17db96d56Sopenharmony_ci:mod:`math` --- Mathematical functions 27db96d56Sopenharmony_ci====================================== 37db96d56Sopenharmony_ci 47db96d56Sopenharmony_ci.. module:: math 57db96d56Sopenharmony_ci :synopsis: Mathematical functions (sin() etc.). 67db96d56Sopenharmony_ci 77db96d56Sopenharmony_ci.. testsetup:: 87db96d56Sopenharmony_ci 97db96d56Sopenharmony_ci from math import fsum 107db96d56Sopenharmony_ci 117db96d56Sopenharmony_ci-------------- 127db96d56Sopenharmony_ci 137db96d56Sopenharmony_ciThis module provides access to the mathematical functions defined by the C 147db96d56Sopenharmony_cistandard. 157db96d56Sopenharmony_ci 167db96d56Sopenharmony_ciThese functions cannot be used with complex numbers; use the functions of the 177db96d56Sopenharmony_cisame name from the :mod:`cmath` module if you require support for complex 187db96d56Sopenharmony_cinumbers. The distinction between functions which support complex numbers and 197db96d56Sopenharmony_cithose which don't is made since most users do not want to learn quite as much 207db96d56Sopenharmony_cimathematics as required to understand complex numbers. Receiving an exception 217db96d56Sopenharmony_ciinstead of a complex result allows earlier detection of the unexpected complex 227db96d56Sopenharmony_cinumber used as a parameter, so that the programmer can determine how and why it 237db96d56Sopenharmony_ciwas generated in the first place. 247db96d56Sopenharmony_ci 257db96d56Sopenharmony_ciThe following functions are provided by this module. Except when explicitly 267db96d56Sopenharmony_cinoted otherwise, all return values are floats. 277db96d56Sopenharmony_ci 287db96d56Sopenharmony_ci 297db96d56Sopenharmony_ciNumber-theoretic and representation functions 307db96d56Sopenharmony_ci--------------------------------------------- 317db96d56Sopenharmony_ci 327db96d56Sopenharmony_ci.. function:: ceil(x) 337db96d56Sopenharmony_ci 347db96d56Sopenharmony_ci Return the ceiling of *x*, the smallest integer greater than or equal to *x*. 357db96d56Sopenharmony_ci If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`, 367db96d56Sopenharmony_ci which should return an :class:`~numbers.Integral` value. 377db96d56Sopenharmony_ci 387db96d56Sopenharmony_ci 397db96d56Sopenharmony_ci.. function:: comb(n, k) 407db96d56Sopenharmony_ci 417db96d56Sopenharmony_ci Return the number of ways to choose *k* items from *n* items without repetition 427db96d56Sopenharmony_ci and without order. 437db96d56Sopenharmony_ci 447db96d56Sopenharmony_ci Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates 457db96d56Sopenharmony_ci to zero when ``k > n``. 467db96d56Sopenharmony_ci 477db96d56Sopenharmony_ci Also called the binomial coefficient because it is equivalent 487db96d56Sopenharmony_ci to the coefficient of k-th term in polynomial expansion of 497db96d56Sopenharmony_ci ``(1 + x)ⁿ``. 507db96d56Sopenharmony_ci 517db96d56Sopenharmony_ci Raises :exc:`TypeError` if either of the arguments are not integers. 527db96d56Sopenharmony_ci Raises :exc:`ValueError` if either of the arguments are negative. 537db96d56Sopenharmony_ci 547db96d56Sopenharmony_ci .. versionadded:: 3.8 557db96d56Sopenharmony_ci 567db96d56Sopenharmony_ci 577db96d56Sopenharmony_ci.. function:: copysign(x, y) 587db96d56Sopenharmony_ci 597db96d56Sopenharmony_ci Return a float with the magnitude (absolute value) of *x* but the sign of 607db96d56Sopenharmony_ci *y*. On platforms that support signed zeros, ``copysign(1.0, -0.0)`` 617db96d56Sopenharmony_ci returns *-1.0*. 627db96d56Sopenharmony_ci 637db96d56Sopenharmony_ci 647db96d56Sopenharmony_ci.. function:: fabs(x) 657db96d56Sopenharmony_ci 667db96d56Sopenharmony_ci Return the absolute value of *x*. 677db96d56Sopenharmony_ci 687db96d56Sopenharmony_ci 697db96d56Sopenharmony_ci.. function:: factorial(n) 707db96d56Sopenharmony_ci 717db96d56Sopenharmony_ci Return *n* factorial as an integer. Raises :exc:`ValueError` if *n* is not integral or 727db96d56Sopenharmony_ci is negative. 737db96d56Sopenharmony_ci 747db96d56Sopenharmony_ci .. deprecated:: 3.9 757db96d56Sopenharmony_ci Accepting floats with integral values (like ``5.0``) is deprecated. 767db96d56Sopenharmony_ci 777db96d56Sopenharmony_ci 787db96d56Sopenharmony_ci.. function:: floor(x) 797db96d56Sopenharmony_ci 807db96d56Sopenharmony_ci Return the floor of *x*, the largest integer less than or equal to *x*. If 817db96d56Sopenharmony_ci *x* is not a float, delegates to :meth:`x.__floor__ <object.__floor__>`, which 827db96d56Sopenharmony_ci should return an :class:`~numbers.Integral` value. 