17db96d56Sopenharmony_ci:mod:`math` --- Mathematical functions
27db96d56Sopenharmony_ci======================================
37db96d56Sopenharmony_ci
47db96d56Sopenharmony_ci.. module:: math
57db96d56Sopenharmony_ci   :synopsis: Mathematical functions (sin() etc.).
67db96d56Sopenharmony_ci
77db96d56Sopenharmony_ci.. testsetup::
87db96d56Sopenharmony_ci
97db96d56Sopenharmony_ci   from math import fsum
107db96d56Sopenharmony_ci
117db96d56Sopenharmony_ci--------------
127db96d56Sopenharmony_ci
137db96d56Sopenharmony_ciThis module provides access to the mathematical functions defined by the C
147db96d56Sopenharmony_cistandard.
157db96d56Sopenharmony_ci
167db96d56Sopenharmony_ciThese functions cannot be used with complex numbers; use the functions of the
177db96d56Sopenharmony_cisame name from the :mod:`cmath` module if you require support for complex
187db96d56Sopenharmony_cinumbers.  The distinction between functions which support complex numbers and
197db96d56Sopenharmony_cithose which don't is made since most users do not want to learn quite as much
207db96d56Sopenharmony_cimathematics as required to understand complex numbers.  Receiving an exception
217db96d56Sopenharmony_ciinstead of a complex result allows earlier detection of the unexpected complex
227db96d56Sopenharmony_cinumber used as a parameter, so that the programmer can determine how and why it
237db96d56Sopenharmony_ciwas generated in the first place.
247db96d56Sopenharmony_ci
257db96d56Sopenharmony_ciThe following functions are provided by this module.  Except when explicitly
267db96d56Sopenharmony_cinoted otherwise, all return values are floats.
277db96d56Sopenharmony_ci
287db96d56Sopenharmony_ci
297db96d56Sopenharmony_ciNumber-theoretic and representation functions
307db96d56Sopenharmony_ci---------------------------------------------
317db96d56Sopenharmony_ci
327db96d56Sopenharmony_ci.. function:: ceil(x)
337db96d56Sopenharmony_ci
347db96d56Sopenharmony_ci   Return the ceiling of *x*, the smallest integer greater than or equal to *x*.
357db96d56Sopenharmony_ci   If *x* is not a float, delegates to :meth:`x.__ceil__ <object.__ceil__>`,
367db96d56Sopenharmony_ci   which should return an :class:`~numbers.Integral` value.
377db96d56Sopenharmony_ci
387db96d56Sopenharmony_ci
397db96d56Sopenharmony_ci.. function:: comb(n, k)
407db96d56Sopenharmony_ci
417db96d56Sopenharmony_ci   Return the number of ways to choose *k* items from *n* items without repetition
427db96d56Sopenharmony_ci   and without order.
437db96d56Sopenharmony_ci
447db96d56Sopenharmony_ci   Evaluates to ``n! / (k! * (n - k)!)`` when ``k <= n`` and evaluates
457db96d56Sopenharmony_ci   to zero when ``k > n``.
467db96d56Sopenharmony_ci
477db96d56Sopenharmony_ci   Also called the binomial coefficient because it is equivalent
487db96d56Sopenharmony_ci   to the coefficient of k-th term in polynomial expansion of
497db96d56Sopenharmony_ci   ``(1 + x)ⁿ``.
507db96d56Sopenharmony_ci
517db96d56Sopenharmony_ci   Raises :exc:`TypeError` if either of the arguments are not integers.
527db96d56Sopenharmony_ci   Raises :exc:`ValueError` if either of the arguments are negative.
537db96d56Sopenharmony_ci
547db96d56Sopenharmony_ci   .. versionadded:: 3.8
557db96d56Sopenharmony_ci
567db96d56Sopenharmony_ci
577db96d56Sopenharmony_ci.. function:: copysign(x, y)
587db96d56Sopenharmony_ci
597db96d56Sopenharmony_ci   Return a float with the magnitude (absolute value) of *x* but the sign of
607db96d56Sopenharmony_ci   *y*.  On platforms that support signed zeros, ``copysign(1.0, -0.0)``
617db96d56Sopenharmony_ci   returns *-1.0*.
627db96d56Sopenharmony_ci
637db96d56Sopenharmony_ci
647db96d56Sopenharmony_ci.. function:: fabs(x)
657db96d56Sopenharmony_ci
667db96d56Sopenharmony_ci   Return the absolute value of *x*.
677db96d56Sopenharmony_ci
687db96d56Sopenharmony_ci
697db96d56Sopenharmony_ci.. function:: factorial(n)
707db96d56Sopenharmony_ci
717db96d56Sopenharmony_ci   Return *n* factorial as an integer.  Raises :exc:`ValueError` if *n* is not integral or
727db96d56Sopenharmony_ci   is negative.
737db96d56Sopenharmony_ci
747db96d56Sopenharmony_ci   .. deprecated:: 3.9
757db96d56Sopenharmony_ci      Accepting floats with integral values (like ``5.0``) is deprecated.
767db96d56Sopenharmony_ci
777db96d56Sopenharmony_ci
787db96d56Sopenharmony_ci.. function:: floor(x)
797db96d56Sopenharmony_ci
807db96d56Sopenharmony_ci   Return the floor of *x*, the largest integer less than or equal to *x*.  If
817db96d56Sopenharmony_ci   *x* is not a float, delegates to :meth:`x.__floor__ <object.__floor__>`, which
827db96d56Sopenharmony_ci   should return an :class:`~numbers.Integral` value.
