17db96d56Sopenharmony_ci******************************** 27db96d56Sopenharmony_ci Functional Programming HOWTO 37db96d56Sopenharmony_ci******************************** 47db96d56Sopenharmony_ci 57db96d56Sopenharmony_ci:Author: A. M. Kuchling 67db96d56Sopenharmony_ci:Release: 0.32 77db96d56Sopenharmony_ci 87db96d56Sopenharmony_ciIn this document, we'll take a tour of Python's features suitable for 97db96d56Sopenharmony_ciimplementing programs in a functional style. After an introduction to the 107db96d56Sopenharmony_ciconcepts of functional programming, we'll look at language features such as 117db96d56Sopenharmony_ci:term:`iterator`\s and :term:`generator`\s and relevant library modules such as 127db96d56Sopenharmony_ci:mod:`itertools` and :mod:`functools`. 137db96d56Sopenharmony_ci 147db96d56Sopenharmony_ci 157db96d56Sopenharmony_ciIntroduction 167db96d56Sopenharmony_ci============ 177db96d56Sopenharmony_ci 187db96d56Sopenharmony_ciThis section explains the basic concept of functional programming; if 197db96d56Sopenharmony_ciyou're just interested in learning about Python language features, 207db96d56Sopenharmony_ciskip to the next section on :ref:`functional-howto-iterators`. 217db96d56Sopenharmony_ci 227db96d56Sopenharmony_ciProgramming languages support decomposing problems in several different ways: 237db96d56Sopenharmony_ci 247db96d56Sopenharmony_ci* Most programming languages are **procedural**: programs are lists of 257db96d56Sopenharmony_ci instructions that tell the computer what to do with the program's input. C, 267db96d56Sopenharmony_ci Pascal, and even Unix shells are procedural languages. 277db96d56Sopenharmony_ci 287db96d56Sopenharmony_ci* In **declarative** languages, you write a specification that describes the 297db96d56Sopenharmony_ci problem to be solved, and the language implementation figures out how to 307db96d56Sopenharmony_ci perform the computation efficiently. SQL is the declarative language you're 317db96d56Sopenharmony_ci most likely to be familiar with; a SQL query describes the data set you want 327db96d56Sopenharmony_ci to retrieve, and the SQL engine decides whether to scan tables or use indexes, 337db96d56Sopenharmony_ci which subclauses should be performed first, etc. 347db96d56Sopenharmony_ci 357db96d56Sopenharmony_ci* **Object-oriented** programs manipulate collections of objects. Objects have 367db96d56Sopenharmony_ci internal state and support methods that query or modify this internal state in 377db96d56Sopenharmony_ci some way. Smalltalk and Java are object-oriented languages. C++ and Python 387db96d56Sopenharmony_ci are languages that support object-oriented programming, but don't force the 397db96d56Sopenharmony_ci use of object-oriented features. 407db96d56Sopenharmony_ci 417db96d56Sopenharmony_ci* **Functional** programming decomposes a problem into a set of functions. 427db96d56Sopenharmony_ci Ideally, functions only take inputs and produce outputs, and don't have any 437db96d56Sopenharmony_ci internal state that affects the output produced for a given input. Well-known 447db96d56Sopenharmony_ci functional languages include the ML family (Standard ML, OCaml, and other 457db96d56Sopenharmony_ci variants) and Haskell. 467db96d56Sopenharmony_ci 477db96d56Sopenharmony_ciThe designers of some computer languages choose to emphasize one 487db96d56Sopenharmony_ciparticular approach to programming. This often makes it difficult to 497db96d56Sopenharmony_ciwrite programs that use a different approach. Other languages are 507db96d56Sopenharmony_cimulti-paradigm languages that support several different approaches. 517db96d56Sopenharmony_ciLisp, C++, and Python are multi-paradigm; you can write programs or 527db96d56Sopenharmony_cilibraries that are largely procedural, object-oriented, or functional 537db96d56Sopenharmony_ciin all of these languages. In a large program, different sections 547db96d56Sopenharmony_cimight be written using different approaches; the GUI might be 557db96d56Sopenharmony_ciobject-oriented while the processing logic is procedural or 567db96d56Sopenharmony_cifunctional, for example. 577db96d56Sopenharmony_ci 587db96d56Sopenharmony_ciIn a functional program, input flows through a set of functions. Each function 597db96d56Sopenharmony_cioperates on its input and produces some output. Functional style discourages 607db96d56Sopenharmony_cifunctions with side effects that modify internal state or make other changes 617db96d56Sopenharmony_cithat aren't visible in the function's return value. Functions that have no side 627db96d56Sopenharmony_cieffects at all are called **purely functional**. Avoiding side effects means 637db96d56Sopenharmony_cinot using data structures that get updated as a program runs; every function's 647db96d56Sopenharmony_cioutput must only depend on its input. 657db96d56Sopenharmony_ci 667db96d56Sopenharmony_ciSome languages are very strict about purity and don't even have assignment 677db96d56Sopenharmony_cistatements such as ``a=3`` or ``c = a + b``, but it's difficult to avoid all 687db96d56Sopenharmony_ciside effects, such as printing to the screen or writing to a disk file. Another 697db96d56Sopenharmony_ciexample is a call to the :func:`print` or :func:`time.sleep` function, neither 707db96d56Sopenharmony_ciof which returns a useful value. Both are called only for their side effects 717db96d56Sopenharmony_ciof sending some text to the screen or pausing execution for a second. 727db96d56Sopenharmony_ci 737db96d56Sopenharmony_ciPython programs written in functional style usually won't go to the extreme of 747db96d56Sopenharmony_ciavoiding all I/O or all assignments; instead, they'll provide a 757db96d56Sopenharmony_cifunctional-appearing interface but will use non-functional features internally. 767db96d56Sopenharmony_ciFor example, the implementation of a function will still use assignments to 777db96d56Sopenharmony_cilocal variables, but won't modify global variables or have other side effects. 787db96d56Sopenharmony_ci 797db96d56Sopenharmony_ciFunctional programming can be considered the opposite of object-oriented 807db96d56Sopenharmony_ciprogramming. Objects are little capsules containing some internal state along 817db96d56Sopenharmony_ciwith a collection of method calls that let you modify this state, and programs 827db96d56Sopenharmony_ciconsist of making the right set of state changes. Functional programming wants 837db96d56Sopenharmony_cito avoid state changes as much as possible and works with data flowing between 847db96d56Sopenharmony_cifunctions. In Python you might combine the two approaches by writing functions 857db96d56Sopenharmony_cithat take and return instances representing objects in your application (e-mail 867db96d56Sopenharmony_cimessages, transactions, etc.). 877db96d56Sopenharmony_ci 887db96d56Sopenharmony_ciFunctional design may seem like an odd constraint to work under. Why should you 897db96d56Sopenharmony_ciavoid objects and side effects? There are theoretical and practical advantages 907db96d56Sopenharmony_cito the functional style: 917db96d56Sopenharmony_ci 927db96d56Sopenharmony_ci* Formal provability. 937db96d56Sopenharmony_ci* Modularity. 947db96d56Sopenharmony_ci* Composability. 957db96d56Sopenharmony_ci* Ease of debugging and testing. 967db96d56Sopenharmony_ci 977db96d56Sopenharmony_ci 987db96d56Sopenharmony_ciFormal provability 997db96d56Sopenharmony_ci------------------ 1007db96d56Sopenharmony_ci 1017db96d56Sopenharmony_ciA theoretical benefit is that it's easier to construct a mathematical proof that 1027db96d56Sopenharmony_cia functional program is correct. 1037db96d56Sopenharmony_ci 1047db96d56Sopenharmony_ciFor a long time researchers have been interested in finding ways to 1057db96d56Sopenharmony_cimathematically prove programs correct. This is different from testing a program 1067db96d56Sopenharmony_cion numerous inputs and concluding that its output is usually correct, or reading 1077db96d56Sopenharmony_cia program's source code and concluding that the code looks right; the goal is 1087db96d56Sopenharmony_ciinstead a rigorous proof that a program produces the right result for all 1097db96d56Sopenharmony_cipossible inputs. 1107db96d56Sopenharmony_ci 1117db96d56Sopenharmony_ciThe technique used to prove programs correct is to write down **invariants**, 1127db96d56Sopenharmony_ciproperties of the input data and of the program's variables that are always 1137db96d56Sopenharmony_citrue. For each line of code, you then show that if invariants X and Y are true 1147db96d56Sopenharmony_ci**before** the line is executed, the slightly different invariants X' and Y' are 1157db96d56Sopenharmony_citrue **after** the line is executed. This continues until you reach the end of 1167db96d56Sopenharmony_cithe program, at which point the invariants should match the desired conditions 1177db96d56Sopenharmony_cion the program's output. 1187db96d56Sopenharmony_ci 1197db96d56Sopenharmony_ciFunctional programming's avoidance of assignments arose because assignments are 1207db96d56Sopenharmony_cidifficult to handle with this technique; assignments can break invariants that 1217db96d56Sopenharmony_ciwere true before the assignment without producing any new invariants that can be 1227db96d56Sopenharmony_cipropagated onward. 1237db96d56Sopenharmony_ci 1247db96d56Sopenharmony_ciUnfortunately, proving programs correct is largely impractical and not relevant 1257db96d56Sopenharmony_cito Python software. Even trivial programs require proofs that are several pages 1267db96d56Sopenharmony_cilong; the proof of correctness for a moderately complicated program would be 1277db96d56Sopenharmony_cienormous, and few or none of the programs you use daily (the Python interpreter, 1287db96d56Sopenharmony_ciyour XML parser, your web browser) could be proven correct. Even if you wrote 1297db96d56Sopenharmony_cidown or generated a proof, there would then be the question of verifying the 1307db96d56Sopenharmony_ciproof; maybe there's an error in it, and you wrongly believe you've proved the 1317db96d56Sopenharmony_ciprogram correct. 