153a5a1b3Sopenharmony_ci/* aec.h 253a5a1b3Sopenharmony_ci * 353a5a1b3Sopenharmony_ci * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005). 453a5a1b3Sopenharmony_ci * All Rights Reserved. 553a5a1b3Sopenharmony_ci * Author: Andre Adrian 653a5a1b3Sopenharmony_ci * 753a5a1b3Sopenharmony_ci * Acoustic Echo Cancellation Leaky NLMS-pw algorithm 853a5a1b3Sopenharmony_ci * 953a5a1b3Sopenharmony_ci * Version 0.3 filter created with www.dsptutor.freeuk.com 1053a5a1b3Sopenharmony_ci * Version 0.3.1 Allow change of stability parameter delta 1153a5a1b3Sopenharmony_ci * Version 0.4 Leaky Normalized LMS - pre whitening algorithm 1253a5a1b3Sopenharmony_ci */ 1353a5a1b3Sopenharmony_ci 1453a5a1b3Sopenharmony_ci#ifndef _AEC_H /* include only once */ 1553a5a1b3Sopenharmony_ci 1653a5a1b3Sopenharmony_ci#ifdef HAVE_CONFIG_H 1753a5a1b3Sopenharmony_ci#include <config.h> 1853a5a1b3Sopenharmony_ci#endif 1953a5a1b3Sopenharmony_ci 2053a5a1b3Sopenharmony_ci#include <pulse/gccmacro.h> 2153a5a1b3Sopenharmony_ci#include <pulse/xmalloc.h> 2253a5a1b3Sopenharmony_ci 2353a5a1b3Sopenharmony_ci#include <pulsecore/macro.h> 2453a5a1b3Sopenharmony_ci 2553a5a1b3Sopenharmony_ci#define WIDEB 2 2653a5a1b3Sopenharmony_ci 2753a5a1b3Sopenharmony_ci// use double if your CPU does software-emulation of float 2853a5a1b3Sopenharmony_ci#define REAL float 2953a5a1b3Sopenharmony_ci 3053a5a1b3Sopenharmony_ci/* dB Values */ 3153a5a1b3Sopenharmony_ci#define M0dB 1.0f 3253a5a1b3Sopenharmony_ci#define M3dB 0.71f 3353a5a1b3Sopenharmony_ci#define M6dB 0.50f 3453a5a1b3Sopenharmony_ci#define M9dB 0.35f 3553a5a1b3Sopenharmony_ci#define M12dB 0.25f 3653a5a1b3Sopenharmony_ci#define M18dB 0.125f 3753a5a1b3Sopenharmony_ci#define M24dB 0.063f 3853a5a1b3Sopenharmony_ci 3953a5a1b3Sopenharmony_ci/* dB values for 16bit PCM */ 4053a5a1b3Sopenharmony_ci/* MxdB_PCM = 32767 * 10 ^(x / 20) */ 4153a5a1b3Sopenharmony_ci#define M10dB_PCM 10362.0f 4253a5a1b3Sopenharmony_ci#define M20dB_PCM 3277.0f 4353a5a1b3Sopenharmony_ci#define M25dB_PCM 1843.0f 4453a5a1b3Sopenharmony_ci#define M30dB_PCM 1026.0f 4553a5a1b3Sopenharmony_ci#define M35dB_PCM 583.0f 4653a5a1b3Sopenharmony_ci#define M40dB_PCM 328.0f 4753a5a1b3Sopenharmony_ci#define M45dB_PCM 184.0f 4853a5a1b3Sopenharmony_ci#define M50dB_PCM 104.0f 4953a5a1b3Sopenharmony_ci#define M55dB_PCM 58.0f 5053a5a1b3Sopenharmony_ci#define M60dB_PCM 33.0f 5153a5a1b3Sopenharmony_ci#define M65dB_PCM 18.0f 5253a5a1b3Sopenharmony_ci#define M70dB_PCM 10.0f 5353a5a1b3Sopenharmony_ci#define M75dB_PCM 6.0f 5453a5a1b3Sopenharmony_ci#define M80dB_PCM 3.0f 5553a5a1b3Sopenharmony_ci#define M85dB_PCM 2.0f 5653a5a1b3Sopenharmony_ci#define M90dB_PCM 1.0f 5753a5a1b3Sopenharmony_ci 5853a5a1b3Sopenharmony_ci#define MAXPCM 32767.0f 5953a5a1b3Sopenharmony_ci 6053a5a1b3Sopenharmony_ci/* Design constants (Change to fine tune the algorithms */ 6153a5a1b3Sopenharmony_ci 6253a5a1b3Sopenharmony_ci/* The following values are for hardware AEC and studio quality 6353a5a1b3Sopenharmony_ci * microphone */ 6453a5a1b3Sopenharmony_ci 6553a5a1b3Sopenharmony_ci/* NLMS filter length in taps (samples). A longer filter length gives 6653a5a1b3Sopenharmony_ci * better Echo Cancellation, but maybe slower convergence speed and 6753a5a1b3Sopenharmony_ci * needs more CPU power (Order of NLMS is linear) */ 6853a5a1b3Sopenharmony_ci#define NLMS_LEN (100*WIDEB*8) 6953a5a1b3Sopenharmony_ci 7053a5a1b3Sopenharmony_ci/* Vector w visualization length in taps (samples). 