837db96d56Sopenharmony_ci
847db96d56Sopenharmony_ci
857db96d56Sopenharmony_ci.. function:: fmod(x, y)
867db96d56Sopenharmony_ci
877db96d56Sopenharmony_ci   Return ``fmod(x, y)``, as defined by the platform C library. Note that the
887db96d56Sopenharmony_ci   Python expression ``x % y`` may not return the same result.  The intent of the C
897db96d56Sopenharmony_ci   standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
907db96d56Sopenharmony_ci   precision) equal to ``x - n*y`` for some integer *n* such that the result has
917db96d56Sopenharmony_ci   the same sign as *x* and magnitude less than ``abs(y)``.  Python's ``x % y``
927db96d56Sopenharmony_ci   returns a result with the sign of *y* instead, and may not be exactly computable
937db96d56Sopenharmony_ci   for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
947db96d56Sopenharmony_ci   the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
957db96d56Sopenharmony_ci   represented exactly as a float, and rounds to the surprising ``1e100``.  For
967db96d56Sopenharmony_ci   this reason, function :func:`fmod` is generally preferred when working with
977db96d56Sopenharmony_ci   floats, while Python's ``x % y`` is preferred when working with integers.
987db96d56Sopenharmony_ci
997db96d56Sopenharmony_ci
1007db96d56Sopenharmony_ci.. function:: frexp(x)
1017db96d56Sopenharmony_ci
1027db96d56Sopenharmony_ci   Return the mantissa and exponent of *x* as the pair ``(m, e)``.  *m* is a float
1037db96d56Sopenharmony_ci   and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
1047db96d56Sopenharmony_ci   returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``.  This is used to "pick
1057db96d56Sopenharmony_ci   apart" the internal representation of a float in a portable way.
1067db96d56Sopenharmony_ci
1077db96d56Sopenharmony_ci
1087db96d56Sopenharmony_ci.. function:: fsum(iterable)
1097db96d56Sopenharmony_ci
1107db96d56Sopenharmony_ci   Return an accurate floating point sum of values in the iterable.  Avoids
1117db96d56Sopenharmony_ci   loss of precision by tracking multiple intermediate partial sums::
1127db96d56Sopenharmony_ci
1137db96d56Sopenharmony_ci        >>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1147db96d56Sopenharmony_ci        0.9999999999999999
1157db96d56Sopenharmony_ci        >>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1167db96d56Sopenharmony_ci        1.0
1177db96d56Sopenharmony_ci
1187db96d56Sopenharmony_ci   The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
1197db96d56Sopenharmony_ci   typical case where the rounding mode is half-even.  On some non-Windows
1207db96d56Sopenharmony_ci   builds, the underlying C library uses extended precision addition and may
1217db96d56Sopenharmony_ci   occasionally double-round an intermediate sum causing it to be off in its
1227db96d56Sopenharmony_ci   least significant bit.
1237db96d56Sopenharmony_ci
1247db96d56Sopenharmony_ci   For further discussion and two alternative approaches, see the `ASPN cookbook
1257db96d56Sopenharmony_ci   recipes for accurate floating point summation
1267db96d56Sopenharmony_ci   <https://code.activestate.com/recipes/393090/>`_\.
1277db96d56Sopenharmony_ci
1287db96d56Sopenharmony_ci
1297db96d56Sopenharmony_ci.. function:: gcd(*integers)
1307db96d56Sopenharmony_ci
1317db96d56Sopenharmony_ci   Return the greatest common divisor of the specified integer arguments.
1327db96d56Sopenharmony_ci   If any of the arguments is nonzero, then the returned value is the largest
1337db96d56Sopenharmony_ci   positive integer that is a divisor of all arguments.  If all arguments
1347db96d56Sopenharmony_ci   are zero, then the returned value is ``0``.  ``gcd()`` without arguments
1357db96d56Sopenharmony_ci   returns ``0``.
1367db96d56Sopenharmony_ci
1377db96d56Sopenharmony_ci   .. versionadded:: 3.5
1387db96d56Sopenharmony_ci
1397db96d56Sopenharmony_ci   .. versionchanged:: 3.9
1407db96d56Sopenharmony_ci      Added support for an arbitrary number of arguments. Formerly, only two
1417db96d56Sopenharmony_ci      arguments were supported.
1427db96d56Sopenharmony_ci
1437db96d56Sopenharmony_ci
1447db96d56Sopenharmony_ci.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
1457db96d56Sopenharmony_ci
1467db96d56Sopenharmony_ci   Return ``True`` if the values *a* and *b* are close to each other and
1477db96d56Sopenharmony_ci   ``False`` otherwise.
1487db96d56Sopenharmony_ci
1497db96d56Sopenharmony_ci   Whether or not two values are considered close is determined according to
1507db96d56Sopenharmony_ci   given absolute and relative tolerances.
1517db96d56Sopenharmony_ci
1527db96d56Sopenharmony_ci   *rel_tol* is the relative tolerance -- it is the maximum allowed difference
1537db96d56Sopenharmony_ci   between *a* and *b*, relative to the larger absolute value of *a* or *b*.
1547db96d56Sopenharmony_ci   For example, to set a tolerance of 5%, pass ``rel_tol=0.05``.  The default
1557db96d56Sopenharmony_ci   tolerance is ``1e-09``, which assures that the two values are the same
1567db96d56Sopenharmony_ci   within about 9 decimal digits.  *rel_tol* must be greater than zero.
1577db96d56Sopenharmony_ci
1587db96d56Sopenharmony_ci   *abs_tol* is the minimum absolute tolerance -- useful for comparisons near
1597db96d56Sopenharmony_ci   zero. *abs_tol* must be at least zero.
1607db96d56Sopenharmony_ci
1617db96d56Sopenharmony_ci   If no errors occur, the result will be:
1627db96d56Sopenharmony_ci   ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
1637db96d56Sopenharmony_ci
1647db96d56Sopenharmony_ci   The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
1657db96d56Sopenharmony_ci   handled according to IEEE rules.  Specifically, ``NaN`` is not considered
1667db96d56Sopenharmony_ci   close to any other value, including ``NaN``.  ``inf`` and ``-inf`` are only
1677db96d56Sopenharmony_ci   considered close to themselves.
1687db96d56Sopenharmony_ci
1697db96d56Sopenharmony_ci   .. versionadded:: 3.5
1707db96d56Sopenharmony_ci
1717db96d56Sopenharmony_ci   .. seealso::
1727db96d56Sopenharmony_ci
1737db96d56Sopenharmony_ci      :pep:`485` -- A function for testing approximate equality
1747db96d56Sopenharmony_ci
1757db96d56Sopenharmony_ci
1767db96d56Sopenharmony_ci.. function:: isfinite(x)
1777db96d56Sopenharmony_ci
1787db96d56Sopenharmony_ci   Return ``True`` if *x* is neither an infinity nor a NaN, and
1797db96d56Sopenharmony_ci   ``False`` otherwise.  (Note that ``0.0`` *is* considered finite.)