1327db96d56Sopenharmony_ci 1337db96d56Sopenharmony_ci 1347db96d56Sopenharmony_ciModularity 1357db96d56Sopenharmony_ci---------- 1367db96d56Sopenharmony_ci 1377db96d56Sopenharmony_ciA more practical benefit of functional programming is that it forces you to 1387db96d56Sopenharmony_cibreak apart your problem into small pieces. Programs are more modular as a 1397db96d56Sopenharmony_ciresult. It's easier to specify and write a small function that does one thing 1407db96d56Sopenharmony_cithan a large function that performs a complicated transformation. Small 1417db96d56Sopenharmony_cifunctions are also easier to read and to check for errors. 1427db96d56Sopenharmony_ci 1437db96d56Sopenharmony_ci 1447db96d56Sopenharmony_ciEase of debugging and testing 1457db96d56Sopenharmony_ci----------------------------- 1467db96d56Sopenharmony_ci 1477db96d56Sopenharmony_ciTesting and debugging a functional-style program is easier. 1487db96d56Sopenharmony_ci 1497db96d56Sopenharmony_ciDebugging is simplified because functions are generally small and clearly 1507db96d56Sopenharmony_cispecified. When a program doesn't work, each function is an interface point 1517db96d56Sopenharmony_ciwhere you can check that the data are correct. You can look at the intermediate 1527db96d56Sopenharmony_ciinputs and outputs to quickly isolate the function that's responsible for a bug. 1537db96d56Sopenharmony_ci 1547db96d56Sopenharmony_ciTesting is easier because each function is a potential subject for a unit test. 1557db96d56Sopenharmony_ciFunctions don't depend on system state that needs to be replicated before 1567db96d56Sopenharmony_cirunning a test; instead you only have to synthesize the right input and then 1577db96d56Sopenharmony_cicheck that the output matches expectations. 1587db96d56Sopenharmony_ci 1597db96d56Sopenharmony_ci 1607db96d56Sopenharmony_ciComposability 1617db96d56Sopenharmony_ci------------- 1627db96d56Sopenharmony_ci 1637db96d56Sopenharmony_ciAs you work on a functional-style program, you'll write a number of functions 1647db96d56Sopenharmony_ciwith varying inputs and outputs. Some of these functions will be unavoidably 1657db96d56Sopenharmony_cispecialized to a particular application, but others will be useful in a wide 1667db96d56Sopenharmony_civariety of programs. For example, a function that takes a directory path and 1677db96d56Sopenharmony_cireturns all the XML files in the directory, or a function that takes a filename 1687db96d56Sopenharmony_ciand returns its contents, can be applied to many different situations. 1697db96d56Sopenharmony_ci 1707db96d56Sopenharmony_ciOver time you'll form a personal library of utilities. Often you'll assemble 1717db96d56Sopenharmony_cinew programs by arranging existing functions in a new configuration and writing 1727db96d56Sopenharmony_cia few functions specialized for the current task. 1737db96d56Sopenharmony_ci 1747db96d56Sopenharmony_ci 1757db96d56Sopenharmony_ci.. _functional-howto-iterators: 1767db96d56Sopenharmony_ci 1777db96d56Sopenharmony_ciIterators 1787db96d56Sopenharmony_ci========= 1797db96d56Sopenharmony_ci 1807db96d56Sopenharmony_ciI'll start by looking at a Python language feature that's an important 1817db96d56Sopenharmony_cifoundation for writing functional-style programs: iterators. 1827db96d56Sopenharmony_ci 1837db96d56Sopenharmony_ciAn iterator is an object representing a stream of data; this object returns the 1847db96d56Sopenharmony_cidata one element at a time. A Python iterator must support a method called 1857db96d56Sopenharmony_ci:meth:`~iterator.__next__` that takes no arguments and always returns the next 1867db96d56Sopenharmony_cielement of the stream. If there are no more elements in the stream, 1877db96d56Sopenharmony_ci:meth:`~iterator.__next__` must raise the :exc:`StopIteration` exception. 1887db96d56Sopenharmony_ciIterators don't have to be finite, though; it's perfectly reasonable to write 1897db96d56Sopenharmony_cian iterator that produces an infinite stream of data. 1907db96d56Sopenharmony_ci 1917db96d56Sopenharmony_ciThe built-in :func:`iter` function takes an arbitrary object and tries to return 1927db96d56Sopenharmony_cian iterator that will return the object's contents or elements, raising 1937db96d56Sopenharmony_ci:exc:`TypeError` if the object doesn't support iteration. Several of Python's 1947db96d56Sopenharmony_cibuilt-in data types support iteration, the most common being lists and 1957db96d56Sopenharmony_cidictionaries. An object is called :term:`iterable` if you can get an iterator 1967db96d56Sopenharmony_cifor it. 1977db96d56Sopenharmony_ci 1987db96d56Sopenharmony_ciYou can experiment with the iteration interface manually: 1997db96d56Sopenharmony_ci 2007db96d56Sopenharmony_ci >>> L = [1, 2, 3] 2017db96d56Sopenharmony_ci >>> it = iter(L) 2027db96d56Sopenharmony_ci >>> it #doctest: +ELLIPSIS 2037db96d56Sopenharmony_ci <...iterator object at ...> 2047db96d56Sopenharmony_ci >>> it.__next__() # same as next(it) 2057db96d56Sopenharmony_ci 1 2067db96d56Sopenharmony_ci >>> next(it) 2077db96d56Sopenharmony_ci 2 2087db96d56Sopenharmony_ci >>> next(it) 2097db96d56Sopenharmony_ci 3 2107db96d56Sopenharmony_ci >>> next(it) 2117db96d56Sopenharmony_ci Traceback (most recent call last): 2127db96d56Sopenharmony_ci File "<stdin>", line 1, in <module> 2137db96d56Sopenharmony_ci StopIteration 2147db96d56Sopenharmony_ci >>> 2157db96d56Sopenharmony_ci 2167db96d56Sopenharmony_ciPython expects iterable objects in several different contexts, the most 2177db96d56Sopenharmony_ciimportant being the :keyword:`for` statement. In the statement ``for X in Y``, 2187db96d56Sopenharmony_ciY must be an iterator or some object for which :func:`iter` can create an 2197db96d56Sopenharmony_ciiterator. These two statements are equivalent:: 2207db96d56Sopenharmony_ci 2217db96d56Sopenharmony_ci 2227db96d56Sopenharmony_ci for i in iter(obj): 2237db96d56Sopenharmony_ci print(i) 2247db96d56Sopenharmony_ci 2257db96d56Sopenharmony_ci for i in obj: 2267db96d56Sopenharmony_ci print(i) 2277db96d56Sopenharmony_ci 2287db96d56Sopenharmony_ciIterators can be materialized as lists or tuples by using the :func:`list` or 2297db96d56Sopenharmony_ci:func:`tuple` constructor functions: 2307db96d56Sopenharmony_ci 2317db96d56Sopenharmony_ci >>> L = [1, 2, 3] 2327db96d56Sopenharmony_ci >>> iterator = iter(L) 2337db96d56Sopenharmony_ci >>> t = tuple(iterator) 2347db96d56Sopenharmony_ci >>> t 2357db96d56Sopenharmony_ci (1, 2, 3) 2367db96d56Sopenharmony_ci 2377db96d56Sopenharmony_ciSequence unpacking also supports iterators: if you know an iterator will return 2387db96d56Sopenharmony_ciN elements, you can unpack them into an N-tuple: 2397db96d56Sopenharmony_ci 2407db96d56Sopenharmony_ci >>> L = [1, 2, 3] 2417db96d56Sopenharmony_ci >>> iterator = iter(L) 2427db96d56Sopenharmony_ci >>> a, b, c = iterator 2437db96d56Sopenharmony_ci >>> a, b, c 2447db96d56Sopenharmony_ci (1, 2, 3) 2457db96d56Sopenharmony_ci 2467db96d56Sopenharmony_ciBuilt-in functions such as :func:`max` and :func:`min` can take a single 2477db96d56Sopenharmony_ciiterator argument and will return the largest or smallest element. The ``"in"`` 2487db96d56Sopenharmony_ciand ``"not in"`` operators also support iterators: ``X in iterator`` is true if 2497db96d56Sopenharmony_ciX is found in the stream returned by the iterator. You'll run into obvious 2507db96d56Sopenharmony_ciproblems if the iterator is infinite; :func:`max`, :func:`min` 2517db96d56Sopenharmony_ciwill never return, and if the element X never appears in the stream, the 2527db96d56Sopenharmony_ci``"in"`` and ``"not in"`` operators won't return either. 2537db96d56Sopenharmony_ci 2547db96d56Sopenharmony_ciNote that you can only go forward in an iterator; there's no way to get the 2557db96d56Sopenharmony_ciprevious element, reset the iterator, or make a copy of it. Iterator objects 2567db96d56Sopenharmony_cican optionally provide these additional capabilities, but the iterator protocol 2577db96d56Sopenharmony_cionly specifies the :meth:`~iterator.__next__` method. Functions may therefore 2587db96d56Sopenharmony_ciconsume all of the iterator's output, and if you need to do something different 2597db96d56Sopenharmony_ciwith the same stream, you'll have to create a new iterator. 2607db96d56Sopenharmony_ci 2617db96d56Sopenharmony_ci 2627db96d56Sopenharmony_ci 2637db96d56Sopenharmony_ciData Types That Support Iterators 2647db96d56Sopenharmony_ci--------------------------------- 2657db96d56Sopenharmony_ci 2667db96d56Sopenharmony_ciWe've already seen how lists and tuples support iterators. In fact, any Python 2677db96d56Sopenharmony_cisequence type, such as strings, will automatically support creation of an 2687db96d56Sopenharmony_ciiterator. 2697db96d56Sopenharmony_ci 2707db96d56Sopenharmony_ciCalling :func:`iter` on a dictionary returns an iterator that will loop over the 2717db96d56Sopenharmony_cidictionary's keys:: 2727db96d56Sopenharmony_ci 2737db96d56Sopenharmony_ci >>> m = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6, 2747db96d56Sopenharmony_ci ... 'Jul': 7, 'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12} 2757db96d56Sopenharmony_ci >>> for key in m: 2767db96d56Sopenharmony_ci ... print(key, m[key]) 2777db96d56Sopenharmony_ci Jan 1 2787db96d56Sopenharmony_ci Feb 2 2797db96d56Sopenharmony_ci Mar 3 2807db96d56Sopenharmony_ci Apr 4 2817db96d56Sopenharmony_ci May 5 2827db96d56Sopenharmony_ci Jun 6 2837db96d56Sopenharmony_ci Jul 7 2847db96d56Sopenharmony_ci Aug 8 2857db96d56Sopenharmony_ci Sep 9 2867db96d56Sopenharmony_ci Oct 10 2877db96d56Sopenharmony_ci Nov 11 2887db96d56Sopenharmony_ci Dec 12 2897db96d56Sopenharmony_ci 2907db96d56Sopenharmony_ciNote that starting with Python 3.7, dictionary iteration order is guaranteed 2917db96d56Sopenharmony_cito be the same as the insertion order. In earlier versions, the behaviour was 2927db96d56Sopenharmony_ciunspecified and could vary between implementations. 