7153a5a1b3Sopenharmony_ci * Must match argv value for wdisplay.tcl */ 7253a5a1b3Sopenharmony_ci#define DUMP_LEN (40*WIDEB*8) 7353a5a1b3Sopenharmony_ci 7453a5a1b3Sopenharmony_ci/* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal 7553a5a1b3Sopenharmony_ci * to microphone ambient Noise level */ 7653a5a1b3Sopenharmony_ci#define NoiseFloor M55dB_PCM 7753a5a1b3Sopenharmony_ci 7853a5a1b3Sopenharmony_ci/* Leaky hangover in taps. 7953a5a1b3Sopenharmony_ci */ 8053a5a1b3Sopenharmony_ci#define Thold (60 * WIDEB * 8) 8153a5a1b3Sopenharmony_ci 8253a5a1b3Sopenharmony_ci// Adrian soft decision DTD 8353a5a1b3Sopenharmony_ci// left point. X is ratio, Y is stepsize 8453a5a1b3Sopenharmony_ci#define STEPX1 1.0 8553a5a1b3Sopenharmony_ci#define STEPY1 1.0 8653a5a1b3Sopenharmony_ci// right point. STEPX2=2.0 is good double talk, 3.0 is good single talk. 8753a5a1b3Sopenharmony_ci#define STEPX2 2.5 8853a5a1b3Sopenharmony_ci#define STEPY2 0 8953a5a1b3Sopenharmony_ci#define ALPHAFAST (1.0f / 100.0f) 9053a5a1b3Sopenharmony_ci#define ALPHASLOW (1.0f / 20000.0f) 9153a5a1b3Sopenharmony_ci 9253a5a1b3Sopenharmony_ci 9353a5a1b3Sopenharmony_ci 9453a5a1b3Sopenharmony_ci/* Ageing multiplier for LMS memory vector w */ 9553a5a1b3Sopenharmony_ci#define Leaky 0.9999f 9653a5a1b3Sopenharmony_ci 9753a5a1b3Sopenharmony_ci/* Double Talk Detector Speaker/Microphone Threshold. Range <=1 9853a5a1b3Sopenharmony_ci * Large value (M0dB) is good for Single-Talk Echo cancellation, 9953a5a1b3Sopenharmony_ci * small value (M12dB) is good for Double-Talk AEC */ 10053a5a1b3Sopenharmony_ci#define GeigelThreshold M6dB 10153a5a1b3Sopenharmony_ci 10253a5a1b3Sopenharmony_ci/* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good 10353a5a1b3Sopenharmony_ci * for Double-Talk, small value (M12dB) is good for Single-Talk */ 10453a5a1b3Sopenharmony_ci#define NLPAttenuation M12dB 10553a5a1b3Sopenharmony_ci 10653a5a1b3Sopenharmony_ci/* Below this line there are no more design constants */ 10753a5a1b3Sopenharmony_ci 10853a5a1b3Sopenharmony_citypedef struct IIR_HP IIR_HP; 10953a5a1b3Sopenharmony_ci 11053a5a1b3Sopenharmony_ci/* Exponential Smoothing or IIR Infinite Impulse Response Filter */ 11153a5a1b3Sopenharmony_cistruct IIR_HP { 11253a5a1b3Sopenharmony_ci REAL x; 11353a5a1b3Sopenharmony_ci}; 11453a5a1b3Sopenharmony_ci 11553a5a1b3Sopenharmony_cistatic IIR_HP* IIR_HP_init(void) { 11653a5a1b3Sopenharmony_ci IIR_HP *i = pa_xnew(IIR_HP, 1); 11753a5a1b3Sopenharmony_ci i->x = 0.0f; 11853a5a1b3Sopenharmony_ci return i; 11953a5a1b3Sopenharmony_ci } 12053a5a1b3Sopenharmony_ci 12153a5a1b3Sopenharmony_cistatic REAL IIR_HP_highpass(IIR_HP *i, REAL in) { 12253a5a1b3Sopenharmony_ci