837db96d56Sopenharmony_ci 847db96d56Sopenharmony_ci 857db96d56Sopenharmony_ci.. function:: fmod(x, y) 867db96d56Sopenharmony_ci 877db96d56Sopenharmony_ci Return ``fmod(x, y)``, as defined by the platform C library. Note that the 887db96d56Sopenharmony_ci Python expression ``x % y`` may not return the same result. The intent of the C 897db96d56Sopenharmony_ci standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite 907db96d56Sopenharmony_ci precision) equal to ``x - n*y`` for some integer *n* such that the result has 917db96d56Sopenharmony_ci the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y`` 927db96d56Sopenharmony_ci returns a result with the sign of *y* instead, and may not be exactly computable 937db96d56Sopenharmony_ci for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but 947db96d56Sopenharmony_ci the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be 957db96d56Sopenharmony_ci represented exactly as a float, and rounds to the surprising ``1e100``. For 967db96d56Sopenharmony_ci this reason, function :func:`fmod` is generally preferred when working with 977db96d56Sopenharmony_ci floats, while Python's ``x % y`` is preferred when working with integers. 987db96d56Sopenharmony_ci 997db96d56Sopenharmony_ci 1007db96d56Sopenharmony_ci.. function:: frexp(x) 1017db96d56Sopenharmony_ci 1027db96d56Sopenharmony_ci Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float 1037db96d56Sopenharmony_ci and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero, 1047db96d56Sopenharmony_ci returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick 1057db96d56Sopenharmony_ci apart" the internal representation of a float in a portable way. 1067db96d56Sopenharmony_ci 1077db96d56Sopenharmony_ci 1087db96d56Sopenharmony_ci.. function:: fsum(iterable) 1097db96d56Sopenharmony_ci 1107db96d56Sopenharmony_ci Return an accurate floating point sum of values in the iterable. Avoids 1117db96d56Sopenharmony_ci loss of precision by tracking multiple intermediate partial sums:: 1127db96d56Sopenharmony_ci 1137db96d56Sopenharmony_ci >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 1147db96d56Sopenharmony_ci 0.9999999999999999 1157db96d56Sopenharmony_ci >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]) 1167db96d56Sopenharmony_ci 1.0 1177db96d56Sopenharmony_ci 1187db96d56Sopenharmony_ci The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the 1197db96d56Sopenharmony_ci typical case where the rounding mode is half-even. On some non-Windows 1207db96d56Sopenharmony_ci builds, the underlying C library uses extended precision addition and may 1217db96d56Sopenharmony_ci occasionally double-round an intermediate sum causing it to be off in its 1227db96d56Sopenharmony_ci least significant bit. 1237db96d56Sopenharmony_ci 1247db96d56Sopenharmony_ci For further discussion and two alternative approaches, see the `ASPN cookbook 1257db96d56Sopenharmony_ci recipes for accurate floating point summation 1267db96d56Sopenharmony_ci <https://code.activestate.com/recipes/393090/>`_\. 1277db96d56Sopenharmony_ci 1287db96d56Sopenharmony_ci 1297db96d56Sopenharmony_ci.. function:: gcd(*integers) 1307db96d56Sopenharmony_ci 1317db96d56Sopenharmony_ci Return the greatest common divisor of the specified integer arguments. 1327db96d56Sopenharmony_ci If any of the arguments is nonzero, then the returned value is the largest 1337db96d56Sopenharmony_ci positive integer that is a divisor of all arguments. If all arguments 1347db96d56Sopenharmony_ci are zero, then the returned value is ``0``. ``gcd()`` without arguments 1357db96d56Sopenharmony_ci returns ``0``. 1367db96d56Sopenharmony_ci 1377db96d56Sopenharmony_ci .. versionadded:: 3.5 1387db96d56Sopenharmony_ci 1397db96d56Sopenharmony_ci .. versionchanged:: 3.9 1407db96d56Sopenharmony_ci Added support for an arbitrary number of arguments. Formerly, only two 1417db96d56Sopenharmony_ci arguments were supported. 1427db96d56Sopenharmony_ci 1437db96d56Sopenharmony_ci 1447db96d56Sopenharmony_ci.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) 1457db96d56Sopenharmony_ci 1467db96d56Sopenharmony_ci Return ``True`` if the values *a* and *b* are close to each other and 1477db96d56Sopenharmony_ci ``False`` otherwise. 1487db96d56Sopenharmony_ci 1497db96d56Sopenharmony_ci Whether or not two values are considered close is determined according to 1507db96d56Sopenharmony_ci given absolute and relative tolerances. 1517db96d56Sopenharmony_ci 1527db96d56Sopenharmony_ci *rel_tol* is the relative tolerance -- it is the maximum allowed difference 1537db96d56Sopenharmony_ci between *a* and *b*, relative to the larger absolute value of *a* or *b*. 1547db96d56Sopenharmony_ci For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default 1557db96d56Sopenharmony_ci tolerance is ``1e-09``, which assures that the two values are the same 1567db96d56Sopenharmony_ci within about 9 decimal digits. *rel_tol* must be greater than zero. 1577db96d56Sopenharmony_ci 1587db96d56Sopenharmony_ci *abs_tol* is the minimum absolute tolerance -- useful for comparisons near 1597db96d56Sopenharmony_ci zero. *abs_tol* must be at least zero. 1607db96d56Sopenharmony_ci 1617db96d56Sopenharmony_ci If no errors occur, the result will be: 1627db96d56Sopenharmony_ci ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``. 