2937db96d56Sopenharmony_ci 2947db96d56Sopenharmony_ciApplying :func:`iter` to a dictionary always loops over the keys, but 2957db96d56Sopenharmony_cidictionaries have methods that return other iterators. If you want to iterate 2967db96d56Sopenharmony_ciover values or key/value pairs, you can explicitly call the 2977db96d56Sopenharmony_ci:meth:`~dict.values` or :meth:`~dict.items` methods to get an appropriate 2987db96d56Sopenharmony_ciiterator. 2997db96d56Sopenharmony_ci 3007db96d56Sopenharmony_ciThe :func:`dict` constructor can accept an iterator that returns a finite stream 3017db96d56Sopenharmony_ciof ``(key, value)`` tuples: 3027db96d56Sopenharmony_ci 3037db96d56Sopenharmony_ci >>> L = [('Italy', 'Rome'), ('France', 'Paris'), ('US', 'Washington DC')] 3047db96d56Sopenharmony_ci >>> dict(iter(L)) 3057db96d56Sopenharmony_ci {'Italy': 'Rome', 'France': 'Paris', 'US': 'Washington DC'} 3067db96d56Sopenharmony_ci 3077db96d56Sopenharmony_ciFiles also support iteration by calling the :meth:`~io.TextIOBase.readline` 3087db96d56Sopenharmony_cimethod until there are no more lines in the file. This means you can read each 3097db96d56Sopenharmony_ciline of a file like this:: 3107db96d56Sopenharmony_ci 3117db96d56Sopenharmony_ci for line in file: 3127db96d56Sopenharmony_ci # do something for each line 3137db96d56Sopenharmony_ci ... 3147db96d56Sopenharmony_ci 3157db96d56Sopenharmony_ciSets can take their contents from an iterable and let you iterate over the set's 3167db96d56Sopenharmony_cielements:: 3177db96d56Sopenharmony_ci 3187db96d56Sopenharmony_ci >>> S = {2, 3, 5, 7, 11, 13} 3197db96d56Sopenharmony_ci >>> for i in S: 3207db96d56Sopenharmony_ci ... print(i) 3217db96d56Sopenharmony_ci 2 3227db96d56Sopenharmony_ci 3 3237db96d56Sopenharmony_ci 5 3247db96d56Sopenharmony_ci 7 3257db96d56Sopenharmony_ci 11 3267db96d56Sopenharmony_ci 13 3277db96d56Sopenharmony_ci 3287db96d56Sopenharmony_ci 3297db96d56Sopenharmony_ci 3307db96d56Sopenharmony_ciGenerator expressions and list comprehensions 3317db96d56Sopenharmony_ci============================================= 3327db96d56Sopenharmony_ci 3337db96d56Sopenharmony_ciTwo common operations on an iterator's output are 1) performing some operation 3347db96d56Sopenharmony_cifor every element, 2) selecting a subset of elements that meet some condition. 3357db96d56Sopenharmony_ciFor example, given a list of strings, you might want to strip off trailing 3367db96d56Sopenharmony_ciwhitespace from each line or extract all the strings containing a given 3377db96d56Sopenharmony_cisubstring. 3387db96d56Sopenharmony_ci 3397db96d56Sopenharmony_ciList comprehensions and generator expressions (short form: "listcomps" and 3407db96d56Sopenharmony_ci"genexps") are a concise notation for such operations, borrowed from the 3417db96d56Sopenharmony_cifunctional programming language Haskell (https://www.haskell.org/). You can strip 3427db96d56Sopenharmony_ciall the whitespace from a stream of strings with the following code:: 3437db96d56Sopenharmony_ci 3447db96d56Sopenharmony_ci >>> line_list = [' line 1\n', 'line 2 \n', ' \n', ''] 3457db96d56Sopenharmony_ci 3467db96d56Sopenharmony_ci >>> # Generator expression -- returns iterator 3477db96d56Sopenharmony_ci >>> stripped_iter = (line.strip() for line in line_list) 3487db96d56Sopenharmony_ci 3497db96d56Sopenharmony_ci >>> # List comprehension -- returns list 3507db96d56Sopenharmony_ci >>> stripped_list = [line.strip() for line in line_list] 3517db96d56Sopenharmony_ci 3527db96d56Sopenharmony_ciYou can select only certain elements by adding an ``"if"`` condition:: 3537db96d56Sopenharmony_ci 3547db96d56Sopenharmony_ci >>> stripped_list = [line.strip() for line in line_list 3557db96d56Sopenharmony_ci ... if line != ""] 3567db96d56Sopenharmony_ci 3577db96d56Sopenharmony_ciWith a list comprehension, you get back a Python list; ``stripped_list`` is a 3587db96d56Sopenharmony_cilist containing the resulting lines, not an iterator. Generator expressions 3597db96d56Sopenharmony_cireturn an iterator that computes the values as necessary, not needing to 3607db96d56Sopenharmony_cimaterialize all the values at once. This means that list comprehensions aren't 3617db96d56Sopenharmony_ciuseful if you're working with iterators that return an infinite stream or a very 3627db96d56Sopenharmony_cilarge amount of data. Generator expressions are preferable in these situations. 3637db96d56Sopenharmony_ci 3647db96d56Sopenharmony_ciGenerator expressions are surrounded by parentheses ("()") and list 3657db96d56Sopenharmony_cicomprehensions are surrounded by square brackets ("[]"). Generator expressions 3667db96d56Sopenharmony_cihave the form:: 3677db96d56Sopenharmony_ci 3687db96d56Sopenharmony_ci ( expression for expr in sequence1 3697db96d56Sopenharmony_ci if condition1 3707db96d56Sopenharmony_ci for expr2 in sequence2 3717db96d56Sopenharmony_ci if condition2 3727db96d56Sopenharmony_ci for expr3 in sequence3 3737db96d56Sopenharmony_ci ... 3747db96d56Sopenharmony_ci if condition3 3757db96d56Sopenharmony_ci for exprN in sequenceN 3767db96d56Sopenharmony_ci if conditionN ) 3777db96d56Sopenharmony_ci 3787db96d56Sopenharmony_ciAgain, for a list comprehension only the outside brackets are different (square 3797db96d56Sopenharmony_cibrackets instead of parentheses). 3807db96d56Sopenharmony_ci 3817db96d56Sopenharmony_ciThe elements of the generated output will be the successive values of 3827db96d56Sopenharmony_ci``expression``. The ``if`` clauses are all optional; if present, ``expression`` 3837db96d56Sopenharmony_ciis only evaluated and added to the result when ``condition`` is true. 3847db96d56Sopenharmony_ci 3857db96d56Sopenharmony_ciGenerator expressions always have to be written inside parentheses, but the 3867db96d56Sopenharmony_ciparentheses signalling a function call also count. If you want to create an 3877db96d56Sopenharmony_ciiterator that will be immediately passed to a function you can write:: 3887db96d56Sopenharmony_ci 3897db96d56Sopenharmony_ci obj_total = sum(obj.count for obj in list_all_objects()) 3907db96d56Sopenharmony_ci 3917db96d56Sopenharmony_ciThe ``for...in`` clauses contain the sequences to be iterated over. The 3927db96d56Sopenharmony_cisequences do not have to be the same length, because they are iterated over from 3937db96d56Sopenharmony_cileft to right, **not** in parallel. For each element in ``sequence1``, 3947db96d56Sopenharmony_ci``sequence2`` is looped over from the beginning. ``sequence3`` is then looped 3957db96d56Sopenharmony_ciover for each resulting pair of elements from ``sequence1`` and ``sequence2``. 3967db96d56Sopenharmony_ci 3977db96d56Sopenharmony_ciTo put it another way, a list comprehension or generator expression is 3987db96d56Sopenharmony_ciequivalent to the following Python code:: 3997db96d56Sopenharmony_ci 4007db96d56Sopenharmony_ci for expr1 in sequence1: 4017db96d56Sopenharmony_ci if not (condition1): 4027db96d56Sopenharmony_ci continue # Skip this element 4037db96d56Sopenharmony_ci for expr2 in sequence2: 4047db96d56Sopenharmony_ci if not (condition2): 4057db96d56Sopenharmony_ci continue # Skip this element 4067db96d56Sopenharmony_ci ... 4077db96d56Sopenharmony_ci for exprN in sequenceN: 4087db96d56Sopenharmony_ci if not (conditionN): 4097db96d56Sopenharmony_ci continue # Skip this element 4107db96d56Sopenharmony_ci 4117db96d56Sopenharmony_ci # Output the value of 4127db96d56Sopenharmony_ci # the expression. 4137db96d56Sopenharmony_ci 4147db96d56Sopenharmony_ciThis means that when there are multiple ``for...in`` clauses but no ``if`` 4157db96d56Sopenharmony_ciclauses, the length of the resulting output will be equal to the product of the 4167db96d56Sopenharmony_cilengths of all the sequences. If you have two lists of length 3, the output 4177db96d56Sopenharmony_cilist is 9 elements long: 4187db96d56Sopenharmony_ci 4197db96d56Sopenharmony_ci >>> seq1 = 'abc' 4207db96d56Sopenharmony_ci >>> seq2 = (1, 2, 3) 4217db96d56Sopenharmony_ci >>> [(x, y) for x in seq1 for y in seq2] #doctest: +NORMALIZE_WHITESPACE 4227db96d56Sopenharmony_ci [('a', 1), ('a', 2), ('a', 3), 4237db96d56Sopenharmony_ci ('b', 1), ('b', 2), ('b', 3), 4247db96d56Sopenharmony_ci ('c', 1), ('c', 2), ('c', 3)] 4257db96d56Sopenharmony_ci 4267db96d56Sopenharmony_ciTo avoid introducing an ambiguity into Python's grammar, if ``expression`` is 4277db96d56Sopenharmony_cicreating a tuple, it must be surrounded with parentheses. The first list 4287db96d56Sopenharmony_cicomprehension below is a syntax error, while the second one is correct:: 4297db96d56Sopenharmony_ci 4307db96d56Sopenharmony_ci # Syntax error 4317db96d56Sopenharmony_ci [x, y for x in seq1 for y in seq2] 4327db96d56Sopenharmony_ci # Correct 4337db96d56Sopenharmony_ci [(x, y) for x in seq1 for y in seq2] 4347db96d56Sopenharmony_ci 4357db96d56Sopenharmony_ci 4367db96d56Sopenharmony_ciGenerators 4377db96d56Sopenharmony_ci========== 4387db96d56Sopenharmony_ci 4397db96d56Sopenharmony_ciGenerators are a special class of functions that simplify the task of writing 4407db96d56Sopenharmony_ciiterators. Regular functions compute a value and return it, but generators 4417db96d56Sopenharmony_cireturn an iterator that returns a stream of values. 4427db96d56Sopenharmony_ci 4437db96d56Sopenharmony_ciYou're doubtless familiar with how regular function calls work in Python or C. 4447db96d56Sopenharmony_ciWhen you call a function, it gets a private namespace where its local variables 4457db96d56Sopenharmony_ciare created. When the function reaches a ``return`` statement, the local 4467db96d56Sopenharmony_civariables are destroyed and the value is returned to the caller. A later call 4477db96d56Sopenharmony_cito the same function creates a new private namespace and a fresh set of local 4487db96d56Sopenharmony_civariables. But, what if the local variables weren't thrown away on exiting a 4497db96d56Sopenharmony_cifunction? What if you could later resume the function where it left off? This 4507db96d56Sopenharmony_ciis what generators provide; they can be thought of as resumable functions. 