const REAL a0 = 0.01f; /* controls Transfer Frequency */ 12353a5a1b3Sopenharmony_ci /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */ 12453a5a1b3Sopenharmony_ci i->x += a0 * (in - i->x); 12553a5a1b3Sopenharmony_ci return in - i->x; 12653a5a1b3Sopenharmony_ci } 12753a5a1b3Sopenharmony_ci 12853a5a1b3Sopenharmony_citypedef struct FIR_HP_300Hz FIR_HP_300Hz; 12953a5a1b3Sopenharmony_ci 13053a5a1b3Sopenharmony_ci#if WIDEB==1 13153a5a1b3Sopenharmony_ci/* 17 taps FIR Finite Impulse Response filter 13253a5a1b3Sopenharmony_ci * Coefficients calculated with 13353a5a1b3Sopenharmony_ci * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html 13453a5a1b3Sopenharmony_ci */ 13553a5a1b3Sopenharmony_ciclass FIR_HP_300Hz { 13653a5a1b3Sopenharmony_ci REAL z[18]; 13753a5a1b3Sopenharmony_ci 13853a5a1b3Sopenharmony_cipublic: 13953a5a1b3Sopenharmony_ci FIR_HP_300Hz() { 14053a5a1b3Sopenharmony_ci memset(this, 0, sizeof(FIR_HP_300Hz)); 14153a5a1b3Sopenharmony_ci } 14253a5a1b3Sopenharmony_ci 14353a5a1b3Sopenharmony_ci REAL highpass(REAL in) { 14453a5a1b3Sopenharmony_ci const REAL a[18] = { 14553a5a1b3Sopenharmony_ci // Kaiser Window FIR Filter, Filter type: High pass 14653a5a1b3Sopenharmony_ci // Passband: 300.0 - 4000.0 Hz, Order: 16 14753a5a1b3Sopenharmony_ci // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB 14853a5a1b3Sopenharmony_ci -0.034870606, -0.039650206, -0.044063766, -0.04800318, 14953a5a1b3Sopenharmony_ci -0.051370874, -0.054082647, -0.056070227, -0.057283327, 15053a5a1b3Sopenharmony_ci 0.8214126, -0.057283327, -0.056070227, -0.054082647, 15153a5a1b3Sopenharmony_ci -0.051370874, -0.04800318, -0.044063766, -0.039650206, 15253a5a1b3Sopenharmony_ci -0.034870606, 0.0 15353a5a1b3Sopenharmony_ci }; 15453a5a1b3Sopenharmony_ci memmove(z + 1, z, 17 * sizeof(REAL)); 15553a5a1b3Sopenharmony_ci z[0] = in; 15653a5a1b3Sopenharmony_ci REAL sum0 = 0.0, sum1 = 0.0; 15753a5a1b3Sopenharmony_ci int j; 15853a5a1b3Sopenharmony_ci 15953a5a1b3Sopenharmony_ci for (j = 0; j < 18; j += 2) { 16053a5a1b3Sopenharmony_ci // optimize: partial loop unrolling 16153a5a1b3Sopenharmony_ci sum0 += a[j] * z[j]; 16253a5a1b3Sopenharmony_ci sum1 += a[j + 1] * z[j + 1]; 16353a5a1b3Sopenharmony_ci } 16453a5a1b3Sopenharmony_ci return sum0 + sum1; 16553a5a1b3Sopenharmony_ci } 16653a5a1b3Sopenharmony_ci}; 16753a5a1b3Sopenharmony_ci 16853a5a1b3Sopenharmony_ci#else 16953a5a1b3Sopenharmony_ci 17053a5a1b3Sopenharmony_ci/* 35 taps FIR Finite Impulse Response filter 17153a5a1b3Sopenharmony_ci * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz 17253a5a1b3Sopenharmony_ci * sample rate. 17353a5a1b3Sopenharmony_ci * Coefficients calculated with 17453a5a1b3Sopenharmony_ci * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html 17553a5a1b3Sopenharmony_ci */ 17653a5a1b3Sopenharmony_cistruct FIR_HP_300Hz { 17753a5a1b3Sopenharmony_ci REAL z[36]; 17853a5a1b3Sopenharmony_ci}; 17953a5a1b3Sopenharmony_ci 18053a5a1b3Sopenharmony_cistatic FIR_HP_300Hz* FIR_HP_300Hz_init(void) { 18153a5a1b3Sopenharmony_ci FIR_HP_300Hz *ret = pa_xnew(FIR_HP_300Hz, 