1807db96d56Sopenharmony_ci
1817db96d56Sopenharmony_ci   .. versionadded:: 3.2
1827db96d56Sopenharmony_ci
1837db96d56Sopenharmony_ci
1847db96d56Sopenharmony_ci.. function:: isinf(x)
1857db96d56Sopenharmony_ci
1867db96d56Sopenharmony_ci   Return ``True`` if *x* is a positive or negative infinity, and
1877db96d56Sopenharmony_ci   ``False`` otherwise.
1887db96d56Sopenharmony_ci
1897db96d56Sopenharmony_ci
1907db96d56Sopenharmony_ci.. function:: isnan(x)
1917db96d56Sopenharmony_ci
1927db96d56Sopenharmony_ci   Return ``True`` if *x* is a NaN (not a number), and ``False`` otherwise.
1937db96d56Sopenharmony_ci
1947db96d56Sopenharmony_ci
1957db96d56Sopenharmony_ci.. function:: isqrt(n)
1967db96d56Sopenharmony_ci
1977db96d56Sopenharmony_ci   Return the integer square root of the nonnegative integer *n*. This is the
1987db96d56Sopenharmony_ci   floor of the exact square root of *n*, or equivalently the greatest integer
1997db96d56Sopenharmony_ci   *a* such that *a*\ ² |nbsp| ≤ |nbsp| *n*.
2007db96d56Sopenharmony_ci
2017db96d56Sopenharmony_ci   For some applications, it may be more convenient to have the least integer
2027db96d56Sopenharmony_ci   *a* such that *n* |nbsp| ≤ |nbsp| *a*\ ², or in other words the ceiling of
2037db96d56Sopenharmony_ci   the exact square root of *n*. For positive *n*, this can be computed using
2047db96d56Sopenharmony_ci   ``a = 1 + isqrt(n - 1)``.
2057db96d56Sopenharmony_ci
2067db96d56Sopenharmony_ci   .. versionadded:: 3.8
2077db96d56Sopenharmony_ci
2087db96d56Sopenharmony_ci
2097db96d56Sopenharmony_ci.. function:: lcm(*integers)
2107db96d56Sopenharmony_ci
2117db96d56Sopenharmony_ci   Return the least common multiple of the specified integer arguments.
2127db96d56Sopenharmony_ci   If all arguments are nonzero, then the returned value is the smallest
2137db96d56Sopenharmony_ci   positive integer that is a multiple of all arguments.  If any of the arguments
2147db96d56Sopenharmony_ci   is zero, then the returned value is ``0``.  ``lcm()`` without arguments
2157db96d56Sopenharmony_ci   returns ``1``.
2167db96d56Sopenharmony_ci
2177db96d56Sopenharmony_ci   .. versionadded:: 3.9
2187db96d56Sopenharmony_ci
2197db96d56Sopenharmony_ci
2207db96d56Sopenharmony_ci.. function:: ldexp(x, i)
2217db96d56Sopenharmony_ci
2227db96d56Sopenharmony_ci   Return ``x * (2**i)``.  This is essentially the inverse of function
2237db96d56Sopenharmony_ci   :func:`frexp`.
2247db96d56Sopenharmony_ci
2257db96d56Sopenharmony_ci
2267db96d56Sopenharmony_ci.. function:: modf(x)
2277db96d56Sopenharmony_ci
2287db96d56Sopenharmony_ci   Return the fractional and integer parts of *x*.  Both results carry the sign
2297db96d56Sopenharmony_ci   of *x* and are floats.
2307db96d56Sopenharmony_ci
2317db96d56Sopenharmony_ci
2327db96d56Sopenharmony_ci.. function:: nextafter(x, y)
2337db96d56Sopenharmony_ci
2347db96d56Sopenharmony_ci   Return the next floating-point value after *x* towards *y*.
2357db96d56Sopenharmony_ci
2367db96d56Sopenharmony_ci   If *x* is equal to *y*, return *y*.
2377db96d56Sopenharmony_ci
2387db96d56Sopenharmony_ci   Examples:
2397db96d56Sopenharmony_ci
2407db96d56Sopenharmony_ci   * ``math.nextafter(x, math.inf)`` goes up: towards positive infinity.
2417db96d56Sopenharmony_ci   * ``math.nextafter(x, -math.inf)`` goes down: towards minus infinity.
2427db96d56Sopenharmony_ci   * ``math.nextafter(x, 0.0)`` goes towards zero.
2437db96d56Sopenharmony_ci   * ``math.nextafter(x, math.copysign(math.inf, x))`` goes away from zero.
2447db96d56Sopenharmony_ci
2457db96d56Sopenharmony_ci   See also :func:`math.ulp`.
2467db96d56Sopenharmony_ci
2477db96d56Sopenharmony_ci   .. versionadded:: 3.9
2487db96d56Sopenharmony_ci
2497db96d56Sopenharmony_ci.. function:: perm(n, k=None)
2507db96d56Sopenharmony_ci
2517db96d56Sopenharmony_ci   Return the number of ways to choose *k* items from *n* items
2527db96d56Sopenharmony_ci   without repetition and with order.
2537db96d56Sopenharmony_ci
2547db96d56Sopenharmony_ci   Evaluates to ``n! / (n - k)!`` when ``k <= n`` and evaluates
2557db96d56Sopenharmony_ci   to zero when ``k > n``.
2567db96d56Sopenharmony_ci
2577db96d56Sopenharmony_ci   If *k* is not specified or is None, then *k* defaults to *n*
2587db96d56Sopenharmony_ci   and the function returns ``n!``.
2597db96d56Sopenharmony_ci
2607db96d56Sopenharmony_ci   Raises :exc:`TypeError` if either of the arguments are not integers.