1637db96d56Sopenharmony_ci 1647db96d56Sopenharmony_ci The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be 1657db96d56Sopenharmony_ci handled according to IEEE rules. Specifically, ``NaN`` is not considered 1667db96d56Sopenharmony_ci close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only 1677db96d56Sopenharmony_ci considered close to themselves. 1687db96d56Sopenharmony_ci 1697db96d56Sopenharmony_ci .. versionadded:: 3.5 1707db96d56Sopenharmony_ci 1717db96d56Sopenharmony_ci .. seealso:: 1727db96d56Sopenharmony_ci 1737db96d56Sopenharmony_ci :pep:`485` -- A function for testing approximate equality 1747db96d56Sopenharmony_ci 1757db96d56Sopenharmony_ci 1767db96d56Sopenharmony_ci.. function:: isfinite(x) 1777db96d56Sopenharmony_ci 1787db96d56Sopenharmony_ci Return ``True`` if *x* is neither an infinity nor a NaN, and 1797db96d56Sopenharmony_ci ``False`` otherwise. (Note that ``0.0`` *is* considered finite.) 1807db96d56Sopenharmony_ci 1817db96d56Sopenharmony_ci .. versionadded:: 3.2 1827db96d56Sopenharmony_ci 1837db96d56Sopenharmony_ci 1847db96d56Sopenharmony_ci.. function:: isinf(x) 1857db96d56Sopenharmony_ci 1867db96d56Sopenharmony_ci Return ``True`` if *x* is a positive or negative infinity, and 1877db96d56Sopenharmony_ci ``False`` otherwise. 1887db96d56Sopenharmony_ci 1897db96d56Sopenharmony_ci 1907db96d56Sopenharmony_ci.. function:: isnan(x) 1917db96d56Sopenharmony_ci 1927db96d56Sopenharmony_ci Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise. 1937db96d56Sopenharmony_ci 1947db96d56Sopenharmony_ci 1957db96d56Sopenharmony_ci.. function:: isqrt(n) 1967db96d56Sopenharmony_ci 1977db96d56Sopenharmony_ci Return the integer square root of the nonnegative integer *n*. This is the 1987db96d56Sopenharmony_ci floor of the exact square root of *n*, or equivalently the greatest integer 1997db96d56Sopenharmony_ci *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*. 2007db96d56Sopenharmony_ci 2017db96d56Sopenharmony_ci For some applications, it may be more convenient to have the least integer 2027db96d56Sopenharmony_ci *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of 2037db96d56Sopenharmony_ci the exact square root of *n*. For positive *n*, this can be computed using 2047db96d56Sopenharmony_ci ``a = 1 + isqrt(n - 1)``. 2057db96d56Sopenharmony_ci 2067db96d56Sopenharmony_ci .. versionadded:: 3.8 2077db96d56Sopenharmony_ci 2087db96d56Sopenharmony_ci 2097db96d56Sopenharmony_ci.. function:: lcm(*integers) 2107db96d56Sopenharmony_ci 2117db96d56Sopenharmony_ci Return the least common multiple of the specified integer arguments. 2127db96d56Sopenharmony_ci If all arguments are nonzero, then the returned value is the smallest 2137db96d56Sopenharmony_ci positive integer that is a multiple of all arguments. If any of the arguments 2147db96d56Sopenharmony_ci is zero, then the returned value is ``0``. ``lcm()`` without arguments 2157db96d56Sopenharmony_ci returns ``1``. 2167db96d56Sopenharmony_ci 2177db96d56Sopenharmony_ci .. versionadded:: 3.9 2187db96d56Sopenharmony_ci 2197db96d56Sopenharmony_ci 2207db96d56Sopenharmony_ci.. function:: ldexp(x, i) 2217db96d56Sopenharmony_ci 2227db96d56Sopenharmony_ci Return ``x * (2**i)``. This is essentially the inverse of function 2237db96d56Sopenharmony_ci :func:`frexp`. 2247db96d56Sopenharmony_ci 2257db96d56Sopenharmony_ci 2267db96d56Sopenharmony_ci.. function:: modf(x) 2277db96d56Sopenharmony_ci 2287db96d56Sopenharmony_ci Return the fractional and integer parts of *x*. Both results carry the sign 2297db96d56Sopenharmony_ci of *x* and are floats. 2307db96d56Sopenharmony_ci 2317db96d56Sopenharmony_ci 2327db96d56Sopenharmony_ci.. function:: nextafter(x, y) 2337db96d56Sopenharmony_ci 2347db96d56Sopenharmony_ci Return the next floating-point value after *x* towards *y*. 2357db96d56Sopenharmony_ci 2367db96d56Sopenharmony_ci If *x* is equal to *y*, return *y*. 2377db96d56Sopenharmony_ci 2387db96d56Sopenharmony_ci Examples: 2397db96d56Sopenharmony_ci 2407db96d56Sopenharmony_ci * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity. 2417db96d56Sopenharmony_ci * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity. 2427db96d56Sopenharmony_ci * ``math.nextafter(x, 0.0)`` goes towards zero. 2437db96d56Sopenharmony_ci * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero. 2447db96d56Sopenharmony_ci 2457db96d56Sopenharmony_ci See also :func:`math.ulp`. 2467db96d56Sopenharmony_ci 2477db96d56Sopenharmony_ci .. versionadded:: 3.9 2487db96d56Sopenharmony_ci 2497db96d56Sopenharmony_ci.. function:: perm(n, k=None) 2507db96d56Sopenharmony_ci 2517db96d56Sopenharmony_ci Return the number of ways to choose *k* items from *n* items 2527db96d56Sopenharmony_ci without repetition and with order. 