4517db96d56Sopenharmony_ci 4527db96d56Sopenharmony_ciHere's the simplest example of a generator function: 4537db96d56Sopenharmony_ci 4547db96d56Sopenharmony_ci >>> def generate_ints(N): 4557db96d56Sopenharmony_ci ... for i in range(N): 4567db96d56Sopenharmony_ci ... yield i 4577db96d56Sopenharmony_ci 4587db96d56Sopenharmony_ciAny function containing a :keyword:`yield` keyword is a generator function; 4597db96d56Sopenharmony_cithis is detected by Python's :term:`bytecode` compiler which compiles the 4607db96d56Sopenharmony_cifunction specially as a result. 4617db96d56Sopenharmony_ci 4627db96d56Sopenharmony_ciWhen you call a generator function, it doesn't return a single value; instead it 4637db96d56Sopenharmony_cireturns a generator object that supports the iterator protocol. On executing 4647db96d56Sopenharmony_cithe ``yield`` expression, the generator outputs the value of ``i``, similar to a 4657db96d56Sopenharmony_ci``return`` statement. The big difference between ``yield`` and a ``return`` 4667db96d56Sopenharmony_cistatement is that on reaching a ``yield`` the generator's state of execution is 4677db96d56Sopenharmony_cisuspended and local variables are preserved. On the next call to the 4687db96d56Sopenharmony_cigenerator's :meth:`~generator.__next__` method, the function will resume 4697db96d56Sopenharmony_ciexecuting. 4707db96d56Sopenharmony_ci 4717db96d56Sopenharmony_ciHere's a sample usage of the ``generate_ints()`` generator: 4727db96d56Sopenharmony_ci 4737db96d56Sopenharmony_ci >>> gen = generate_ints(3) 4747db96d56Sopenharmony_ci >>> gen #doctest: +ELLIPSIS 4757db96d56Sopenharmony_ci <generator object generate_ints at ...> 4767db96d56Sopenharmony_ci >>> next(gen) 4777db96d56Sopenharmony_ci 0 4787db96d56Sopenharmony_ci >>> next(gen) 4797db96d56Sopenharmony_ci 1 4807db96d56Sopenharmony_ci >>> next(gen) 4817db96d56Sopenharmony_ci 2 4827db96d56Sopenharmony_ci >>> next(gen) 4837db96d56Sopenharmony_ci Traceback (most recent call last): 4847db96d56Sopenharmony_ci File "stdin", line 1, in <module> 4857db96d56Sopenharmony_ci File "stdin", line 2, in generate_ints 4867db96d56Sopenharmony_ci StopIteration 4877db96d56Sopenharmony_ci 4887db96d56Sopenharmony_ciYou could equally write ``for i in generate_ints(5)``, or ``a, b, c = 4897db96d56Sopenharmony_cigenerate_ints(3)``. 4907db96d56Sopenharmony_ci 4917db96d56Sopenharmony_ciInside a generator function, ``return value`` causes ``StopIteration(value)`` 4927db96d56Sopenharmony_cito be raised from the :meth:`~generator.__next__` method. Once this happens, or 4937db96d56Sopenharmony_cithe bottom of the function is reached, the procession of values ends and the 4947db96d56Sopenharmony_cigenerator cannot yield any further values. 4957db96d56Sopenharmony_ci 4967db96d56Sopenharmony_ciYou could achieve the effect of generators manually by writing your own class 4977db96d56Sopenharmony_ciand storing all the local variables of the generator as instance variables. For 4987db96d56Sopenharmony_ciexample, returning a list of integers could be done by setting ``self.count`` to 4997db96d56Sopenharmony_ci0, and having the :meth:`~iterator.__next__` method increment ``self.count`` and 5007db96d56Sopenharmony_cireturn it. 5017db96d56Sopenharmony_ciHowever, for a moderately complicated generator, writing a corresponding class 5027db96d56Sopenharmony_cican be much messier. 5037db96d56Sopenharmony_ci 5047db96d56Sopenharmony_ciThe test suite included with Python's library, 5057db96d56Sopenharmony_ci:source:`Lib/test/test_generators.py`, contains 5067db96d56Sopenharmony_cia number of more interesting examples. Here's one generator that implements an 5077db96d56Sopenharmony_ciin-order traversal of a tree using generators recursively. :: 5087db96d56Sopenharmony_ci 5097db96d56Sopenharmony_ci # A recursive generator that generates Tree leaves in in-order. 5107db96d56Sopenharmony_ci def inorder(t): 5117db96d56Sopenharmony_ci if t: 5127db96d56Sopenharmony_ci for x in inorder(t.left): 5137db96d56Sopenharmony_ci yield x 5147db96d56Sopenharmony_ci 5157db96d56Sopenharmony_ci yield t.label 5167db96d56Sopenharmony_ci 5177db96d56Sopenharmony_ci for x in inorder(t.right): 5187db96d56Sopenharmony_ci yield x 5197db96d56Sopenharmony_ci 5207db96d56Sopenharmony_ciTwo other examples in ``test_generators.py`` produce solutions for the N-Queens 5217db96d56Sopenharmony_ciproblem (placing N queens on an NxN chess board so that no queen threatens 5227db96d56Sopenharmony_cianother) and the Knight's Tour (finding a route that takes a knight to every 5237db96d56Sopenharmony_cisquare of an NxN chessboard without visiting any square twice). 5247db96d56Sopenharmony_ci 5257db96d56Sopenharmony_ci 5267db96d56Sopenharmony_ci 5277db96d56Sopenharmony_ciPassing values into a generator 5287db96d56Sopenharmony_ci------------------------------- 5297db96d56Sopenharmony_ci 5307db96d56Sopenharmony_ciIn Python 2.4 and earlier, generators only produced output. Once a generator's 5317db96d56Sopenharmony_cicode was invoked to create an iterator, there was no way to pass any new 5327db96d56Sopenharmony_ciinformation into the function when its execution is resumed. You could hack 5337db96d56Sopenharmony_citogether this ability by making the generator look at a global variable or by 5347db96d56Sopenharmony_cipassing in some mutable object that callers then modify, but these approaches 5357db96d56Sopenharmony_ciare messy. 5367db96d56Sopenharmony_ci 5377db96d56Sopenharmony_ciIn Python 2.5 there's a simple way to pass values into a generator. 5387db96d56Sopenharmony_ci:keyword:`yield` became an expression, returning a value that can be assigned to 5397db96d56Sopenharmony_cia variable or otherwise operated on:: 5407db96d56Sopenharmony_ci 5417db96d56Sopenharmony_ci val = (yield i) 5427db96d56Sopenharmony_ci 5437db96d56Sopenharmony_ciI recommend that you **always** put parentheses around a ``yield`` expression 5447db96d56Sopenharmony_ciwhen you're doing something with the returned value, as in the above example. 5457db96d56Sopenharmony_ciThe parentheses aren't always necessary, but it's easier to always add them 5467db96d56Sopenharmony_ciinstead of having to remember when they're needed. 5477db96d56Sopenharmony_ci 5487db96d56Sopenharmony_ci(:pep:`342` explains the exact rules, which are that a ``yield``-expression must 5497db96d56Sopenharmony_cialways be parenthesized except when it occurs at the top-level expression on the 5507db96d56Sopenharmony_ciright-hand side of an assignment. This means you can write ``val = yield i`` 5517db96d56Sopenharmony_cibut have to use parentheses when there's an operation, as in ``val = (yield i) 5527db96d56Sopenharmony_ci+ 12``.) 5537db96d56Sopenharmony_ci 5547db96d56Sopenharmony_ciValues are sent into a generator by calling its :meth:`send(value) 5557db96d56Sopenharmony_ci<generator.send>` method. This method resumes the generator's code and the 5567db96d56Sopenharmony_ci``yield`` expression returns the specified value. If the regular 5577db96d56Sopenharmony_ci:meth:`~generator.__next__` method is called, the ``yield`` returns ``None``. 5587db96d56Sopenharmony_ci 5597db96d56Sopenharmony_ciHere's a simple counter that increments by 1 and allows changing the value of 5607db96d56Sopenharmony_cithe internal counter. 5617db96d56Sopenharmony_ci 5627db96d56Sopenharmony_ci.. testcode:: 5637db96d56Sopenharmony_ci 5647db96d56Sopenharmony_ci def counter(maximum): 5657db96d56Sopenharmony_ci i = 0 5667db96d56Sopenharmony_ci while i < maximum: 5677db96d56Sopenharmony_ci val = (yield i) 5687db96d56Sopenharmony_ci # If value provided, change counter 5697db96d56Sopenharmony_ci if val is not None: 5707db96d56Sopenharmony_ci i = val 5717db96d56Sopenharmony_ci else: 5727db96d56Sopenharmony_ci i += 1 5737db96d56Sopenharmony_ci 5747db96d56Sopenharmony_ciAnd here's an example of changing the counter: 5757db96d56Sopenharmony_ci 5767db96d56Sopenharmony_ci >>> it = counter(10) #doctest: +SKIP 5777db96d56Sopenharmony_ci >>> next(it) #doctest: +SKIP 5787db96d56Sopenharmony_ci 0 5797db96d56Sopenharmony_ci >>> next(it) #doctest: +SKIP 5807db96d56Sopenharmony_ci 1 5817db96d56Sopenharmony_ci >>> it.send(8) #doctest: +SKIP 5827db96d56Sopenharmony_ci 8 5837db96d56Sopenharmony_ci >>> next(it) #doctest: +SKIP 5847db96d56Sopenharmony_ci 9 5857db96d56Sopenharmony_ci >>> next(it) #doctest: +SKIP 5867db96d56Sopenharmony_ci Traceback (most recent call last): 5877db96d56Sopenharmony_ci File "t.py", line 15, in <module> 5887db96d56Sopenharmony_ci it.next() 5897db96d56Sopenharmony_ci StopIteration 5907db96d56Sopenharmony_ci 5917db96d56Sopenharmony_ciBecause ``yield`` will often be returning ``None``, you should always check for 5927db96d56Sopenharmony_cithis case. Don't just use its value in expressions unless you're sure that the 5937db96d56Sopenharmony_ci:meth:`~generator.send` method will be the only method used to resume your 5947db96d56Sopenharmony_cigenerator function. 5957db96d56Sopenharmony_ci 5967db96d56Sopenharmony_ciIn addition to :meth:`~generator.send`, there are two other methods on 5977db96d56Sopenharmony_cigenerators: 5987db96d56Sopenharmony_ci 5997db96d56Sopenharmony_ci* :meth:`throw(value) <generator.throw>` is used to 6007db96d56Sopenharmony_ci raise an exception inside the generator; the exception is raised by the 6017db96d56Sopenharmony_ci ``yield`` expression where the generator's execution is paused. 6027db96d56Sopenharmony_ci 6037db96d56Sopenharmony_ci* :meth:`~generator.close` raises a :exc:`GeneratorExit` exception inside the 6047db96d56Sopenharmony_ci generator to terminate the iteration. On receiving this exception, the 6057db96d56Sopenharmony_ci generator's code must either raise :exc:`GeneratorExit` or 6067db96d56Sopenharmony_ci :exc:`StopIteration`; catching the exception and doing anything else is 6077db96d56Sopenharmony_ci illegal and will trigger a :exc:`RuntimeError`. :meth:`~generator.close` 6087db96d56Sopenharmony_ci will also be called by Python's garbage collector when the generator is 6097db96d56Sopenharmony_ci garbage-collected. 6107db96d56Sopenharmony_ci 6117db96d56Sopenharmony_ci If you need to run cleanup code when a :exc:`GeneratorExit` occurs, I suggest 6127db96d56Sopenharmony_ci using a ``try: ... finally:`` suite instead of catching :exc:`GeneratorExit`. 