2617db96d56Sopenharmony_ci   Raises :exc:`ValueError` if either of the arguments are negative.
2627db96d56Sopenharmony_ci
2637db96d56Sopenharmony_ci   .. versionadded:: 3.8
2647db96d56Sopenharmony_ci
2657db96d56Sopenharmony_ci
2667db96d56Sopenharmony_ci.. function:: prod(iterable, *, start=1)
2677db96d56Sopenharmony_ci
2687db96d56Sopenharmony_ci   Calculate the product of all the elements in the input *iterable*.
2697db96d56Sopenharmony_ci   The default *start* value for the product is ``1``.
2707db96d56Sopenharmony_ci
2717db96d56Sopenharmony_ci   When the iterable is empty, return the start value.  This function is
2727db96d56Sopenharmony_ci   intended specifically for use with numeric values and may reject
2737db96d56Sopenharmony_ci   non-numeric types.
2747db96d56Sopenharmony_ci
2757db96d56Sopenharmony_ci   .. versionadded:: 3.8
2767db96d56Sopenharmony_ci
2777db96d56Sopenharmony_ci
2787db96d56Sopenharmony_ci.. function:: remainder(x, y)
2797db96d56Sopenharmony_ci
2807db96d56Sopenharmony_ci   Return the IEEE 754-style remainder of *x* with respect to *y*.  For
2817db96d56Sopenharmony_ci   finite *x* and finite nonzero *y*, this is the difference ``x - n*y``,
2827db96d56Sopenharmony_ci   where ``n`` is the closest integer to the exact value of the quotient ``x /
2837db96d56Sopenharmony_ci   y``.  If ``x / y`` is exactly halfway between two consecutive integers, the
2847db96d56Sopenharmony_ci   nearest *even* integer is used for ``n``.  The remainder ``r = remainder(x,
2857db96d56Sopenharmony_ci   y)`` thus always satisfies ``abs(r) <= 0.5 * abs(y)``.
2867db96d56Sopenharmony_ci
2877db96d56Sopenharmony_ci   Special cases follow IEEE 754: in particular, ``remainder(x, math.inf)`` is
2887db96d56Sopenharmony_ci   *x* for any finite *x*, and ``remainder(x, 0)`` and
2897db96d56Sopenharmony_ci   ``remainder(math.inf, x)`` raise :exc:`ValueError` for any non-NaN *x*.
2907db96d56Sopenharmony_ci   If the result of the remainder operation is zero, that zero will have
2917db96d56Sopenharmony_ci   the same sign as *x*.
2927db96d56Sopenharmony_ci
2937db96d56Sopenharmony_ci   On platforms using IEEE 754 binary floating-point, the result of this
2947db96d56Sopenharmony_ci   operation is always exactly representable: no rounding error is introduced.
2957db96d56Sopenharmony_ci
2967db96d56Sopenharmony_ci   .. versionadded:: 3.7
2977db96d56Sopenharmony_ci
2987db96d56Sopenharmony_ci
2997db96d56Sopenharmony_ci.. function:: trunc(x)
3007db96d56Sopenharmony_ci
3017db96d56Sopenharmony_ci   Return *x* with the fractional part
3027db96d56Sopenharmony_ci   removed, leaving the integer part.  This rounds toward 0: ``trunc()`` is
3037db96d56Sopenharmony_ci   equivalent to :func:`floor` for positive *x*, and equivalent to :func:`ceil`
3047db96d56Sopenharmony_ci   for negative *x*. If *x* is not a float, delegates to :meth:`x.__trunc__
3057db96d56Sopenharmony_ci   <object.__trunc__>`, which should return an :class:`~numbers.Integral` value.
3067db96d56Sopenharmony_ci
3077db96d56Sopenharmony_ci.. function:: ulp(x)
3087db96d56Sopenharmony_ci
3097db96d56Sopenharmony_ci   Return the value of the least significant bit of the float *x*:
3107db96d56Sopenharmony_ci
3117db96d56Sopenharmony_ci   * If *x* is a NaN (not a number), return *x*.
3127db96d56Sopenharmony_ci   * If *x* is negative, return ``ulp(-x)``.
3137db96d56Sopenharmony_ci   * If *x* is a positive infinity, return *x*.
3147db96d56Sopenharmony_ci   * If *x* is equal to zero, return the smallest positive
3157db96d56Sopenharmony_ci     *denormalized* representable float (smaller than the minimum positive
3167db96d56Sopenharmony_ci     *normalized* float, :data:`sys.float_info.min <sys.float_info>`).
3177db96d56Sopenharmony_ci   * If *x* is equal to the largest positive representable float,
3187db96d56Sopenharmony_ci     return the value of the least significant bit of *x*, such that the first
3197db96d56Sopenharmony_ci     float smaller than *x* is ``x - ulp(x)``.
3207db96d56Sopenharmony_ci   * Otherwise (*x* is a positive finite number), return the value of the least
3217db96d56Sopenharmony_ci     significant bit of *x*, such that the first float bigger than *x*
3227db96d56Sopenharmony_ci     is ``x + ulp(x)``.
3237db96d56Sopenharmony_ci
3247db96d56Sopenharmony_ci   ULP stands for "Unit in the Last Place".
3257db96d56Sopenharmony_ci
3267db96d56Sopenharmony_ci   See also :func:`math.nextafter` and :data:`sys.float_info.epsilon
3277db96d56Sopenharmony_ci   <sys.float_info>`.
3287db96d56Sopenharmony_ci
3297db96d56Sopenharmony_ci   .. versionadded:: 3.9
3307db96d56Sopenharmony_ci
3317db96d56Sopenharmony_ci
3327db96d56Sopenharmony_ciNote that :func:`frexp` and :func:`modf` have a different call/return pattern
3337db96d56Sopenharmony_cithan their C equivalents: they take a single argument and return a pair of
3347db96d56Sopenharmony_civalues, rather than returning their second return value through an 'output
3357db96d56Sopenharmony_ciparameter' (there is no such thing in Python).
3367db96d56Sopenharmony_ci
3377db96d56Sopenharmony_ciFor the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
3387db96d56Sopenharmony_cifloating-point numbers of sufficiently large magnitude are exact integers.
