE 1 669#define Py_EQ 2 670#define Py_NE 3 671#define Py_GT 4 672#define Py_GE 5 673 674#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 >= 0x030A0000 675/* Result of calling PyIter_Send */ 676typedef enum { 677 PYGEN_RETURN = 0, 678 PYGEN_ERROR = -1, 679 PYGEN_NEXT = 1, 680} PySendResult; 681#endif 682 683/* 684 * Macro for implementing rich comparisons 685 * 686 * Needs to be a macro because any C-comparable type can be used. 687 */ 688#define Py_RETURN_RICHCOMPARE(val1, val2, op) \ 689 do { \ 690 switch (op) { \ 691 case Py_EQ: if ((val1) == (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 692 case Py_NE: if ((val1) != (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 693 case Py_LT: if ((val1) < (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 694 case Py_GT: if ((val1) > (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 695 case Py_LE: if ((val1) <= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 696 case Py_GE: if ((val1) >= (val2)) Py_RETURN_TRUE; Py_RETURN_FALSE; \ 697 default: \ 698 Py_UNREACHABLE(); \ 699 } \ 700 } while (0) 701 702 703/* 704More conventions 705================ 706 707Argument Checking 708----------------- 709 710Functions that take objects as arguments normally don't check for nil 711arguments, but they do check the type of the argument, and return an 712error if the function doesn't apply to the type. 713 714Failure Modes 715------------- 716 717Functions may fail for a variety of reasons, including running out of 718memory. This is communicated to the caller in two ways: an error string 719is set (see errors.h), and the function result differs: functions that 720normally return a pointer return NULL for failure, functions returning 721an integer return -1 (which could be a legal return value too!), and 722other functions return 0 for success and -1 for failure. 723Callers should always check for errors before using the result. If 724an error was set, the caller must either explicitly clear it, or pass 725the error on to its caller. 726 727Reference Counts 728---------------- 729 730It takes a while to get used to the proper usage of reference counts. 731 732Functions that create an object set the reference count to 1; such new 733objects must be stored somewhere or destroyed again with Py_DECREF(). 734Some functions that 'store' objects, such as PyTuple_SetItem() and 735PyList_SetItem(), 736don't increment the reference count of the object, since the most 737frequent use is to store a fresh object. Functions that 'retrieve' 738objects, such as PyTuple_GetItem() and PyDict_GetItemString(), also 739don't increment 740the reference count, since most frequently the object is only looked at 741quickly. Thus, to retrieve an object and store it again, the caller 742must call Py_INCREF() explicitly. 743 744NOTE: functions that 'consume' a reference count, like 745PyList_SetItem(), consume the reference even if the object wasn't 746successfully stored, to simplify error handling. 747 748It seems attractive to make other functions that take an object as 749argument consume a reference count; however, this may quickly get 750confusing (even the current practice is already confusing). Consider 751it carefully, it may save lots of calls to Py_INCREF() and Py_DECREF() at 752times. 753*/ 754 755#ifndef Py_LIMITED_API 756# define Py_CPYTHON_OBJECT_H 757# include "cpython/object.h" 758# undef Py_CPYTHON_OBJECT_H 759#endif 760 761 762static inline int 763PyType_HasFeature(PyTypeObject *type, unsigned long feature) 764{ 765 unsigned long flags; 766#ifdef Py_LIMITED_API 767 // PyTypeObject is opaque in the limited C API 768 flags = PyType_GetFlags(type); 769#else 770 flags = type->tp_flags; 771#endif 772 return ((flags & feature) != 0); 773} 774 775#define PyType_FastSubclass(type, flag) PyType_HasFeature(type, flag) 776 777static inline int PyType_Check(PyObject *op) { 778 return PyType_FastSubclass(Py_TYPE(op), Py_TPFLAGS_TYPE_SUBCLASS); 779} 780#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 781# define PyType_Check(op) PyType_Check(_PyObject_CAST(op)) 782#endif 783 784#define _PyType_CAST(op) \ 785 (assert(PyType_Check(op)), _Py_CAST(PyTypeObject*, (op))) 786 787static inline int PyType_CheckExact(PyObject *op) { 788 return Py_IS_TYPE(op, &PyType_Type); 789} 790#if !defined(Py_LIMITED_API) || Py_LIMITED_API+0 < 0x030b0000 791# define PyType_CheckExact(op) PyType_CheckExact(_PyObject_CAST(op)) 792#endif 793 794#ifdef __cplusplus 795} 796#endif 797#endif // !Py_OBJECT_H 798