6137db96d56Sopenharmony_ci 6147db96d56Sopenharmony_ciThe cumulative effect of these changes is to turn generators from one-way 6157db96d56Sopenharmony_ciproducers of information into both producers and consumers. 6167db96d56Sopenharmony_ci 6177db96d56Sopenharmony_ciGenerators also become **coroutines**, a more generalized form of subroutines. 6187db96d56Sopenharmony_ciSubroutines are entered at one point and exited at another point (the top of the 6197db96d56Sopenharmony_cifunction, and a ``return`` statement), but coroutines can be entered, exited, 6207db96d56Sopenharmony_ciand resumed at many different points (the ``yield`` statements). 6217db96d56Sopenharmony_ci 6227db96d56Sopenharmony_ci 6237db96d56Sopenharmony_ciBuilt-in functions 6247db96d56Sopenharmony_ci================== 6257db96d56Sopenharmony_ci 6267db96d56Sopenharmony_ciLet's look in more detail at built-in functions often used with iterators. 6277db96d56Sopenharmony_ci 6287db96d56Sopenharmony_ciTwo of Python's built-in functions, :func:`map` and :func:`filter` duplicate the 6297db96d56Sopenharmony_cifeatures of generator expressions: 6307db96d56Sopenharmony_ci 6317db96d56Sopenharmony_ci:func:`map(f, iterA, iterB, ...) <map>` returns an iterator over the sequence 6327db96d56Sopenharmony_ci ``f(iterA[0], iterB[0]), f(iterA[1], iterB[1]), f(iterA[2], iterB[2]), ...``. 6337db96d56Sopenharmony_ci 6347db96d56Sopenharmony_ci >>> def upper(s): 6357db96d56Sopenharmony_ci ... return s.upper() 6367db96d56Sopenharmony_ci 6377db96d56Sopenharmony_ci >>> list(map(upper, ['sentence', 'fragment'])) 6387db96d56Sopenharmony_ci ['SENTENCE', 'FRAGMENT'] 6397db96d56Sopenharmony_ci >>> [upper(s) for s in ['sentence', 'fragment']] 6407db96d56Sopenharmony_ci ['SENTENCE', 'FRAGMENT'] 6417db96d56Sopenharmony_ci 6427db96d56Sopenharmony_ciYou can of course achieve the same effect with a list comprehension. 6437db96d56Sopenharmony_ci 6447db96d56Sopenharmony_ci:func:`filter(predicate, iter) <filter>` returns an iterator over all the 6457db96d56Sopenharmony_cisequence elements that meet a certain condition, and is similarly duplicated by 6467db96d56Sopenharmony_cilist comprehensions. A **predicate** is a function that returns the truth 6477db96d56Sopenharmony_civalue of some condition; for use with :func:`filter`, the predicate must take a 6487db96d56Sopenharmony_cisingle value. 6497db96d56Sopenharmony_ci 6507db96d56Sopenharmony_ci >>> def is_even(x): 6517db96d56Sopenharmony_ci ... return (x % 2) == 0 6527db96d56Sopenharmony_ci 6537db96d56Sopenharmony_ci >>> list(filter(is_even, range(10))) 6547db96d56Sopenharmony_ci [0, 2, 4, 6, 8] 6557db96d56Sopenharmony_ci 6567db96d56Sopenharmony_ci 6577db96d56Sopenharmony_ciThis can also be written as a list comprehension: 6587db96d56Sopenharmony_ci 6597db96d56Sopenharmony_ci >>> list(x for x in range(10) if is_even(x)) 6607db96d56Sopenharmony_ci [0, 2, 4, 6, 8] 6617db96d56Sopenharmony_ci 6627db96d56Sopenharmony_ci 6637db96d56Sopenharmony_ci:func:`enumerate(iter, start=0) <enumerate>` counts off the elements in the 6647db96d56Sopenharmony_ciiterable returning 2-tuples containing the count (from *start*) and 6657db96d56Sopenharmony_cieach element. :: 6667db96d56Sopenharmony_ci 6677db96d56Sopenharmony_ci >>> for item in enumerate(['subject', 'verb', 'object']): 6687db96d56Sopenharmony_ci ... print(item) 6697db96d56Sopenharmony_ci (0, 'subject') 6707db96d56Sopenharmony_ci (1, 'verb') 6717db96d56Sopenharmony_ci (2, 'object') 6727db96d56Sopenharmony_ci 6737db96d56Sopenharmony_ci:func:`enumerate` is often used when looping through a list and recording the 6747db96d56Sopenharmony_ciindexes at which certain conditions are met:: 6757db96d56Sopenharmony_ci 6767db96d56Sopenharmony_ci f = open('data.txt', 'r') 6777db96d56Sopenharmony_ci for i, line in enumerate(f): 6787db96d56Sopenharmony_ci if line.strip() == '': 6797db96d56Sopenharmony_ci print('Blank line at line #%i' % i) 6807db96d56Sopenharmony_ci 6817db96d56Sopenharmony_ci:func:`sorted(iterable, key=None, reverse=False) <sorted>` collects all the 6827db96d56Sopenharmony_cielements of the iterable into a list, sorts the list, and returns the sorted 6837db96d56Sopenharmony_ciresult. The *key* and *reverse* arguments are passed through to the 6847db96d56Sopenharmony_ciconstructed list's :meth:`~list.sort` method. :: 6857db96d56Sopenharmony_ci 6867db96d56Sopenharmony_ci >>> import random 6877db96d56Sopenharmony_ci >>> # Generate 8 random numbers between [0, 10000) 6887db96d56Sopenharmony_ci >>> rand_list = random.sample(range(10000), 8) 6897db96d56Sopenharmony_ci >>> rand_list #doctest: +SKIP 6907db96d56Sopenharmony_ci [769, 7953, 9828, 6431, 8442, 9878, 6213, 2207] 6917db96d56Sopenharmony_ci >>> sorted(rand_list) #doctest: +SKIP 6927db96d56Sopenharmony_ci [769, 2207, 6213, 6431, 7953, 8442, 9828, 9878] 6937db96d56Sopenharmony_ci >>> sorted(rand_list, reverse=True) #doctest: +SKIP 6947db96d56Sopenharmony_ci [9878, 9828, 8442, 7953, 6431, 6213, 2207, 769] 6957db96d56Sopenharmony_ci 6967db96d56Sopenharmony_ci(For a more detailed discussion of sorting, see the :ref:`sortinghowto`.) 6977db96d56Sopenharmony_ci 6987db96d56Sopenharmony_ci 6997db96d56Sopenharmony_ciThe :func:`any(iter) <any>` and :func:`all(iter) <all>` built-ins look at the 7007db96d56Sopenharmony_citruth values of an iterable's contents. :func:`any` returns ``True`` if any element 7017db96d56Sopenharmony_ciin the iterable is a true value, and :func:`all` returns ``True`` if all of the 7027db96d56Sopenharmony_cielements are true values: 7037db96d56Sopenharmony_ci 7047db96d56Sopenharmony_ci >>> any([0, 1, 0]) 7057db96d56Sopenharmony_ci True 7067db96d56Sopenharmony_ci >>> any([0, 0, 0]) 7077db96d56Sopenharmony_ci False 7087db96d56Sopenharmony_ci >>> any([1, 1, 1]) 7097db96d56Sopenharmony_ci True 7107db96d56Sopenharmony_ci >>> all([0, 1, 0]) 7117db96d56Sopenharmony_ci False 7127db96d56Sopenharmony_ci >>> all([0, 0, 0]) 7137db96d56Sopenharmony_ci False 7147db96d56Sopenharmony_ci >>> all([1, 1, 1]) 7157db96d56Sopenharmony_ci True 7167db96d56Sopenharmony_ci 7177db96d56Sopenharmony_ci 7187db96d56Sopenharmony_ci:func:`zip(iterA, iterB, ...) <zip>` takes one element from each iterable and 7197db96d56Sopenharmony_cireturns them in a tuple:: 7207db96d56Sopenharmony_ci 7217db96d56Sopenharmony_ci zip(['a', 'b', 'c'], (1, 2, 3)) => 7227db96d56Sopenharmony_ci ('a', 1), ('b', 2), ('c', 3) 7237db96d56Sopenharmony_ci 7247db96d56Sopenharmony_ciIt doesn't construct an in-memory list and exhaust all the input iterators 7257db96d56Sopenharmony_cibefore returning; instead tuples are constructed and returned only if they're 7267db96d56Sopenharmony_cirequested. (The technical term for this behaviour is `lazy evaluation 7277db96d56Sopenharmony_ci<https://en.wikipedia.org/wiki/Lazy_evaluation>`__.) 7287db96d56Sopenharmony_ci 7297db96d56Sopenharmony_ciThis iterator is intended to be used with iterables that are all of the same 7307db96d56Sopenharmony_cilength. If the iterables are of different lengths, the resulting stream will be 7317db96d56Sopenharmony_cithe same length as the shortest iterable. :: 7327db96d56Sopenharmony_ci 7337db96d56Sopenharmony_ci zip(['a', 'b'], (1, 2, 3)) => 7347db96d56Sopenharmony_ci ('a', 1), ('b', 2) 7357db96d56Sopenharmony_ci 7367db96d56Sopenharmony_ciYou should avoid doing this, though, because an element may be taken from the 7377db96d56Sopenharmony_cilonger iterators and discarded. This means you can't go on to use the iterators 7387db96d56Sopenharmony_cifurther because you risk skipping a discarded element. 7397db96d56Sopenharmony_ci 7407db96d56Sopenharmony_ci 7417db96d56Sopenharmony_ciThe itertools module 7427db96d56Sopenharmony_ci==================== 7437db96d56Sopenharmony_ci 7447db96d56Sopenharmony_ciThe :mod:`itertools` module contains a number of commonly used iterators as well 7457db96d56Sopenharmony_cias functions for combining several iterators. This section will introduce the 7467db96d56Sopenharmony_cimodule's contents by showing small examples. 7477db96d56Sopenharmony_ci 7487db96d56Sopenharmony_ciThe module's functions fall into a few broad classes: 7497db96d56Sopenharmony_ci 7507db96d56Sopenharmony_ci* Functions that create a new iterator based on an existing iterator. 7517db96d56Sopenharmony_ci* Functions for treating an iterator's elements as function arguments. 7527db96d56Sopenharmony_ci* Functions for selecting portions of an iterator's output. 7537db96d56Sopenharmony_ci* A function for grouping an iterator's output. 7547db96d56Sopenharmony_ci 7557db96d56Sopenharmony_ciCreating new iterators 7567db96d56Sopenharmony_ci---------------------- 7577db96d56Sopenharmony_ci 7587db96d56Sopenharmony_ci:func:`itertools.count(start, step) <itertools.count>` returns an infinite 7597db96d56Sopenharmony_cistream of evenly spaced values. You can optionally supply the starting number, 7607db96d56Sopenharmony_ciwhich defaults to 0, and the interval between numbers, which defaults to 1:: 7617db96d56Sopenharmony_ci 7627db96d56Sopenharmony_ci itertools.count() => 7637db96d56Sopenharmony_ci 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 7647db96d56Sopenharmony_ci itertools.count(10) => 7657db96d56Sopenharmony_ci 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ... 7667db96d56Sopenharmony_ci itertools.count(10, 5) => 7677db96d56Sopenharmony_ci 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, ... 7687db96d56Sopenharmony_ci 7697db96d56Sopenharmony_ci:func:`itertools.cycle(iter) <itertools.cycle>` saves a copy of the contents of 7707db96d56Sopenharmony_cia provided iterable and returns a new iterator that returns its elements from 7717db96d56Sopenharmony_cifirst to last. The new iterator will repeat these elements infinitely. :: 7727db96d56Sopenharmony_ci 7737db96d56Sopenharmony_ci itertools.cycle([1, 2, 3, 4, 5]) => 7747db96d56Sopenharmony_ci 1, 2, 3, 4, 5, 1, 2, 3, 4, 5, ... 7757db96d56Sopenharmony_ci 7767db96d56Sopenharmony_ci:func:`itertools.repeat(elem, [n]) <itertools.repeat>` returns the provided 7777db96d56Sopenharmony_cielement *n* times, or returns the element endlessly if *n* is not provided. :: 7787db96d56Sopenharmony_ci 7797db96d56Sopenharmony_ci itertools.repeat('abc') => 7807db96d56Sopenharmony_ci abc, abc, abc, abc, abc, abc, abc, abc, abc, abc, ... 