3397db96d56Sopenharmony_ciPython floats typically carry no more than 53 bits of precision (the same as the
3407db96d56Sopenharmony_ciplatform C double type), in which case any float *x* with ``abs(x) >= 2**52``
3417db96d56Sopenharmony_cinecessarily has no fractional bits.
3427db96d56Sopenharmony_ci
3437db96d56Sopenharmony_ci
3447db96d56Sopenharmony_ciPower and logarithmic functions
3457db96d56Sopenharmony_ci-------------------------------
3467db96d56Sopenharmony_ci
3477db96d56Sopenharmony_ci.. function:: cbrt(x)
3487db96d56Sopenharmony_ci
3497db96d56Sopenharmony_ci   Return the cube root of *x*.
3507db96d56Sopenharmony_ci
3517db96d56Sopenharmony_ci   .. versionadded:: 3.11
3527db96d56Sopenharmony_ci
3537db96d56Sopenharmony_ci
3547db96d56Sopenharmony_ci.. function:: exp(x)
3557db96d56Sopenharmony_ci
3567db96d56Sopenharmony_ci   Return *e* raised to the power *x*, where *e* = 2.718281... is the base
3577db96d56Sopenharmony_ci   of natural logarithms.  This is usually more accurate than ``math.e ** x``
3587db96d56Sopenharmony_ci   or ``pow(math.e, x)``.
3597db96d56Sopenharmony_ci
3607db96d56Sopenharmony_ci
3617db96d56Sopenharmony_ci.. function:: exp2(x)
3627db96d56Sopenharmony_ci
3637db96d56Sopenharmony_ci   Return *2* raised to the power *x*.
3647db96d56Sopenharmony_ci
3657db96d56Sopenharmony_ci   .. versionadded:: 3.11
3667db96d56Sopenharmony_ci
3677db96d56Sopenharmony_ci
3687db96d56Sopenharmony_ci.. function:: expm1(x)
3697db96d56Sopenharmony_ci
3707db96d56Sopenharmony_ci   Return *e* raised to the power *x*, minus 1.  Here *e* is the base of natural
3717db96d56Sopenharmony_ci   logarithms.  For small floats *x*, the subtraction in ``exp(x) - 1``
3727db96d56Sopenharmony_ci   can result in a `significant loss of precision
3737db96d56Sopenharmony_ci   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\; the :func:`expm1`
3747db96d56Sopenharmony_ci   function provides a way to compute this quantity to full precision::
3757db96d56Sopenharmony_ci
3767db96d56Sopenharmony_ci      >>> from math import exp, expm1
3777db96d56Sopenharmony_ci      >>> exp(1e-5) - 1  # gives result accurate to 11 places
3787db96d56Sopenharmony_ci      1.0000050000069649e-05
3797db96d56Sopenharmony_ci      >>> expm1(1e-5)    # result accurate to full precision
3807db96d56Sopenharmony_ci      1.0000050000166668e-05
3817db96d56Sopenharmony_ci
3827db96d56Sopenharmony_ci   .. versionadded:: 3.2
3837db96d56Sopenharmony_ci
3847db96d56Sopenharmony_ci
3857db96d56Sopenharmony_ci.. function:: log(x[, base])
3867db96d56Sopenharmony_ci
3877db96d56Sopenharmony_ci   With one argument, return the natural logarithm of *x* (to base *e*).
3887db96d56Sopenharmony_ci
3897db96d56Sopenharmony_ci   With two arguments, return the logarithm of *x* to the given *base*,
3907db96d56Sopenharmony_ci   calculated as ``log(x)/log(base)``.
3917db96d56Sopenharmony_ci
3927db96d56Sopenharmony_ci
3937db96d56Sopenharmony_ci.. function:: log1p(x)
3947db96d56Sopenharmony_ci
3957db96d56Sopenharmony_ci   Return the natural logarithm of *1+x* (base *e*). The
3967db96d56Sopenharmony_ci   result is calculated in a way which is accurate for *x* near zero.
3977db96d56Sopenharmony_ci
3987db96d56Sopenharmony_ci
3997db96d56Sopenharmony_ci.. function:: log2(x)
4007db96d56Sopenharmony_ci
4017db96d56Sopenharmony_ci   Return the base-2 logarithm of *x*. This is usually more accurate than
4027db96d56Sopenharmony_ci   ``log(x, 2)``.
4037db96d56Sopenharmony_ci
4047db96d56Sopenharmony_ci   .. versionadded:: 3.3
4057db96d56Sopenharmony_ci
4067db96d56Sopenharmony_ci   .. seealso::
4077db96d56Sopenharmony_ci
4087db96d56Sopenharmony_ci      :meth:`int.bit_length` returns the number of bits necessary to represent
4097db96d56Sopenharmony_ci      an integer in binary, excluding the sign and leading zeros.
4107db96d56Sopenharmony_ci
4117db96d56Sopenharmony_ci
4127db96d56Sopenharmony_ci.. function:: log10(x)
4137db96d56Sopenharmony_ci
4147db96d56Sopenharmony_ci   Return the base-10 logarithm of *x*.  This is usually more accurate
4157db96d56Sopenharmony_ci   than ``log(x, 10)``.
4167db96d56Sopenharmony_ci
4177db96d56Sopenharmony_ci
4187db96d56Sopenharmony_ci.. function:: pow(x, y)
4197db96d56Sopenharmony_ci
4207db96d56Sopenharmony_ci   Return ``x`` raised to the power ``y``.  Exceptional cases follow
4217db96d56Sopenharmony_ci   the IEEE 754 standard as far as possible.  In particular,
4227db96d56Sopenharmony_ci   ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
4237db96d56Sopenharmony_ci   when ``x`` is a zero or a NaN.  If both ``x`` and ``y`` are finite,
4247db96d56Sopenharmony_ci   ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
4257db96d56Sopenharmony_ci   is undefined, and raises :exc:`ValueError`.
