1/*** 2 This file is part of PulseAudio. 3 4 Copyright 2013 Martin Blanchard 5 6 PulseAudio is free software; you can redistribute it and/or modify 7 it under the terms of the GNU Lesser General Public License as published 8 by the Free Software Foundation; either version 2.1 of the License, 9 or (at your option) any later version. 10 11 PulseAudio is distributed in the hope that it will be useful, but 12 WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 General Public License for more details. 15 16 You should have received a copy of the GNU Lesser General Public License 17 along with PulseAudio; if not, write to the Free Software 18 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 19 USA. 20***/ 21 22#ifdef HAVE_CONFIG_H 23#include <config.h> 24#endif 25 26#include <stdlib.h> 27#include <stdint.h> 28#include <string.h> 29 30#include <openssl/err.h> 31#include <openssl/aes.h> 32#include <openssl/rsa.h> 33#include <openssl/bn.h> 34 35#include <pulse/xmalloc.h> 36 37#include <pulsecore/macro.h> 38#include <pulsecore/random.h> 39 40#include "raop-crypto.h" 41#include "raop-util.h" 42 43#define AES_CHUNK_SIZE 16 44 45/* Openssl 1.1.0 broke compatibility. Before 1.1.0 we had to set RSA->n and 46 * RSA->e manually, but after 1.1.0 the RSA struct is opaque and we have to use 47 * RSA_set0_key(). RSA_set0_key() is a new function added in 1.1.0. We could 48 * depend on openssl 1.1.0, but it may take some time before distributions will 49 * be able to upgrade to the new openssl version. To insulate ourselves from 50 * such transition problems, let's implement RSA_set0_key() ourselves if it's 51 * not available. */ 52#if OPENSSL_VERSION_NUMBER < 0x10100000L 53static int RSA_set0_key(RSA *r, BIGNUM *n, BIGNUM *e, BIGNUM *d) { 54 r->n = n; 55 r->e = e; 56 return 1; 57} 58#endif 59 60struct pa_raop_secret { 61 uint8_t key[AES_CHUNK_SIZE]; /* Key for aes-cbc */ 62 uint8_t iv[AES_CHUNK_SIZE]; /* Initialization vector for cbc */ 63 AES_KEY aes; /* AES encryption */ 64}; 65 66static const char rsa_modulus[] = 67 "59dE8qLieItsH1WgjrcFRKj6eUWqi+bGLOX1HL3U3GhC/j0Qg90u3sG/1CUtwC" 68 "5vOYvfDmFI6oSFXi5ELabWJmT2dKHzBJKa3k9ok+8t9ucRqMd6DZHJ2YCCLlDR" 69 "KSKv6kDqnw4UwPdpOMXziC/AMj3Z/lUVX1G7WSHCAWKf1zNS1eLvqr+boEjXuB" 70 "OitnZ/bDzPHrTOZz0Dew0uowxf/+sG+NCK3eQJVxqcaJ/vEHKIVd2M+5qL71yJ" 71 "Q+87X6oV3eaYvt3zWZYD6z5vYTcrtij2VZ9Zmni/UAaHqn9JdsBWLUEpVviYnh" 72 "imNVvYFZeCXg/IdTQ+x4IRdiXNv5hEew=="; 73 74static const char rsa_exponent[] = 75 "AQAB"; 76 77static int rsa_encrypt(uint8_t *data, int len, uint8_t *str) { 78 uint8_t modulus[256]; 79 uint8_t exponent[8]; 80 int size; 81 RSA *rsa; 82 BIGNUM *n_bn = NULL; 83 BIGNUM *e_bn = NULL; 84 int r; 85 86 pa_assert(data); 87 pa_assert(str); 88 89 rsa = RSA_new(); 90 if (!rsa) { 91 pa_log("RSA_new() failed."); 92 goto fail; 93 } 94 95 size = pa_raop_base64_decode(rsa_modulus, modulus); 96 97 n_bn = BN_bin2bn(modulus, size, NULL); 98 if (!n_bn) { 99 pa_log("n_bn = BN_bin2bn() failed."); 100 goto fail; 101 } 102 103 size = pa_raop_base64_decode(rsa_exponent, exponent); 104 105 e_bn = BN_bin2bn(exponent, size, NULL); 106 if (!e_bn) { 107 pa_log("e_bn = BN_bin2bn() failed."); 108 goto fail; 109 } 110 111 r = RSA_set0_key(rsa, n_bn, e_bn, NULL); 112 if (r == 0) { 113 pa_log("RSA_set0_key() failed."); 114 goto fail; 115 } 116 117 /* The memory allocated for n_bn and e_bn is now managed by the RSA object. 118 * Let's set n_bn and e_bn to NULL to avoid freeing the memory in the error 119 * handling code. */ 120 n_bn = NULL; 121 e_bn = NULL; 122 123 size = RSA_public_encrypt(len, data, str, rsa, RSA_PKCS1_OAEP_PADDING); 124 if (size == -1) { 125 pa_log("RSA_public_encrypt() failed."); 126 goto fail; 127 } 128 129 RSA_free(rsa); 130 return size; 131 132fail: 133 if (e_bn) 134 BN_free(e_bn); 135 136 if (n_bn) 137 BN_free(n_bn); 138 139 if (rsa) 140 RSA_free(rsa); 141 142 return -1; 143} 144 145pa_raop_secret* pa_raop_secret_new(void) { 146 pa_raop_secret *s = pa_xnew0(pa_raop_secret, 1); 147 148 pa_assert(s); 149 150 pa_random(s->key, sizeof(s->key)); 151 AES_set_encrypt_key(s->key, 128, &s->aes); 152 pa_random(s->iv, sizeof(s->iv)); 153 154 return s; 155} 156 157void pa_raop_secret_free(pa_raop_secret *s) { 158 pa_assert(s); 159 160 pa_xfree(s); 161} 162 163char* pa_raop_secret_get_iv(pa_raop_secret *s) { 164 char *base64_iv = NULL; 165 166 pa_assert(s); 167 168 pa_raop_base64_encode(s->iv, AES_CHUNK_SIZE, &base64_iv); 169 170 return base64_iv; 171} 172 173char* pa_raop_secret_get_key(pa_raop_secret *s) { 174 char *base64_key = NULL; 175 uint8_t rsa_key[512]; 176 int size = 0; 177 178 pa_assert(s); 179 180 /* Encrypt our AES public key to send to the device */ 181 size = rsa_encrypt(s->key, AES_CHUNK_SIZE, rsa_key); 182 if (size < 0) { 183 pa_log("rsa_encrypt() failed."); 184 return NULL; 185 } 186 187 pa_raop_base64_encode(rsa_key, size, &base64_key); 188 189 return base64_key; 190} 191 192int pa_raop_aes_encrypt(pa_raop_secret *s, uint8_t *data, int len) { 193 static uint8_t nv[AES_CHUNK_SIZE]; 194 uint8_t *buffer; 195 int i = 0, j; 196 197 pa_assert(s); 198 pa_assert(data); 199 200 memcpy(nv, s->iv, AES_CHUNK_SIZE); 201 202 while (i + AES_CHUNK_SIZE <= len) { 203 buffer = data + i; 204 for (j = 0; j < AES_CHUNK_SIZE; ++j) 205 buffer[j] ^= nv[j]; 206 207 AES_encrypt(buffer, buffer, &s->aes); 208 209 memcpy(nv, buffer, AES_CHUNK_SIZE); 210 i += AES_CHUNK_SIZE; 211 } 212 213 return i; 214} 215