7817db96d56Sopenharmony_ci itertools.repeat('abc', 5) => 7827db96d56Sopenharmony_ci abc, abc, abc, abc, abc 7837db96d56Sopenharmony_ci 7847db96d56Sopenharmony_ci:func:`itertools.chain(iterA, iterB, ...) <itertools.chain>` takes an arbitrary 7857db96d56Sopenharmony_cinumber of iterables as input, and returns all the elements of the first 7867db96d56Sopenharmony_ciiterator, then all the elements of the second, and so on, until all of the 7877db96d56Sopenharmony_ciiterables have been exhausted. :: 7887db96d56Sopenharmony_ci 7897db96d56Sopenharmony_ci itertools.chain(['a', 'b', 'c'], (1, 2, 3)) => 7907db96d56Sopenharmony_ci a, b, c, 1, 2, 3 7917db96d56Sopenharmony_ci 7927db96d56Sopenharmony_ci:func:`itertools.islice(iter, [start], stop, [step]) <itertools.islice>` returns 7937db96d56Sopenharmony_cia stream that's a slice of the iterator. With a single *stop* argument, it 7947db96d56Sopenharmony_ciwill return the first *stop* elements. If you supply a starting index, you'll 7957db96d56Sopenharmony_ciget *stop-start* elements, and if you supply a value for *step*, elements 7967db96d56Sopenharmony_ciwill be skipped accordingly. Unlike Python's string and list slicing, you can't 7977db96d56Sopenharmony_ciuse negative values for *start*, *stop*, or *step*. :: 7987db96d56Sopenharmony_ci 7997db96d56Sopenharmony_ci itertools.islice(range(10), 8) => 8007db96d56Sopenharmony_ci 0, 1, 2, 3, 4, 5, 6, 7 8017db96d56Sopenharmony_ci itertools.islice(range(10), 2, 8) => 8027db96d56Sopenharmony_ci 2, 3, 4, 5, 6, 7 8037db96d56Sopenharmony_ci itertools.islice(range(10), 2, 8, 2) => 8047db96d56Sopenharmony_ci 2, 4, 6 8057db96d56Sopenharmony_ci 8067db96d56Sopenharmony_ci:func:`itertools.tee(iter, [n]) <itertools.tee>` replicates an iterator; it 8077db96d56Sopenharmony_cireturns *n* independent iterators that will all return the contents of the 8087db96d56Sopenharmony_cisource iterator. 8097db96d56Sopenharmony_ciIf you don't supply a value for *n*, the default is 2. Replicating iterators 8107db96d56Sopenharmony_cirequires saving some of the contents of the source iterator, so this can consume 8117db96d56Sopenharmony_cisignificant memory if the iterator is large and one of the new iterators is 8127db96d56Sopenharmony_ciconsumed more than the others. :: 8137db96d56Sopenharmony_ci 8147db96d56Sopenharmony_ci itertools.tee( itertools.count() ) => 8157db96d56Sopenharmony_ci iterA, iterB 8167db96d56Sopenharmony_ci 8177db96d56Sopenharmony_ci where iterA -> 8187db96d56Sopenharmony_ci 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 8197db96d56Sopenharmony_ci 8207db96d56Sopenharmony_ci and iterB -> 8217db96d56Sopenharmony_ci 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ... 8227db96d56Sopenharmony_ci 8237db96d56Sopenharmony_ci 8247db96d56Sopenharmony_ciCalling functions on elements 8257db96d56Sopenharmony_ci----------------------------- 8267db96d56Sopenharmony_ci 8277db96d56Sopenharmony_ciThe :mod:`operator` module contains a set of functions corresponding to Python's 8287db96d56Sopenharmony_cioperators. Some examples are :func:`operator.add(a, b) <operator.add>` (adds 8297db96d56Sopenharmony_citwo values), :func:`operator.ne(a, b) <operator.ne>` (same as ``a != b``), and 8307db96d56Sopenharmony_ci:func:`operator.attrgetter('id') <operator.attrgetter>` 8317db96d56Sopenharmony_ci(returns a callable that fetches the ``.id`` attribute). 8327db96d56Sopenharmony_ci 8337db96d56Sopenharmony_ci:func:`itertools.starmap(func, iter) <itertools.starmap>` assumes that the 8347db96d56Sopenharmony_ciiterable will return a stream of tuples, and calls *func* using these tuples as 8357db96d56Sopenharmony_cithe arguments:: 8367db96d56Sopenharmony_ci 8377db96d56Sopenharmony_ci itertools.starmap(os.path.join, 8387db96d56Sopenharmony_ci [('/bin', 'python'), ('/usr', 'bin', 'java'), 8397db96d56Sopenharmony_ci ('/usr', 'bin', 'perl'), ('/usr', 'bin', 'ruby')]) 8407db96d56Sopenharmony_ci => 8417db96d56Sopenharmony_ci /bin/python, /usr/bin/java, /usr/bin/perl, /usr/bin/ruby 8427db96d56Sopenharmony_ci 8437db96d56Sopenharmony_ci 8447db96d56Sopenharmony_ciSelecting elements 8457db96d56Sopenharmony_ci------------------ 8467db96d56Sopenharmony_ci 8477db96d56Sopenharmony_ciAnother group of functions chooses a subset of an iterator's elements based on a 8487db96d56Sopenharmony_cipredicate. 8497db96d56Sopenharmony_ci 8507db96d56Sopenharmony_ci:func:`itertools.filterfalse(predicate, iter) <itertools.filterfalse>` is the 8517db96d56Sopenharmony_ciopposite of :func:`filter`, returning all elements for which the predicate 8527db96d56Sopenharmony_cireturns false:: 8537db96d56Sopenharmony_ci 8547db96d56Sopenharmony_ci itertools.filterfalse(is_even, itertools.count()) => 8557db96d56Sopenharmony_ci 1, 3, 5, 7, 9, 11, 13, 15, ... 8567db96d56Sopenharmony_ci 8577db96d56Sopenharmony_ci:func:`itertools.takewhile(predicate, iter) <itertools.takewhile>` returns 8587db96d56Sopenharmony_cielements for as long as the predicate returns true. Once the predicate returns 8597db96d56Sopenharmony_cifalse, the iterator will signal the end of its results. :: 8607db96d56Sopenharmony_ci 8617db96d56Sopenharmony_ci def less_than_10(x): 8627db96d56Sopenharmony_ci return x < 10 8637db96d56Sopenharmony_ci 8647db96d56Sopenharmony_ci itertools.takewhile(less_than_10, itertools.count()) => 8657db96d56Sopenharmony_ci 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 8667db96d56Sopenharmony_ci 8677db96d56Sopenharmony_ci itertools.takewhile(is_even, itertools.count()) => 8687db96d56Sopenharmony_ci 0 8697db96d56Sopenharmony_ci 8707db96d56Sopenharmony_ci:func:`itertools.dropwhile(predicate, iter) <itertools.dropwhile>` discards 8717db96d56Sopenharmony_cielements while the predicate returns true, and then returns the rest of the 8727db96d56Sopenharmony_ciiterable's results. :: 8737db96d56Sopenharmony_ci 8747db96d56Sopenharmony_ci itertools.dropwhile(less_than_10, itertools.count()) => 8757db96d56Sopenharmony_ci 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, ... 8767db96d56Sopenharmony_ci 8777db96d56Sopenharmony_ci itertools.dropwhile(is_even, itertools.count()) => 8787db96d56Sopenharmony_ci 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 8797db96d56Sopenharmony_ci 8807db96d56Sopenharmony_ci:func:`itertools.compress(data, selectors) <itertools.compress>` takes two 8817db96d56Sopenharmony_ciiterators and returns only those elements of *data* for which the corresponding 8827db96d56Sopenharmony_cielement of *selectors* is true, stopping whenever either one is exhausted:: 8837db96d56Sopenharmony_ci 8847db96d56Sopenharmony_ci itertools.compress([1, 2, 3, 4, 5], [True, True, False, False, True]) => 8857db96d56Sopenharmony_ci 1, 2, 5 8867db96d56Sopenharmony_ci 8877db96d56Sopenharmony_ci 8887db96d56Sopenharmony_ciCombinatoric functions 8897db96d56Sopenharmony_ci---------------------- 8907db96d56Sopenharmony_ci 8917db96d56Sopenharmony_ciThe :func:`itertools.combinations(iterable, r) <itertools.combinations>` 8927db96d56Sopenharmony_cireturns an iterator giving all possible *r*-tuple combinations of the 8937db96d56Sopenharmony_cielements contained in *iterable*. :: 8947db96d56Sopenharmony_ci 8957db96d56Sopenharmony_ci itertools.combinations([1, 2, 3, 4, 5], 2) => 8967db96d56Sopenharmony_ci (1, 2), (1, 3), (1, 4), (1, 5), 8977db96d56Sopenharmony_ci (2, 3), (2, 4), (2, 5), 8987db96d56Sopenharmony_ci (3, 4), (3, 5), 8997db96d56Sopenharmony_ci (4, 5) 9007db96d56Sopenharmony_ci 9017db96d56Sopenharmony_ci itertools.combinations([1, 2, 3, 4, 5], 3) => 9027db96d56Sopenharmony_ci (1, 2, 3), (1, 2, 4), (1, 2, 5), (1, 3, 4), (1, 3, 5), (1, 4, 5), 9037db96d56Sopenharmony_ci (2, 3, 4), (2, 3, 5), (2, 4, 5), 9047db96d56Sopenharmony_ci (3, 4, 5) 9057db96d56Sopenharmony_ci 9067db96d56Sopenharmony_ciThe elements within each tuple remain in the same order as 9077db96d56Sopenharmony_ci*iterable* returned them. For example, the number 1 is always before 9087db96d56Sopenharmony_ci2, 3, 4, or 5 in the examples above. A similar function, 9097db96d56Sopenharmony_ci:func:`itertools.permutations(iterable, r=None) <itertools.permutations>`, 9107db96d56Sopenharmony_ciremoves this constraint on the order, returning all possible 9117db96d56Sopenharmony_ciarrangements of length *r*:: 9127db96d56Sopenharmony_ci 9137db96d56Sopenharmony_ci itertools.permutations([1, 2, 3, 4, 5], 2) => 9147db96d56Sopenharmony_ci (1, 2), (1, 3), (1, 4), (1, 5), 9157db96d56Sopenharmony_ci (2, 1), (2, 3), (2, 4), (2, 5), 9167db96d56Sopenharmony_ci (3, 1), (3, 2), (3, 4), (3, 5), 9177db96d56Sopenharmony_ci (4, 1), (4, 2), (4, 3), (4, 5), 9187db96d56Sopenharmony_ci (5, 1), (5, 2), (5, 3), (5, 4) 9197db96d56Sopenharmony_ci 9207db96d56Sopenharmony_ci itertools.permutations([1, 2, 3, 4, 5]) => 9217db96d56Sopenharmony_ci (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), 9227db96d56Sopenharmony_ci ... 9237db96d56Sopenharmony_ci (5, 4, 3, 2, 1) 9247db96d56Sopenharmony_ci 9257db96d56Sopenharmony_ciIf you don't supply a value for *r* the length of the iterable is used, 9267db96d56Sopenharmony_cimeaning that all the elements are permuted. 9277db96d56Sopenharmony_ci 9287db96d56Sopenharmony_ciNote that these functions produce all of the possible combinations by 9297db96d56Sopenharmony_ciposition and don't require that the contents of *iterable* are unique:: 9307db96d56Sopenharmony_ci 9317db96d56Sopenharmony_ci itertools.permutations('aba', 3) => 9327db96d56Sopenharmony_ci ('a', 'b', 'a'), ('a', 'a', 'b'), ('b', 'a', 'a'), 9337db96d56Sopenharmony_ci ('b', 'a', 'a'), ('a', 'a', 'b'), ('a', 'b', 'a') 9347db96d56Sopenharmony_ci 9357db96d56Sopenharmony_ciThe identical tuple ``('a', 'a', 'b')`` occurs twice, but the two 'a' 9367db96d56Sopenharmony_cistrings came from different positions. 