4267db96d56Sopenharmony_ci
4277db96d56Sopenharmony_ci   Unlike the built-in ``**`` operator, :func:`math.pow` converts both
4287db96d56Sopenharmony_ci   its arguments to type :class:`float`.  Use ``**`` or the built-in
4297db96d56Sopenharmony_ci   :func:`pow` function for computing exact integer powers.
4307db96d56Sopenharmony_ci
4317db96d56Sopenharmony_ci   .. versionchanged:: 3.11
4327db96d56Sopenharmony_ci      The special cases ``pow(0.0, -inf)`` and ``pow(-0.0, -inf)`` were
4337db96d56Sopenharmony_ci      changed to return ``inf`` instead of raising :exc:`ValueError`,
4347db96d56Sopenharmony_ci      for consistency with IEEE 754.
4357db96d56Sopenharmony_ci
4367db96d56Sopenharmony_ci
4377db96d56Sopenharmony_ci.. function:: sqrt(x)
4387db96d56Sopenharmony_ci
4397db96d56Sopenharmony_ci   Return the square root of *x*.
4407db96d56Sopenharmony_ci
4417db96d56Sopenharmony_ci
4427db96d56Sopenharmony_ciTrigonometric functions
4437db96d56Sopenharmony_ci-----------------------
4447db96d56Sopenharmony_ci
4457db96d56Sopenharmony_ci.. function:: acos(x)
4467db96d56Sopenharmony_ci
4477db96d56Sopenharmony_ci   Return the arc cosine of *x*, in radians. The result is between ``0`` and
4487db96d56Sopenharmony_ci   ``pi``.
4497db96d56Sopenharmony_ci
4507db96d56Sopenharmony_ci
4517db96d56Sopenharmony_ci.. function:: asin(x)
4527db96d56Sopenharmony_ci
4537db96d56Sopenharmony_ci   Return the arc sine of *x*, in radians. The result is between ``-pi/2`` and
4547db96d56Sopenharmony_ci   ``pi/2``.
4557db96d56Sopenharmony_ci
4567db96d56Sopenharmony_ci
4577db96d56Sopenharmony_ci.. function:: atan(x)
4587db96d56Sopenharmony_ci
4597db96d56Sopenharmony_ci   Return the arc tangent of *x*, in radians. The result is between ``-pi/2`` and
4607db96d56Sopenharmony_ci   ``pi/2``.
4617db96d56Sopenharmony_ci
4627db96d56Sopenharmony_ci
4637db96d56Sopenharmony_ci.. function:: atan2(y, x)
4647db96d56Sopenharmony_ci
4657db96d56Sopenharmony_ci   Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
4667db96d56Sopenharmony_ci   The vector in the plane from the origin to point ``(x, y)`` makes this angle
4677db96d56Sopenharmony_ci   with the positive X axis. The point of :func:`atan2` is that the signs of both
4687db96d56Sopenharmony_ci   inputs are known to it, so it can compute the correct quadrant for the angle.
4697db96d56Sopenharmony_ci   For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
4707db96d56Sopenharmony_ci   -1)`` is ``-3*pi/4``.
4717db96d56Sopenharmony_ci
4727db96d56Sopenharmony_ci
4737db96d56Sopenharmony_ci.. function:: cos(x)
4747db96d56Sopenharmony_ci
4757db96d56Sopenharmony_ci   Return the cosine of *x* radians.
4767db96d56Sopenharmony_ci
4777db96d56Sopenharmony_ci
4787db96d56Sopenharmony_ci.. function:: dist(p, q)
4797db96d56Sopenharmony_ci
4807db96d56Sopenharmony_ci   Return the Euclidean distance between two points *p* and *q*, each
4817db96d56Sopenharmony_ci   given as a sequence (or iterable) of coordinates.  The two points
4827db96d56Sopenharmony_ci   must have the same dimension.
4837db96d56Sopenharmony_ci
4847db96d56Sopenharmony_ci   Roughly equivalent to::
4857db96d56Sopenharmony_ci
4867db96d56Sopenharmony_ci       sqrt(sum((px - qx) ** 2.0 for px, qx in zip(p, q)))
4877db96d56Sopenharmony_ci
4887db96d56Sopenharmony_ci   .. versionadded:: 3.8
4897db96d56Sopenharmony_ci
4907db96d56Sopenharmony_ci
4917db96d56Sopenharmony_ci.. function:: hypot(*coordinates)
4927db96d56Sopenharmony_ci
4937db96d56Sopenharmony_ci   Return the Euclidean norm, ``sqrt(sum(x**2 for x in coordinates))``.
4947db96d56Sopenharmony_ci   This is the length of the vector from the origin to the point
4957db96d56Sopenharmony_ci   given by the coordinates.
4967db96d56Sopenharmony_ci
4977db96d56Sopenharmony_ci   For a two dimensional point ``(x, y)``, this is equivalent to computing
4987db96d56Sopenharmony_ci   the hypotenuse of a right triangle using the Pythagorean theorem,
4997db96d56Sopenharmony_ci   ``sqrt(x*x + y*y)``.
5007db96d56Sopenharmony_ci
5017db96d56Sopenharmony_ci   .. versionchanged:: 3.8
5027db96d56Sopenharmony_ci      Added support for n-dimensional points. Formerly, only the two
5037db96d56Sopenharmony_ci      dimensional case was supported.
5047db96d56Sopenharmony_ci
5057db96d56Sopenharmony_ci   .. versionchanged:: 3.10
5067db96d56Sopenharmony_ci      Improved the algorithm's accuracy so that the maximum error is
5077db96d56Sopenharmony_ci      under 1 ulp (unit in the last place).  More typically, the result
5087db96d56Sopenharmony_ci      is almost always correctly rounded to within 1/2 ulp.
5097db96d56Sopenharmony_ci
5107db96d56Sopenharmony_ci
5117db96d56Sopenharmony_ci.. function:: sin(x)
5127db96d56Sopenharmony_ci
5137db96d56Sopenharmony_ci   Return the sine of *x* radians.
5147db96d56Sopenharmony_ci
5157db96d56Sopenharmony_ci
5167db96d56Sopenharmony_ci.. function:: tan(x)
5177db96d56Sopenharmony_ci
5187db96d56Sopenharmony_ci   Return the tangent of *x* radians.