2537db96d56Sopenharmony_ci 2547db96d56Sopenharmony_ci Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates 2557db96d56Sopenharmony_ci to zero when ``k > n``. 2567db96d56Sopenharmony_ci 2577db96d56Sopenharmony_ci If *k* is not specified or is None, then *k* defaults to *n* 2587db96d56Sopenharmony_ci and the function returns ``n!``. 2597db96d56Sopenharmony_ci 2607db96d56Sopenharmony_ci Raises :exc:`TypeError` if either of the arguments are not integers. 2617db96d56Sopenharmony_ci Raises :exc:`ValueError` if either of the arguments are negative. 2627db96d56Sopenharmony_ci 2637db96d56Sopenharmony_ci .. versionadded:: 3.8 2647db96d56Sopenharmony_ci 2657db96d56Sopenharmony_ci 2667db96d56Sopenharmony_ci.. function:: prod(iterable, *, start=1) 2677db96d56Sopenharmony_ci 2687db96d56Sopenharmony_ci Calculate the product of all the elements in the input *iterable*. 2697db96d56Sopenharmony_ci The default *start* value for the product is ``1``. 2707db96d56Sopenharmony_ci 2717db96d56Sopenharmony_ci When the iterable is empty, return the start value. This function is 2727db96d56Sopenharmony_ci intended specifically for use with numeric values and may reject 2737db96d56Sopenharmony_ci non-numeric types. 2747db96d56Sopenharmony_ci 2757db96d56Sopenharmony_ci .. versionadded:: 3.8 2767db96d56Sopenharmony_ci 2777db96d56Sopenharmony_ci 2787db96d56Sopenharmony_ci.. function:: remainder(x, y) 2797db96d56Sopenharmony_ci 2807db96d56Sopenharmony_ci Return the IEEE 754-style remainder of *x* with respect to *y*. For 2817db96d56Sopenharmony_ci finite *x* and finite nonzero *y*, this is the difference ``x - n*y``, 2827db96d56Sopenharmony_ci where ``n`` is the closest integer to the exact value of the quotient ``x / 2837db96d56Sopenharmony_ci y``. If ``x / y`` is exactly halfway between two consecutive integers, the 2847db96d56Sopenharmony_ci nearest *even* integer is used for ``n``. The remainder ``r = remainder(x, 2857db96d56Sopenharmony_ci y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``. 2867db96d56Sopenharmony_ci 2877db96d56Sopenharmony_ci Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is 2887db96d56Sopenharmony_ci *x* for any finite *x*, and ``remainder(x, 0)`` and 2897db96d56Sopenharmony_ci ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*. 2907db96d56Sopenharmony_ci If the result of the remainder operation is zero, that zero will have 2917db96d56Sopenharmony_ci the same sign as *x*. 2927db96d56Sopenharmony_ci 2937db96d56Sopenharmony_ci On platforms using IEEE 754 binary floating-point, the result of this 2947db96d56Sopenharmony_ci operation is always exactly representable: no rounding error is introduced. 2957db96d56Sopenharmony_ci 2967db96d56Sopenharmony_ci .. versionadded:: 3.7 2977db96d56Sopenharmony_ci 2987db96d56Sopenharmony_ci 2997db96d56Sopenharmony_ci.. function:: trunc(x) 3007db96d56Sopenharmony_ci 3017db96d56Sopenharmony_ci Return *x* with the fractional part 3027db96d56Sopenharmony_ci removed, leaving the integer part. This rounds toward 0: ``trunc()`` is 3037db96d56Sopenharmony_ci equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil` 3047db96d56Sopenharmony_ci for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__ 3057db96d56Sopenharmony_ci <object.__trunc__>`, which should return an :class:`~numbers.Integral` value. 3067db96d56Sopenharmony_ci 3077db96d56Sopenharmony_ci.. function:: ulp(x) 3087db96d56Sopenharmony_ci 3097db96d56Sopenharmony_ci Return the value of the least significant bit of the float *x*: 3107db96d56Sopenharmony_ci 3117db96d56Sopenharmony_ci * If *x* is a NaN (not a number), return *x*. 3127db96d56Sopenharmony_ci * If *x* is negative, return ``ulp(-x)``. 3137db96d56Sopenharmony_ci * If *x* is a positive infinity, return *x*. 3147db96d56Sopenharmony_ci * If *x* is equal to zero, return the smallest positive 3157db96d56Sopenharmony_ci *denormalized* representable float (smaller than the minimum positive 3167db96d56Sopenharmony_ci *normalized* float, :data:`sys.float_info.min <sys.float_info>`). 3177db96d56Sopenharmony_ci * If *x* is equal to the largest positive representable float, 3187db96d56Sopenharmony_ci return the value of the least significant bit of *x*, such that the first 3197db96d56Sopenharmony_ci float smaller than *x* is ``x - ulp(x)``. 3207db96d56Sopenharmony_ci * Otherwise (*x* is a positive finite number), return the value of the least 3217db96d56Sopenharmony_ci significant bit of *x*, such that the first float bigger than *x* 3227db96d56Sopenharmony_ci is ``x + ulp(x)``. 3237db96d56Sopenharmony_ci 3247db96d56Sopenharmony_ci ULP stands for "Unit in the Last Place". 3257db96d56Sopenharmony_ci 3267db96d56Sopenharmony_ci See also :func:`math.nextafter` and :data:`sys.float_info.epsilon 3277db96d56Sopenharmony_ci <sys.float_info>`. 