9377db96d56Sopenharmony_ci 9387db96d56Sopenharmony_ciThe :func:`itertools.combinations_with_replacement(iterable, r) <itertools.combinations_with_replacement>` 9397db96d56Sopenharmony_cifunction relaxes a different constraint: elements can be repeated 9407db96d56Sopenharmony_ciwithin a single tuple. Conceptually an element is selected for the 9417db96d56Sopenharmony_cifirst position of each tuple and then is replaced before the second 9427db96d56Sopenharmony_cielement is selected. :: 9437db96d56Sopenharmony_ci 9447db96d56Sopenharmony_ci itertools.combinations_with_replacement([1, 2, 3, 4, 5], 2) => 9457db96d56Sopenharmony_ci (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), 9467db96d56Sopenharmony_ci (2, 2), (2, 3), (2, 4), (2, 5), 9477db96d56Sopenharmony_ci (3, 3), (3, 4), (3, 5), 9487db96d56Sopenharmony_ci (4, 4), (4, 5), 9497db96d56Sopenharmony_ci (5, 5) 9507db96d56Sopenharmony_ci 9517db96d56Sopenharmony_ci 9527db96d56Sopenharmony_ciGrouping elements 9537db96d56Sopenharmony_ci----------------- 9547db96d56Sopenharmony_ci 9557db96d56Sopenharmony_ciThe last function I'll discuss, :func:`itertools.groupby(iter, key_func=None) 9567db96d56Sopenharmony_ci<itertools.groupby>`, is the most complicated. ``key_func(elem)`` is a function 9577db96d56Sopenharmony_cithat can compute a key value for each element returned by the iterable. If you 9587db96d56Sopenharmony_cidon't supply a key function, the key is simply each element itself. 9597db96d56Sopenharmony_ci 9607db96d56Sopenharmony_ci:func:`~itertools.groupby` collects all the consecutive elements from the 9617db96d56Sopenharmony_ciunderlying iterable that have the same key value, and returns a stream of 9627db96d56Sopenharmony_ci2-tuples containing a key value and an iterator for the elements with that key. 9637db96d56Sopenharmony_ci 9647db96d56Sopenharmony_ci:: 9657db96d56Sopenharmony_ci 9667db96d56Sopenharmony_ci city_list = [('Decatur', 'AL'), ('Huntsville', 'AL'), ('Selma', 'AL'), 9677db96d56Sopenharmony_ci ('Anchorage', 'AK'), ('Nome', 'AK'), 9687db96d56Sopenharmony_ci ('Flagstaff', 'AZ'), ('Phoenix', 'AZ'), ('Tucson', 'AZ'), 9697db96d56Sopenharmony_ci ... 9707db96d56Sopenharmony_ci ] 9717db96d56Sopenharmony_ci 9727db96d56Sopenharmony_ci def get_state(city_state): 9737db96d56Sopenharmony_ci return city_state[1] 9747db96d56Sopenharmony_ci 9757db96d56Sopenharmony_ci itertools.groupby(city_list, get_state) => 9767db96d56Sopenharmony_ci ('AL', iterator-1), 9777db96d56Sopenharmony_ci ('AK', iterator-2), 9787db96d56Sopenharmony_ci ('AZ', iterator-3), ... 9797db96d56Sopenharmony_ci 9807db96d56Sopenharmony_ci where 9817db96d56Sopenharmony_ci iterator-1 => 9827db96d56Sopenharmony_ci ('Decatur', 'AL'), ('Huntsville', 'AL'), ('Selma', 'AL') 9837db96d56Sopenharmony_ci iterator-2 => 9847db96d56Sopenharmony_ci ('Anchorage', 'AK'), ('Nome', 'AK') 9857db96d56Sopenharmony_ci iterator-3 => 9867db96d56Sopenharmony_ci ('Flagstaff', 'AZ'), ('Phoenix', 'AZ'), ('Tucson', 'AZ') 9877db96d56Sopenharmony_ci 9887db96d56Sopenharmony_ci:func:`~itertools.groupby` assumes that the underlying iterable's contents will 9897db96d56Sopenharmony_cialready be sorted based on the key. Note that the returned iterators also use 9907db96d56Sopenharmony_cithe underlying iterable, so you have to consume the results of iterator-1 before 9917db96d56Sopenharmony_cirequesting iterator-2 and its corresponding key. 9927db96d56Sopenharmony_ci 9937db96d56Sopenharmony_ci 9947db96d56Sopenharmony_ciThe functools module 9957db96d56Sopenharmony_ci==================== 9967db96d56Sopenharmony_ci 9977db96d56Sopenharmony_ciThe :mod:`functools` module contains some higher-order functions. 9987db96d56Sopenharmony_ciA **higher-order function** takes one or more functions as input and returns a 9997db96d56Sopenharmony_cinew function. The most useful tool in this module is the 10007db96d56Sopenharmony_ci:func:`functools.partial` function. 10017db96d56Sopenharmony_ci 10027db96d56Sopenharmony_ciFor programs written in a functional style, you'll sometimes want to construct 10037db96d56Sopenharmony_civariants of existing functions that have some of the parameters filled in. 10047db96d56Sopenharmony_ciConsider a Python function ``f(a, b, c)``; you may wish to create a new function 10057db96d56Sopenharmony_ci``g(b, c)`` that's equivalent to ``f(1, b, c)``; you're filling in a value for 10067db96d56Sopenharmony_cione of ``f()``'s parameters. This is called "partial function application". 10077db96d56Sopenharmony_ci 10087db96d56Sopenharmony_ciThe constructor for :func:`~functools.partial` takes the arguments 10097db96d56Sopenharmony_ci``(function, arg1, arg2, ..., kwarg1=value1, kwarg2=value2)``. The resulting 10107db96d56Sopenharmony_ciobject is callable, so you can just call it to invoke ``function`` with the 10117db96d56Sopenharmony_cifilled-in arguments. 10127db96d56Sopenharmony_ci 10137db96d56Sopenharmony_ciHere's a small but realistic example:: 10147db96d56Sopenharmony_ci 10157db96d56Sopenharmony_ci import functools 10167db96d56Sopenharmony_ci 10177db96d56Sopenharmony_ci def log(message, subsystem): 10187db96d56Sopenharmony_ci """Write the contents of 'message' to the specified subsystem.""" 10197db96d56Sopenharmony_ci print('%s: %s' % (subsystem, message)) 10207db96d56Sopenharmony_ci ... 10217db96d56Sopenharmony_ci 10227db96d56Sopenharmony_ci server_log = functools.partial(log, subsystem='server') 10237db96d56Sopenharmony_ci server_log('Unable to open socket') 10247db96d56Sopenharmony_ci 10257db96d56Sopenharmony_ci:func:`functools.reduce(func, iter, [initial_value]) <functools.reduce>` 10267db96d56Sopenharmony_cicumulatively performs an operation on all the iterable's elements and, 10277db96d56Sopenharmony_citherefore, can't be applied to infinite iterables. *func* must be a function 10287db96d56Sopenharmony_cithat takes two elements and returns a single value. :func:`functools.reduce` 10297db96d56Sopenharmony_citakes the first two elements A and B returned by the iterator and calculates 10307db96d56Sopenharmony_ci``func(A, B)``. It then requests the third element, C, calculates 10317db96d56Sopenharmony_ci``func(func(A, B), C)``, combines this result with the fourth element returned, 10327db96d56Sopenharmony_ciand continues until the iterable is exhausted. If the iterable returns no 10337db96d56Sopenharmony_civalues at all, a :exc:`TypeError` exception is raised. If the initial value is 10347db96d56Sopenharmony_cisupplied, it's used as a starting point and ``func(initial_value, A)`` is the 10357db96d56Sopenharmony_cifirst calculation. :: 10367db96d56Sopenharmony_ci 10377db96d56Sopenharmony_ci >>> import operator, functools 10387db96d56Sopenharmony_ci >>> functools.reduce(operator.concat, ['A', 'BB', 'C']) 10397db96d56Sopenharmony_ci 'ABBC' 10407db96d56Sopenharmony_ci >>> functools.reduce(operator.concat, []) 10417db96d56Sopenharmony_ci Traceback (most recent call last): 10427db96d56Sopenharmony_ci ... 10437db96d56Sopenharmony_ci TypeError: reduce() of empty sequence with no initial value 10447db96d56Sopenharmony_ci >>> functools.reduce(operator.mul, [1, 2, 3], 1) 10457db96d56Sopenharmony_ci 6 10467db96d56Sopenharmony_ci >>> functools.reduce(operator.mul, [], 1) 10477db96d56Sopenharmony_ci 1 10487db96d56Sopenharmony_ci 10497db96d56Sopenharmony_ciIf you use :func:`operator.add` with :func:`functools.reduce`, you'll add up all the 10507db96d56Sopenharmony_cielements of the iterable. This case is so common that there's a special 10517db96d56Sopenharmony_cibuilt-in called :func:`sum` to compute it: 10527db96d56Sopenharmony_ci 10537db96d56Sopenharmony_ci >>> import functools, operator 10547db96d56Sopenharmony_ci >>> functools.reduce(operator.add, [1, 2, 3, 4], 0) 10557db96d56Sopenharmony_ci 10 10567db96d56Sopenharmony_ci >>> sum([1, 2, 3, 4]) 10577db96d56Sopenharmony_ci 10 10587db96d56Sopenharmony_ci >>> sum([]) 10597db96d56Sopenharmony_ci 0 10607db96d56Sopenharmony_ci 10617db96d56Sopenharmony_ciFor many uses of :func:`functools.reduce`, though, it can be clearer to just 10627db96d56Sopenharmony_ciwrite the obvious :keyword:`for` loop:: 10637db96d56Sopenharmony_ci 10647db96d56Sopenharmony_ci import functools 10657db96d56Sopenharmony_ci # Instead of: 10667db96d56Sopenharmony_ci product = functools.reduce(operator.mul, [1, 2, 3], 1) 10677db96d56Sopenharmony_ci 10687db96d56Sopenharmony_ci # You can write: 10697db96d56Sopenharmony_ci product = 1 10707db96d56Sopenharmony_ci for i in [1, 2, 3]: 10717db96d56Sopenharmony_ci product *= i 10727db96d56Sopenharmony_ci 10737db96d56Sopenharmony_ciA related function is :func:`itertools.accumulate(iterable, func=operator.add) 10747db96d56Sopenharmony_ci<itertools.accumulate>`. It performs the same calculation, but instead of 10757db96d56Sopenharmony_cireturning only the final result, :func:`accumulate` returns an iterator that 10767db96d56Sopenharmony_cialso yields each partial result:: 10777db96d56Sopenharmony_ci 10787db96d56Sopenharmony_ci itertools.accumulate([1, 2, 3, 4, 5]) => 10797db96d56Sopenharmony_ci 1, 3, 6, 10, 15 10807db96d56Sopenharmony_ci 10817db96d56Sopenharmony_ci itertools.accumulate([1, 2, 3, 4, 5], operator.mul) => 10827db96d56Sopenharmony_ci 1, 2, 6, 24, 120 10837db96d56Sopenharmony_ci 10847db96d56Sopenharmony_ci 10857db96d56Sopenharmony_ciThe operator module 10867db96d56Sopenharmony_ci------------------- 10877db96d56Sopenharmony_ci 10887db96d56Sopenharmony_ciThe :mod:`operator` module was mentioned earlier. It contains a set of 10897db96d56Sopenharmony_cifunctions corresponding to Python's operators. These functions are often useful 10907db96d56Sopenharmony_ciin functional-style code because they save you from writing trivial functions 10917db96d56Sopenharmony_cithat perform a single operation. 10927db96d56Sopenharmony_ci 10937db96d56Sopenharmony_ciSome of the functions in this module are: 10947db96d56Sopenharmony_ci 10957db96d56Sopenharmony_ci* Math operations: ``add()``, ``sub()``, ``mul()``, ``floordiv()``, ``abs()``, ... 10967db96d56Sopenharmony_ci* Logical operations: ``not_()``, ``truth()``. 10977db96d56Sopenharmony_ci* Bitwise operations: ``and_()``, ``or_()``, ``invert()``. 10987db96d56Sopenharmony_ci* Comparisons: ``eq()``, ``ne()``, ``lt()``, ``le()``, ``gt()``, and ``ge()``. 10997db96d56Sopenharmony_ci* Object identity: ``is_()``, ``is_not()``. 