5197db96d56Sopenharmony_ci
5207db96d56Sopenharmony_ci
5217db96d56Sopenharmony_ciAngular conversion
5227db96d56Sopenharmony_ci------------------
5237db96d56Sopenharmony_ci
5247db96d56Sopenharmony_ci.. function:: degrees(x)
5257db96d56Sopenharmony_ci
5267db96d56Sopenharmony_ci   Convert angle *x* from radians to degrees.
5277db96d56Sopenharmony_ci
5287db96d56Sopenharmony_ci
5297db96d56Sopenharmony_ci.. function:: radians(x)
5307db96d56Sopenharmony_ci
5317db96d56Sopenharmony_ci   Convert angle *x* from degrees to radians.
5327db96d56Sopenharmony_ci
5337db96d56Sopenharmony_ci
5347db96d56Sopenharmony_ciHyperbolic functions
5357db96d56Sopenharmony_ci--------------------
5367db96d56Sopenharmony_ci
5377db96d56Sopenharmony_ci`Hyperbolic functions <https://en.wikipedia.org/wiki/Hyperbolic_function>`_
5387db96d56Sopenharmony_ciare analogs of trigonometric functions that are based on hyperbolas
5397db96d56Sopenharmony_ciinstead of circles.
5407db96d56Sopenharmony_ci
5417db96d56Sopenharmony_ci.. function:: acosh(x)
5427db96d56Sopenharmony_ci
5437db96d56Sopenharmony_ci   Return the inverse hyperbolic cosine of *x*.
5447db96d56Sopenharmony_ci
5457db96d56Sopenharmony_ci
5467db96d56Sopenharmony_ci.. function:: asinh(x)
5477db96d56Sopenharmony_ci
5487db96d56Sopenharmony_ci   Return the inverse hyperbolic sine of *x*.
5497db96d56Sopenharmony_ci
5507db96d56Sopenharmony_ci
5517db96d56Sopenharmony_ci.. function:: atanh(x)
5527db96d56Sopenharmony_ci
5537db96d56Sopenharmony_ci   Return the inverse hyperbolic tangent of *x*.
5547db96d56Sopenharmony_ci
5557db96d56Sopenharmony_ci
5567db96d56Sopenharmony_ci.. function:: cosh(x)
5577db96d56Sopenharmony_ci
5587db96d56Sopenharmony_ci   Return the hyperbolic cosine of *x*.
5597db96d56Sopenharmony_ci
5607db96d56Sopenharmony_ci
5617db96d56Sopenharmony_ci.. function:: sinh(x)
5627db96d56Sopenharmony_ci
5637db96d56Sopenharmony_ci   Return the hyperbolic sine of *x*.
5647db96d56Sopenharmony_ci
5657db96d56Sopenharmony_ci
5667db96d56Sopenharmony_ci.. function:: tanh(x)
5677db96d56Sopenharmony_ci
5687db96d56Sopenharmony_ci   Return the hyperbolic tangent of *x*.
5697db96d56Sopenharmony_ci
5707db96d56Sopenharmony_ci
5717db96d56Sopenharmony_ciSpecial functions
5727db96d56Sopenharmony_ci-----------------
5737db96d56Sopenharmony_ci
5747db96d56Sopenharmony_ci.. function:: erf(x)
5757db96d56Sopenharmony_ci
5767db96d56Sopenharmony_ci   Return the `error function <https://en.wikipedia.org/wiki/Error_function>`_ at
5777db96d56Sopenharmony_ci   *x*.
5787db96d56Sopenharmony_ci
5797db96d56Sopenharmony_ci   The :func:`erf` function can be used to compute traditional statistical
5807db96d56Sopenharmony_ci   functions such as the `cumulative standard normal distribution
5817db96d56Sopenharmony_ci   <https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions>`_::
5827db96d56Sopenharmony_ci
5837db96d56Sopenharmony_ci     def phi(x):
5847db96d56Sopenharmony_ci         'Cumulative distribution function for the standard normal distribution'
5857db96d56Sopenharmony_ci         return (1.0 + erf(x / sqrt(2.0))) / 2.0
5867db96d56Sopenharmony_ci
5877db96d56Sopenharmony_ci   .. versionadded:: 3.2
5887db96d56Sopenharmony_ci
5897db96d56Sopenharmony_ci
5907db96d56Sopenharmony_ci.. function:: erfc(x)
5917db96d56Sopenharmony_ci
5927db96d56Sopenharmony_ci   Return the complementary error function at *x*.  The `complementary error
5937db96d56Sopenharmony_ci   function <https://en.wikipedia.org/wiki/Error_function>`_ is defined as
5947db96d56Sopenharmony_ci   ``1.0 - erf(x)``.  It is used for large values of *x* where a subtraction
5957db96d56Sopenharmony_ci   from one would cause a `loss of significance
5967db96d56Sopenharmony_ci   <https://en.wikipedia.org/wiki/Loss_of_significance>`_\.
5977db96d56Sopenharmony_ci
5987db96d56Sopenharmony_ci   .. versionadded:: 3.2
5997db96d56Sopenharmony_ci
6007db96d56Sopenharmony_ci
6017db96d56Sopenharmony_ci.. function:: gamma(x)
6027db96d56Sopenharmony_ci
6037db96d56Sopenharmony_ci   Return the `Gamma function <https://en.wikipedia.org/wiki/Gamma_function>`_ at
6047db96d56Sopenharmony_ci   *x*.
6057db96d56Sopenharmony_ci
6067db96d56Sopenharmony_ci   .. versionadded:: 3.2
6077db96d56Sopenharmony_ci
6087db96d56Sopenharmony_ci
6097db96d56Sopenharmony_ci.. function:: lgamma(x)
6107db96d56Sopenharmony_ci
6117db96d56Sopenharmony_ci   Return the natural logarithm of the absolute value of the Gamma
6127db96d56Sopenharmony_ci   function at *x*.