3287db96d56Sopenharmony_ci 3297db96d56Sopenharmony_ci .. versionadded:: 3.9 3307db96d56Sopenharmony_ci 3317db96d56Sopenharmony_ci 3327db96d56Sopenharmony_ciNote that :func:`frexp` and :func:`modf` have a different call/return pattern 3337db96d56Sopenharmony_cithan their C equivalents: they take a single argument and return a pair of 3347db96d56Sopenharmony_civalues, rather than returning their second return value through an 'output 3357db96d56Sopenharmony_ciparameter' (there is no such thing in Python). 3367db96d56Sopenharmony_ci 3377db96d56Sopenharmony_ciFor the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all* 3387db96d56Sopenharmony_cifloating-point numbers of sufficiently large magnitude are exact integers. 3397db96d56Sopenharmony_ciPython floats typically carry no more than 53 bits of precision (the same as the 3407db96d56Sopenharmony_ciplatform C double type), in which case any float *x* with ``abs(x) >= 2**52`` 3417db96d56Sopenharmony_cinecessarily has no fractional bits. 3427db96d56Sopenharmony_ci 3437db96d56Sopenharmony_ci 3447db96d56Sopenharmony_ciPower and logarithmic functions 3457db96d56Sopenharmony_ci------------------------------- 3467db96d56Sopenharmony_ci 3477db96d56Sopenharmony_ci.. function:: cbrt(x) 3487db96d56Sopenharmony_ci 3497db96d56Sopenharmony_ci Return the cube root of *x*. 3507db96d56Sopenharmony_ci 3517db96d56Sopenharmony_ci .. versionadded:: 3.11 3527db96d56Sopenharmony_ci 3537db96d56Sopenharmony_ci 3547db96d56Sopenharmony_ci.. function:: exp(x) 3557db96d56Sopenharmony_ci 3567db96d56Sopenharmony_ci Return *e* raised to the power *x*, where *e* = 2.718281... is the base 3577db96d56Sopenharmony_ci of natural logarithms. This is usually more accurate than ``math.e ** x`` 3587db96d56Sopenharmony_ci or ``pow(math.e, x)``. 3597db96d56Sopenharmony_ci 3607db96d56Sopenharmony_ci 3617db96d56Sopenharmony_ci.. function:: exp2(x) 3627db96d56Sopenharmony_ci 3637db96d56Sopenharmony_ci Return *2* raised to the power *x*. 3647db96d56Sopenharmony_ci 3657db96d56Sopenharmony_ci .. versionadded:: 3.11 3667db96d56Sopenharmony_ci 3677db96d56Sopenharmony_ci 3687db96d56Sopenharmony_ci.. function:: expm1(x) 3697db96d56Sopenharmony_ci 3707db96d56Sopenharmony_ci Return *e* raised to the power *x*, minus 1. Here *e* is the base of natural 3717db96d56Sopenharmony_ci logarithms. For small floats *x*, the subtraction in ``exp(x) - 1`` 3727db96d56Sopenharmony_ci can result in a `significant loss of precision 3737db96d56Sopenharmony_ci <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1` 3747db96d56Sopenharmony_ci function provides a way to compute this quantity to full precision:: 3757db96d56Sopenharmony_ci 3767db96d56Sopenharmony_ci >>> from math import exp, expm1 3777db96d56Sopenharmony_ci >>> exp(1e-5) - 1 # gives result accurate to 11 places 3787db96d56Sopenharmony_ci 1.0000050000069649e-05 3797db96d56Sopenharmony_ci >>> expm1(1e-5) # result accurate to full precision 3807db96d56Sopenharmony_ci 1.0000050000166668e-05 3817db96d56Sopenharmony_ci 3827db96d56Sopenharmony_ci .. versionadded:: 3.2 3837db96d56Sopenharmony_ci 3847db96d56Sopenharmony_ci 3857db96d56Sopenharmony_ci.. function:: log(x[, base]) 3867db96d56Sopenharmony_ci 3877db96d56Sopenharmony_ci With one argument, return the natural logarithm of *x* (to base *e*). 3887db96d56Sopenharmony_ci 3897db96d56Sopenharmony_ci With two arguments, return the logarithm of *x* to the given *base*, 3907db96d56Sopenharmony_ci calculated as ``log(x)/log(base)``. 3917db96d56Sopenharmony_ci 3927db96d56Sopenharmony_ci 3937db96d56Sopenharmony_ci.. function:: log1p(x) 3947db96d56Sopenharmony_ci 3957db96d56Sopenharmony_ci Return the natural logarithm of *1+x* (base *e*). The 3967db96d56Sopenharmony_ci result is calculated in a way which is accurate for *x* near zero. 3977db96d56Sopenharmony_ci 3987db96d56Sopenharmony_ci 3997db96d56Sopenharmony_ci.. function:: log2(x) 4007db96d56Sopenharmony_ci 4017db96d56Sopenharmony_ci Return the base-2 logarithm of *x*. This is usually more accurate than 4027db96d56Sopenharmony_ci ``log(x, 2)``. 4037db96d56Sopenharmony_ci 4047db96d56Sopenharmony_ci .. versionadded:: 3.3 4057db96d56Sopenharmony_ci 4067db96d56Sopenharmony_ci .. seealso:: 4077db96d56Sopenharmony_ci 4087db96d56Sopenharmony_ci :meth:`int.bit_length` returns the number of bits necessary to represent 4097db96d56Sopenharmony_ci an integer in binary, excluding the sign and leading zeros. 4107db96d56Sopenharmony_ci 4117db96d56Sopenharmony_ci 4127db96d56Sopenharmony_ci.. function:: log10(x) 4137db96d56Sopenharmony_ci 4147db96d56Sopenharmony_ci Return the base-10 logarithm of *x*. This is usually more accurate 4157db96d56Sopenharmony_ci than ``log(x, 10)``. 