11007db96d56Sopenharmony_ci 11017db96d56Sopenharmony_ciConsult the operator module's documentation for a complete list. 11027db96d56Sopenharmony_ci 11037db96d56Sopenharmony_ci 11047db96d56Sopenharmony_ciSmall functions and the lambda expression 11057db96d56Sopenharmony_ci========================================= 11067db96d56Sopenharmony_ci 11077db96d56Sopenharmony_ciWhen writing functional-style programs, you'll often need little functions that 11087db96d56Sopenharmony_ciact as predicates or that combine elements in some way. 11097db96d56Sopenharmony_ci 11107db96d56Sopenharmony_ciIf there's a Python built-in or a module function that's suitable, you don't 11117db96d56Sopenharmony_cineed to define a new function at all:: 11127db96d56Sopenharmony_ci 11137db96d56Sopenharmony_ci stripped_lines = [line.strip() for line in lines] 11147db96d56Sopenharmony_ci existing_files = filter(os.path.exists, file_list) 11157db96d56Sopenharmony_ci 11167db96d56Sopenharmony_ciIf the function you need doesn't exist, you need to write it. One way to write 11177db96d56Sopenharmony_cismall functions is to use the :keyword:`lambda` expression. ``lambda`` takes a 11187db96d56Sopenharmony_cinumber of parameters and an expression combining these parameters, and creates 11197db96d56Sopenharmony_cian anonymous function that returns the value of the expression:: 11207db96d56Sopenharmony_ci 11217db96d56Sopenharmony_ci adder = lambda x, y: x+y 11227db96d56Sopenharmony_ci 11237db96d56Sopenharmony_ci print_assign = lambda name, value: name + '=' + str(value) 11247db96d56Sopenharmony_ci 11257db96d56Sopenharmony_ciAn alternative is to just use the ``def`` statement and define a function in the 11267db96d56Sopenharmony_ciusual way:: 11277db96d56Sopenharmony_ci 11287db96d56Sopenharmony_ci def adder(x, y): 11297db96d56Sopenharmony_ci return x + y 11307db96d56Sopenharmony_ci 11317db96d56Sopenharmony_ci def print_assign(name, value): 11327db96d56Sopenharmony_ci return name + '=' + str(value) 11337db96d56Sopenharmony_ci 11347db96d56Sopenharmony_ciWhich alternative is preferable? That's a style question; my usual course is to 11357db96d56Sopenharmony_ciavoid using ``lambda``. 11367db96d56Sopenharmony_ci 11377db96d56Sopenharmony_ciOne reason for my preference is that ``lambda`` is quite limited in the 11387db96d56Sopenharmony_cifunctions it can define. The result has to be computable as a single 11397db96d56Sopenharmony_ciexpression, which means you can't have multiway ``if... elif... else`` 11407db96d56Sopenharmony_cicomparisons or ``try... except`` statements. If you try to do too much in a 11417db96d56Sopenharmony_ci``lambda`` statement, you'll end up with an overly complicated expression that's 11427db96d56Sopenharmony_cihard to read. Quick, what's the following code doing? :: 11437db96d56Sopenharmony_ci 11447db96d56Sopenharmony_ci import functools 11457db96d56Sopenharmony_ci total = functools.reduce(lambda a, b: (0, a[1] + b[1]), items)[1] 11467db96d56Sopenharmony_ci 11477db96d56Sopenharmony_ciYou can figure it out, but it takes time to disentangle the expression to figure 11487db96d56Sopenharmony_ciout what's going on. Using a short nested ``def`` statements makes things a 11497db96d56Sopenharmony_cilittle bit better:: 11507db96d56Sopenharmony_ci 11517db96d56Sopenharmony_ci import functools 11527db96d56Sopenharmony_ci def combine(a, b): 11537db96d56Sopenharmony_ci return 0, a[1] + b[1] 11547db96d56Sopenharmony_ci 11557db96d56Sopenharmony_ci total = functools.reduce(combine, items)[1] 11567db96d56Sopenharmony_ci 11577db96d56Sopenharmony_ciBut it would be best of all if I had simply used a ``for`` loop:: 11587db96d56Sopenharmony_ci 11597db96d56Sopenharmony_ci total = 0 11607db96d56Sopenharmony_ci for a, b in items: 11617db96d56Sopenharmony_ci total += b 11627db96d56Sopenharmony_ci 11637db96d56Sopenharmony_ciOr the :func:`sum` built-in and a generator expression:: 11647db96d56Sopenharmony_ci 11657db96d56Sopenharmony_ci total = sum(b for a, b in items) 11667db96d56Sopenharmony_ci 11677db96d56Sopenharmony_ciMany uses of :func:`functools.reduce` are clearer when written as ``for`` loops. 11687db96d56Sopenharmony_ci 11697db96d56Sopenharmony_ciFredrik Lundh once suggested the following set of rules for refactoring uses of 11707db96d56Sopenharmony_ci``lambda``: 11717db96d56Sopenharmony_ci 11727db96d56Sopenharmony_ci1. Write a lambda function. 11737db96d56Sopenharmony_ci2. Write a comment explaining what the heck that lambda does. 11747db96d56Sopenharmony_ci3. Study the comment for a while, and think of a name that captures the essence 11757db96d56Sopenharmony_ci of the comment. 11767db96d56Sopenharmony_ci4. Convert the lambda to a def statement, using that name. 11777db96d56Sopenharmony_ci5. Remove the comment. 11787db96d56Sopenharmony_ci 11797db96d56Sopenharmony_ciI really like these rules, but you're free to disagree 11807db96d56Sopenharmony_ciabout whether this lambda-free style is better. 11817db96d56Sopenharmony_ci 11827db96d56Sopenharmony_ci 11837db96d56Sopenharmony_ciRevision History and Acknowledgements 11847db96d56Sopenharmony_ci===================================== 11857db96d56Sopenharmony_ci 11867db96d56Sopenharmony_ciThe author would like to thank the following people for offering suggestions, 11877db96d56Sopenharmony_cicorrections and assistance with various drafts of this article: Ian Bicking, 11887db96d56Sopenharmony_ciNick Coghlan, Nick Efford, Raymond Hettinger, Jim Jewett, Mike Krell, Leandro 11897db96d56Sopenharmony_ciLameiro, Jussi Salmela, Collin Winter, Blake Winton. 11907db96d56Sopenharmony_ci 11917db96d56Sopenharmony_ciVersion 0.1: posted June 30 2006. 11927db96d56Sopenharmony_ci 11937db96d56Sopenharmony_ciVersion 0.11: posted July 1 2006. Typo fixes. 11947db96d56Sopenharmony_ci 11957db96d56Sopenharmony_ciVersion 0.2: posted July 10 2006. Merged genexp and listcomp sections into one. 11967db96d56Sopenharmony_ciTypo fixes. 11977db96d56Sopenharmony_ci 11987db96d56Sopenharmony_ciVersion 0.21: Added more references suggested on the tutor mailing list. 11997db96d56Sopenharmony_ci 12007db96d56Sopenharmony_ciVersion 0.30: Adds a section on the ``functional`` module written by Collin 12017db96d56Sopenharmony_ciWinter; adds short section on the operator module; a few other edits. 12027db96d56Sopenharmony_ci 12037db96d56Sopenharmony_ci 12047db96d56Sopenharmony_ciReferences 12057db96d56Sopenharmony_ci========== 12067db96d56Sopenharmony_ci 12077db96d56Sopenharmony_ciGeneral 12087db96d56Sopenharmony_ci------- 12097db96d56Sopenharmony_ci 12107db96d56Sopenharmony_ci**Structure and Interpretation of Computer Programs**, by Harold Abelson and 12117db96d56Sopenharmony_ciGerald Jay Sussman with Julie Sussman. The book can be found at 12127db96d56Sopenharmony_cihttps://mitpress.mit.edu/sicp. In this classic textbook of computer science, 12137db96d56Sopenharmony_cichapters 2 and 3 discuss the use of sequences and streams to organize the data 12147db96d56Sopenharmony_ciflow inside a program. The book uses Scheme for its examples, but many of the 12157db96d56Sopenharmony_cidesign approaches described in these chapters are applicable to functional-style 12167db96d56Sopenharmony_ciPython code. 12177db96d56Sopenharmony_ci 12187db96d56Sopenharmony_cihttps://www.defmacro.org/ramblings/fp.html: A general introduction to functional 12197db96d56Sopenharmony_ciprogramming that uses Java examples and has a lengthy historical introduction. 12207db96d56Sopenharmony_ci 12217db96d56Sopenharmony_cihttps://en.wikipedia.org/wiki/Functional_programming: General Wikipedia entry 12227db96d56Sopenharmony_cidescribing functional programming. 12237db96d56Sopenharmony_ci 12247db96d56Sopenharmony_cihttps://en.wikipedia.org/wiki/Coroutine: Entry for coroutines. 12257db96d56Sopenharmony_ci 12267db96d56Sopenharmony_cihttps://en.wikipedia.org/wiki/Currying: Entry for the concept of currying. 12277db96d56Sopenharmony_ci 12287db96d56Sopenharmony_ciPython-specific 12297db96d56Sopenharmony_ci--------------- 12307db96d56Sopenharmony_ci 12317db96d56Sopenharmony_cihttps://gnosis.cx/TPiP/: The first chapter of David Mertz's book 12327db96d56Sopenharmony_ci:title-reference:`Text Processing in Python` discusses functional programming 12337db96d56Sopenharmony_cifor text processing, in the section titled "Utilizing Higher-Order Functions in 12347db96d56Sopenharmony_ciText Processing". 12357db96d56Sopenharmony_ci 12367db96d56Sopenharmony_ciMertz also wrote a 3-part series of articles on functional programming 12377db96d56Sopenharmony_cifor IBM's DeveloperWorks site; see 12387db96d56Sopenharmony_ci`part 1 <https://developer.ibm.com/articles/l-prog/>`__, 12397db96d56Sopenharmony_ci`part 2 <https://developer.ibm.com/tutorials/l-prog2/>`__, and 12407db96d56Sopenharmony_ci`part 3 <https://developer.ibm.com/tutorials/l-prog3/>`__, 12417db96d56Sopenharmony_ci 12427db96d56Sopenharmony_ci 12437db96d56Sopenharmony_ciPython documentation 12447db96d56Sopenharmony_ci-------------------- 12457db96d56Sopenharmony_ci 12467db96d56Sopenharmony_ciDocumentation for the :mod:`itertools` module. 12477db96d56Sopenharmony_ci 12487db96d56Sopenharmony_ciDocumentation for the :mod:`functools` module. 12497db96d56Sopenharmony_ci 12507db96d56Sopenharmony_ciDocumentation for the :mod:`operator` module. 12517db96d56Sopenharmony_ci 12527db96d56Sopenharmony_ci:pep:`289`: "Generator Expressions" 12537db96d56Sopenharmony_ci 12547db96d56Sopenharmony_ci:pep:`342`: "Coroutines via Enhanced Generators" describes the new generator 12557db96d56Sopenharmony_cifeatures in Python 2.5. 12567db96d56Sopenharmony_ci 12577db96d56Sopenharmony_ci.. comment 12587db96d56Sopenharmony_ci 12597db96d56Sopenharmony_ci Handy little function for printing part of an iterator -- used 12607db96d56Sopenharmony_ci while writing this document. 12617db96d56Sopenharmony_ci 12627db96d56Sopenharmony_ci import itertools 12637db96d56Sopenharmony_ci def print_iter(it): 12647db96d56Sopenharmony_ci slice = itertools.islice(it, 10) 12657db96d56Sopenharmony_ci for elem in slice[:-1]: 12667db96d56Sopenharmony_ci sys.stdout.write(str(elem)) 12677db96d56Sopenharmony_ci sys.stdout.write(', ') 12687db96d56Sopenharmony_ci print(elem[-1]) 1269