6137db96d56Sopenharmony_ci
6147db96d56Sopenharmony_ci   .. versionadded:: 3.2
6157db96d56Sopenharmony_ci
6167db96d56Sopenharmony_ci
6177db96d56Sopenharmony_ciConstants
6187db96d56Sopenharmony_ci---------
6197db96d56Sopenharmony_ci
6207db96d56Sopenharmony_ci.. data:: pi
6217db96d56Sopenharmony_ci
6227db96d56Sopenharmony_ci   The mathematical constant *π* = 3.141592..., to available precision.
6237db96d56Sopenharmony_ci
6247db96d56Sopenharmony_ci
6257db96d56Sopenharmony_ci.. data:: e
6267db96d56Sopenharmony_ci
6277db96d56Sopenharmony_ci   The mathematical constant *e* = 2.718281..., to available precision.
6287db96d56Sopenharmony_ci
6297db96d56Sopenharmony_ci
6307db96d56Sopenharmony_ci.. data:: tau
6317db96d56Sopenharmony_ci
6327db96d56Sopenharmony_ci   The mathematical constant *τ* = 6.283185..., to available precision.
6337db96d56Sopenharmony_ci   Tau is a circle constant equal to 2\ *π*, the ratio of a circle's circumference to
6347db96d56Sopenharmony_ci   its radius. To learn more about Tau, check out Vi Hart's video `Pi is (still)
6357db96d56Sopenharmony_ci   Wrong <https://www.youtube.com/watch?v=jG7vhMMXagQ>`_, and start celebrating
6367db96d56Sopenharmony_ci   `Tau day <https://tauday.com/>`_ by eating twice as much pie!
6377db96d56Sopenharmony_ci
6387db96d56Sopenharmony_ci   .. versionadded:: 3.6
6397db96d56Sopenharmony_ci
6407db96d56Sopenharmony_ci
6417db96d56Sopenharmony_ci.. data:: inf
6427db96d56Sopenharmony_ci
6437db96d56Sopenharmony_ci   A floating-point positive infinity.  (For negative infinity, use
6447db96d56Sopenharmony_ci   ``-math.inf``.)  Equivalent to the output of ``float('inf')``.
6457db96d56Sopenharmony_ci
6467db96d56Sopenharmony_ci   .. versionadded:: 3.5
6477db96d56Sopenharmony_ci
6487db96d56Sopenharmony_ci
6497db96d56Sopenharmony_ci.. data:: nan
6507db96d56Sopenharmony_ci
6517db96d56Sopenharmony_ci   A floating-point "not a number" (NaN) value. Equivalent to the output of
6527db96d56Sopenharmony_ci   ``float('nan')``. Due to the requirements of the `IEEE-754 standard
6537db96d56Sopenharmony_ci   <https://en.wikipedia.org/wiki/IEEE_754>`_, ``math.nan`` and ``float('nan')`` are
6547db96d56Sopenharmony_ci   not considered to equal to any other numeric value, including themselves. To check
6557db96d56Sopenharmony_ci   whether a number is a NaN, use the :func:`isnan` function to test
6567db96d56Sopenharmony_ci   for NaNs instead of ``is`` or ``==``.
6577db96d56Sopenharmony_ci   Example::
6587db96d56Sopenharmony_ci
6597db96d56Sopenharmony_ci      >>> import math
6607db96d56Sopenharmony_ci      >>> math.nan == math.nan
6617db96d56Sopenharmony_ci      False
6627db96d56Sopenharmony_ci      >>> float('nan') == float('nan')
6637db96d56Sopenharmony_ci      False
6647db96d56Sopenharmony_ci      >>> math.isnan(math.nan)
6657db96d56Sopenharmony_ci      True
6667db96d56Sopenharmony_ci      >>> math.isnan(float('nan'))
6677db96d56Sopenharmony_ci      True
6687db96d56Sopenharmony_ci
6697db96d56Sopenharmony_ci   .. versionchanged:: 3.11
6707db96d56Sopenharmony_ci      It is now always available.
6717db96d56Sopenharmony_ci
6727db96d56Sopenharmony_ci   .. versionadded:: 3.5
6737db96d56Sopenharmony_ci
6747db96d56Sopenharmony_ci
6757db96d56Sopenharmony_ci.. impl-detail::
6767db96d56Sopenharmony_ci
6777db96d56Sopenharmony_ci   The :mod:`math` module consists mostly of thin wrappers around the platform C
6787db96d56Sopenharmony_ci   math library functions.  Behavior in exceptional cases follows Annex F of
6797db96d56Sopenharmony_ci   the C99 standard where appropriate.  The current implementation will raise
6807db96d56Sopenharmony_ci   :exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
6817db96d56Sopenharmony_ci   (where C99 Annex F recommends signaling invalid operation or divide-by-zero),
6827db96d56Sopenharmony_ci   and :exc:`OverflowError` for results that overflow (for example,
6837db96d56Sopenharmony_ci   ``exp(1000.0)``).  A NaN will not be returned from any of the functions
6847db96d56Sopenharmony_ci   above unless one or more of the input arguments was a NaN; in that case,
6857db96d56Sopenharmony_ci   most functions will return a NaN, but (again following C99 Annex F) there
6867db96d56Sopenharmony_ci   are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
6877db96d56Sopenharmony_ci   ``hypot(float('nan'), float('inf'))``.
6887db96d56Sopenharmony_ci
6897db96d56Sopenharmony_ci   Note that Python makes no effort to distinguish signaling NaNs from
6907db96d56Sopenharmony_ci   quiet NaNs, and behavior for signaling NaNs remains unspecified.
6917db96d56Sopenharmony_ci   Typical behavior is to treat all NaNs as though they were quiet.
6927db96d56Sopenharmony_ci
6937db96d56Sopenharmony_ci
6947db96d56Sopenharmony_ci.. seealso::
6957db96d56Sopenharmony_ci
6967db96d56Sopenharmony_ci   Module :mod:`cmath`
6977db96d56Sopenharmony_ci      Complex number versions of many of these functions.
6987db96d56Sopenharmony_ci
6997db96d56Sopenharmony_ci.. |nbsp| unicode:: 0xA0
7007db96d56Sopenharmony_ci   :trim:
701