4167db96d56Sopenharmony_ci 4177db96d56Sopenharmony_ci 4187db96d56Sopenharmony_ci.. function:: pow(x, y) 4197db96d56Sopenharmony_ci 4207db96d56Sopenharmony_ci Return ``x`` raised to the power ``y``. Exceptional cases follow 4217db96d56Sopenharmony_ci the IEEE 754 standard as far as possible. In particular, 4227db96d56Sopenharmony_ci ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even 4237db96d56Sopenharmony_ci when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite, 4247db96d56Sopenharmony_ci ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)`` 4257db96d56Sopenharmony_ci is undefined, and raises :exc:`ValueError`. 4267db96d56Sopenharmony_ci 4277db96d56Sopenharmony_ci Unlike the built-in ``**`` operator, :func:`math.pow` converts both 4287db96d56Sopenharmony_ci its arguments to type :class:`float`. Use ``**`` or the built-in 4297db96d56Sopenharmony_ci :func:`pow` function for computing exact integer powers. 4307db96d56Sopenharmony_ci 4317db96d56Sopenharmony_ci .. versionchanged:: 3.11 4327db96d56Sopenharmony_ci The special cases ``pow(0.0, -inf)`` and ``pow(-0.0, -inf)`` were 4337db96d56Sopenharmony_ci changed to return ``inf`` instead of raising :exc:`ValueError`, 4347db96d56Sopenharmony_ci for consistency with IEEE 754. 4357db96d56Sopenharmony_ci 4367db96d56Sopenharmony_ci 4377db96d56Sopenharmony_ci.. function:: sqrt(x) 4387db96d56Sopenharmony_ci 4397db96d56Sopenharmony_ci Return the square root of *x*. 4407db96d56Sopenharmony_ci 4417db96d56Sopenharmony_ci 4427db96d56Sopenharmony_ciTrigonometric functions 4437db96d56Sopenharmony_ci----------------------- 4447db96d56Sopenharmony_ci 4457db96d56Sopenharmony_ci.. function:: acos(x) 4467db96d56Sopenharmony_ci 4477db96d56Sopenharmony_ci Return the arc cosine of *x*, in radians. The result is between ``0`` and 4487db96d56Sopenharmony_ci ``pi``. 4497db96d56Sopenharmony_ci 4507db96d56Sopenharmony_ci 4517db96d56Sopenharmony_ci.. function:: asin(x) 4527db96d56Sopenharmony_ci 4537db96d56Sopenharmony_ci Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and 4547db96d56Sopenharmony_ci ``pi/2``. 4557db96d56Sopenharmony_ci 4567db96d56Sopenharmony_ci 4577db96d56Sopenharmony_ci.. function:: atan(x) 4587db96d56Sopenharmony_ci 4597db96d56Sopenharmony_ci Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and 4607db96d56Sopenharmony_ci ``pi/2``. 4617db96d56Sopenharmony_ci 4627db96d56Sopenharmony_ci 4637db96d56Sopenharmony_ci.. function:: atan2(y, x) 4647db96d56Sopenharmony_ci 4657db96d56Sopenharmony_ci Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``. 4667db96d56Sopenharmony_ci The vector in the plane from the origin to point ``(x, y)`` makes this angle 4677db96d56Sopenharmony_ci with the positive X axis. The point of :func:`atan2` is that the signs of both 4687db96d56Sopenharmony_ci inputs are known to it, so it can compute the correct quadrant for the angle. 4697db96d56Sopenharmony_ci For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1, 4707db96d56Sopenharmony_ci -1)`` is ``-3*pi/4``. 4717db96d56Sopenharmony_ci 4727db96d56Sopenharmony_ci 4737db96d56Sopenharmony_ci.. function:: cos(x) 4747db96d56Sopenharmony_ci 4757db96d56Sopenharmony_ci Return the cosine of *x* radians. 4767db96d56Sopenharmony_ci 4777db96d56Sopenharmony_ci 4787db96d56Sopenharmony_ci.. function:: dist(p, q) 4797db96d56Sopenharmony_ci 4807db96d56Sopenharmony_ci Return the Euclidean distance between two points *p* and *q*, each 4817db96d56Sopenharmony_ci given as a sequence (or iterable) of coordinates. The two points 4827db96d56Sopenharmony_ci must have the same dimension. 4837db96d56Sopenharmony_ci 4847db96d56Sopenharmony_ci Roughly equivalent to:: 4857db96d56Sopenharmony_ci 4867db96d56Sopenharmony_ci sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q))) 4877db96d56Sopenharmony_ci 4887db96d56Sopenharmony_ci .. versionadded:: 3.8 4897db96d56Sopenharmony_ci 4907db96d56Sopenharmony_ci 4917db96d56Sopenharmony_ci.. function:: hypot(*coordinates) 4927db96d56Sopenharmony_ci 4937db96d56Sopenharmony_ci Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``. 4947db96d56Sopenharmony_ci This is the length of the vector from the origin to the point 4957db96d56Sopenharmony_ci given by the coordinates. 4967db96d56Sopenharmony_ci 4977db96d56Sopenharmony_ci For a two dimensional point ``(x, y)``, this is equivalent to computing 4987db96d56Sopenharmony_ci the hypotenuse of a right triangle using the Pythagorean theorem, 4997db96d56Sopenharmony_ci ``sqrt(x*x + y*y)``. 5007db96d56Sopenharmony_ci 5017db96d56Sopenharmony_ci .. versionchanged:: 3.8 5027db96d56Sopenharmony_ci Added support for n-dimensional points. Formerly, only the two 5037db96d56Sopenharmony_ci dimensional case was supported. 5047db96d56Sopenharmony_ci 5057db96d56Sopenharmony_ci .. versionchanged:: 3.10 5067db96d56Sopenharmony_ci Improved the algorithm's accuracy so that the maximum error is 5077db96d56Sopenharmony_ci under 1 ulp (unit in the last place). More typically, the result 5087db96d56Sopenharmony_ci is almost always correctly rounded to within 1/2 ulp. 5097db96d56Sopenharmony_ci 5107db96d56Sopenharmony_ci 5117db96d56Sopenharmony_ci.. function:: sin(x) 5127db96d56Sopenharmony_ci 5137db96d56Sopenharmony_ci Return the sine of *x* radians. 5147db96d56Sopenharmony_ci 5157db96d56Sopenharmony_ci 5167db96d56Sopenharmony_ci.. function:: tan(x) 5177db96d56Sopenharmony_ci 5187db96d56Sopenharmony_ci Return the tangent of *x* radians. 5197db96d56Sopenharmony_ci 5207db96d56Sopenharmony_ci 5217db96d56Sopenharmony_ciAngular conversion 5227db96d56Sopenharmony_ci------------------ 5237db96d56Sopenharmony_ci 5247db96d56Sopenharmony_ci.. function:: degrees(x) 5257db96d56Sopenharmony_ci 5267db96d56Sopenharmony_ci Convert angle *x* from radians to degrees. 5277db96d56Sopenharmony_ci 5287db96d56Sopenharmony_ci 5297db96d56Sopenharmony_ci.. function:: radians(x) 5307db96d56Sopenharmony_ci 5317db96d56Sopenharmony_ci Convert angle *x* from degrees to radians. 5327db96d56Sopenharmony_ci 5337db96d56Sopenharmony_ci 5347db96d56Sopenharmony_ciHyperbolic functions 5357db96d56Sopenharmony_ci-------------------- 5367db96d56Sopenharmony_ci 5377db96d56Sopenharmony_ci`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_ 5387db96d56Sopenharmony_ciare analogs of trigonometric functions that are based on hyperbolas 5397db96d56Sopenharmony_ciinstead of circles. 5407db96d56Sopenharmony_ci 5417db96d56Sopenharmony_ci.. function:: acosh(x) 5427db96d56Sopenharmony_ci 5437db96d56Sopenharmony_ci Return the inverse hyperbolic cosine of *x*. 5447db96d56Sopenharmony_ci 5457db96d56Sopenharmony_ci 5467db96d56Sopenharmony_ci.. function:: asinh(x) 5477db96d56Sopenharmony_ci 5487db96d56Sopenharmony_ci Return the inverse hyperbolic sine of *x*. 5497db96d56Sopenharmony_ci 5507db96d56Sopenharmony_ci 5517db96d56Sopenharmony_ci.. function:: atanh(x) 5527db96d56Sopenharmony_ci 5537db96d56Sopenharmony_ci Return the inverse hyperbolic tangent of *x*. 5547db96d56Sopenharmony_ci 5557db96d56Sopenharmony_ci 5567db96d56Sopenharmony_ci.. function:: cosh(x) 5577db96d56Sopenharmony_ci 5587db96d56Sopenharmony_ci Return the hyperbolic cosine of *x*. 5597db96d56Sopenharmony_ci 5607db96d56Sopenharmony_ci 5617db96d56Sopenharmony_ci.. function:: sinh(x) 5627db96d56Sopenharmony_ci 5637db96d56Sopenharmony_ci Return the hyperbolic sine of *x*. 5647db96d56Sopenharmony_ci 5657db96d56Sopenharmony_ci 5667db96d56Sopenharmony_ci.. function:: tanh(x) 5677db96d56Sopenharmony_ci 5687db96d56Sopenharmony_ci Return the hyperbolic tangent of *x*. 5697db96d56Sopenharmony_ci 5707db96d56Sopenharmony_ci 5717db96d56Sopenharmony_ciSpecial functions 5727db96d56Sopenharmony_ci----------------- 5737db96d56Sopenharmony_ci 5747db96d56Sopenharmony_ci.. function:: erf(x) 5757db96d56Sopenharmony_ci 5767db96d56Sopenharmony_ci Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at 5777db96d56Sopenharmony_ci *x*. 5787db96d56Sopenharmony_ci 5797db96d56Sopenharmony_ci The :func:`erf` function can be used to compute traditional statistical 5807db96d56Sopenharmony_ci functions such as the `cumulative standard normal distribution 5817db96d56Sopenharmony_ci <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions>`_:: 5827db96d56Sopenharmony_ci 5837db96d56Sopenharmony_ci def phi(x): 5847db96d56Sopenharmony_ci 'Cumulative distribution function for the standard normal distribution' 5857db96d56Sopenharmony_ci return (1.0 + erf(x / sqrt(2.0))) / 2.0 5867db96d56Sopenharmony_ci 5877db96d56Sopenharmony_ci .. versionadded:: 3.2 5887db96d56Sopenharmony_ci 5897db96d56Sopenharmony_ci 5907db96d56Sopenharmony_ci.. function:: erfc(x) 5917db96d56Sopenharmony_ci 5927db96d56Sopenharmony_ci Return the complementary error function at *x*. The `complementary error 5937db96d56Sopenharmony_ci function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as 5947db96d56Sopenharmony_ci ``1.0 - erf(x)``. It is used for large values of *x* where a subtraction 5957db96d56Sopenharmony_ci from one would cause a `loss of significance 5967db96d56Sopenharmony_ci <https://en.wikipedia.org/wiki/Loss_of_significance>`_\. 5977db96d56Sopenharmony_ci 5987db96d56Sopenharmony_ci .. versionadded:: 3.2 5997db96d56Sopenharmony_ci 6007db96d56Sopenharmony_ci 6017db96d56Sopenharmony_ci.. function:: gamma(x) 6027db96d56Sopenharmony_ci 6037db96d56Sopenharmony_ci Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at 6047db96d56Sopenharmony_ci *x*. 6057db96d56Sopenharmony_ci 6067db96d56Sopenharmony_ci .. versionadded:: 3.2 6077db96d56Sopenharmony_ci 6087db96d56Sopenharmony_ci 6097db96d56Sopenharmony_ci.. function:: lgamma(x) 6107db96d56Sopenharmony_ci 6117db96d56Sopenharmony_ci Return the natural logarithm of the absolute value of the Gamma 6127db96d56Sopenharmony_ci function at *x*. 6137db96d56Sopenharmony_ci 6147db96d56Sopenharmony_ci .. versionadded:: 3.2 6157db96d56Sopenharmony_ci 6167db96d56Sopenharmony_ci 6177db96d56Sopenharmony_ciConstants 6187db96d56Sopenharmony_ci--------- 6197db96d56Sopenharmony_ci 6207db96d56Sopenharmony_ci.. data:: pi 6217db96d56Sopenharmony_ci 6227db96d56Sopenharmony_ci The mathematical constant *π* = 3.141592..., to available precision. 6237db96d56Sopenharmony_ci 6247db96d56Sopenharmony_ci 6257db96d56Sopenharmony_ci.. data:: e 6267db96d56Sopenharmony_ci 6277db96d56Sopenharmony_ci The mathematical constant *e* = 2.718281..., to available precision. 6287db96d56Sopenharmony_ci 6297db96d56Sopenharmony_ci 6307db96d56Sopenharmony_ci.. data:: tau 6317db96d56Sopenharmony_ci 6327db96d56Sopenharmony_ci The mathematical constant *τ* = 6.283185..., to available precision. 6337db96d56Sopenharmony_ci Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to 6347db96d56Sopenharmony_ci its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still) 6357db96d56Sopenharmony_ci Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating 6367db96d56Sopenharmony_ci `Tau day <https://tauday.com/>`_ by eating twice as much pie! 6377db96d56Sopenharmony_ci 6387db96d56Sopenharmony_ci .. versionadded:: 3.6 6397db96d56Sopenharmony_ci 6407db96d56Sopenharmony_ci 6417db96d56Sopenharmony_ci.. data:: inf 6427db96d56Sopenharmony_ci 6437db96d56Sopenharmony_ci A floating-point positive infinity. (For negative infinity, use 6447db96d56Sopenharmony_ci ``-math.inf``.) Equivalent to the output of ``float('inf')``. 6457db96d56Sopenharmony_ci 6467db96d56Sopenharmony_ci .. versionadded:: 3.5 6477db96d56Sopenharmony_ci 6487db96d56Sopenharmony_ci 6497db96d56Sopenharmony_ci.. data:: nan 6507db96d56Sopenharmony_ci 6517db96d56Sopenharmony_ci A floating-point "not a number" (NaN) value. Equivalent to the output of 6527db96d56Sopenharmony_ci ``float('nan')``. Due to the requirements of the `IEEE-754 standard 6537db96d56Sopenharmony_ci <https://en.wikipedia.org/wiki/IEEE_754>`_, ``math.nan`` and ``float('nan')`` are 6547db96d56Sopenharmony_ci not considered to equal to any other numeric value, including themselves. To check 6557db96d56Sopenharmony_ci whether a number is a NaN, use the :func:`isnan` function to test 6567db96d56Sopenharmony_ci for NaNs instead of ``is`` or ``==``. 6577db96d56Sopenharmony_ci Example:: 6587db96d56Sopenharmony_ci 6597db96d56Sopenharmony_ci >>> import math 6607db96d56Sopenharmony_ci >>> math.nan == math.nan 6617db96d56Sopenharmony_ci False 6627db96d56Sopenharmony_ci >>> float('nan') == float('nan') 6637db96d56Sopenharmony_ci False 6647db96d56Sopenharmony_ci >>> math.isnan(math.nan) 6657db96d56Sopenharmony_ci True 6667db96d56Sopenharmony_ci >>> math.isnan(float('nan')) 6677db96d56Sopenharmony_ci True 6687db96d56Sopenharmony_ci 6697db96d56Sopenharmony_ci .. versionchanged:: 3.11 6707db96d56Sopenharmony_ci It is now always available. 6717db96d56Sopenharmony_ci 6727db96d56Sopenharmony_ci .. versionadded:: 3.5 6737db96d56Sopenharmony_ci 6747db96d56Sopenharmony_ci 6757db96d56Sopenharmony_ci.. impl-detail:: 6767db96d56Sopenharmony_ci 6777db96d56Sopenharmony_ci The :mod:`math` module consists mostly of thin wrappers around the platform C 6787db96d56Sopenharmony_ci math library functions. Behavior in exceptional cases follows Annex F of 6797db96d56Sopenharmony_ci the C99 standard where appropriate. The current implementation will raise 6807db96d56Sopenharmony_ci :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)`` 6817db96d56Sopenharmony_ci (where C99 Annex F recommends signaling invalid operation or divide-by-zero), 6827db96d56Sopenharmony_ci and :exc:`OverflowError` for results that overflow (for example, 6837db96d56Sopenharmony_ci ``exp(1000.0)``). A NaN will not be returned from any of the functions 6847db96d56Sopenharmony_ci above unless one or more of the input arguments was a NaN; in that case, 6857db96d56Sopenharmony_ci most functions will return a NaN, but (again following C99 Annex F) there 6867db96d56Sopenharmony_ci are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or 6877db96d56Sopenharmony_ci ``hypot(float('nan'), float('inf'))``. 6887db96d56Sopenharmony_ci 6897db96d56Sopenharmony_ci Note that Python makes no effort to distinguish signaling NaNs from 6907db96d56Sopenharmony_ci quiet NaNs, and behavior for signaling NaNs remains unspecified. 6917db96d56Sopenharmony_ci Typical behavior is to treat all NaNs as though they were quiet. 6927db96d56Sopenharmony_ci 6937db96d56Sopenharmony_ci 6947db96d56Sopenharmony_ci.. seealso:: 6957db96d56Sopenharmony_ci 6967db96d56Sopenharmony_ci Module :mod:`cmath` 6977db96d56Sopenharmony_ci Complex number versions of many of these functions. 6987db96d56Sopenharmony_ci 6997db96d56Sopenharmony_ci.. |nbsp| unicode:: 0xA0 7007db96d56Sopenharmony_ci :trim: 701