1); 18253a5a1b3Sopenharmony_ci memset(ret, 0, sizeof(FIR_HP_300Hz)); 18353a5a1b3Sopenharmony_ci return ret; 18453a5a1b3Sopenharmony_ci } 18553a5a1b3Sopenharmony_ci 18653a5a1b3Sopenharmony_cistatic REAL FIR_HP_300Hz_highpass(FIR_HP_300Hz *f, REAL in) { 18753a5a1b3Sopenharmony_ci REAL sum0 = 0.0, sum1 = 0.0; 18853a5a1b3Sopenharmony_ci int j; 18953a5a1b3Sopenharmony_ci const REAL a[36] = { 19053a5a1b3Sopenharmony_ci // Kaiser Window FIR Filter, Filter type: High pass 19153a5a1b3Sopenharmony_ci // Passband: 150.0 - 4000.0 Hz, Order: 34 19253a5a1b3Sopenharmony_ci // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB 19353a5a1b3Sopenharmony_ci -0.016165324, -0.017454365, -0.01871232, -0.019931411, 19453a5a1b3Sopenharmony_ci -0.021104068, -0.022222936, -0.02328091, -0.024271343, 19553a5a1b3Sopenharmony_ci -0.025187887, -0.02602462, -0.026776174, -0.027437767, 19653a5a1b3Sopenharmony_ci -0.028004972, -0.028474221, -0.028842418, -0.029107114, 19753a5a1b3Sopenharmony_ci -0.02926664, 0.8524841, -0.02926664, -0.029107114, 19853a5a1b3Sopenharmony_ci -0.028842418, -0.028474221, -0.028004972, -0.027437767, 19953a5a1b3Sopenharmony_ci -0.026776174, -0.02602462, -0.025187887, -0.024271343, 20053a5a1b3Sopenharmony_ci -0.02328091, -0.022222936, -0.021104068, -0.019931411, 20153a5a1b3Sopenharmony_ci -0.01871232, -0.017454365, -0.016165324, 0.0 20253a5a1b3Sopenharmony_ci }; 20353a5a1b3Sopenharmony_ci memmove(f->z + 1, f->z, 35 * sizeof(REAL)); 20453a5a1b3Sopenharmony_ci f->z[0] = in; 20553a5a1b3Sopenharmony_ci 20653a5a1b3Sopenharmony_ci for (j = 0; j < 36; j += 2) { 20753a5a1b3Sopenharmony_ci // optimize: partial loop unrolling 20853a5a1b3Sopenharmony_ci sum0 += a[j] * f->z[j]; 20953a5a1b3Sopenharmony_ci sum1 += a[j + 1] * f->z[j + 1]; 21053a5a1b3Sopenharmony_ci } 21153a5a1b3Sopenharmony_ci return sum0 + sum1; 21253a5a1b3Sopenharmony_ci } 21353a5a1b3Sopenharmony_ci#endif 21453a5a1b3Sopenharmony_ci 21553a5a1b3Sopenharmony_citypedef struct IIR1 IIR1; 21653a5a1b3Sopenharmony_ci 21753a5a1b3Sopenharmony_ci/* Recursive single pole IIR Infinite Impulse response High-pass filter 21853a5a1b3Sopenharmony_ci * 21953a5a1b3Sopenharmony_ci * Reference: The Scientist and Engineer's Guide to Digital Processing 22053a5a1b3Sopenharmony_ci * 22153a5a1b3Sopenharmony_ci * output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1] 22253a5a1b3Sopenharmony_ci * 22353a5a1b3Sopenharmony_ci * X = exp(-2.0 * pi * Fc) 22453a5a1b3Sopenharmony_ci * A0 = (1 + X) / 2 22553a5a1b3Sopenharmony_ci * A1 = -(1 + X) / 2 22653a5a1b3Sopenharmony_ci * B1 = X 22753a5a1b3Sopenharmony_ci * Fc = cutoff freq / sample rate 22853a5a1b3Sopenharmony_ci */ 22953a5a1b3Sopenharmony_cistruct IIR1 { 23053a5a1b3Sopenharmony_ci REAL in0, out0; 23153a5a1b3Sopenharmony_ci REAL a0, a1, b1; 23253a5a1b3Sopenharmony_ci}; 23353a5a1b3Sopenharmony_ci 23453a5a1b3Sopenharmony_ci#if 0 23553a5a1b3Sopenharmony_ci IIR1() { 23653a5a1b3Sopenharmony_ci memset(this, 0, sizeof(IIR1)); 23753a5a1b3Sopenharmony_ci } 23853a5a1b3Sopenharmony_ci#endif 23953a5a1b3Sopenharmony_ci 24053a5a1b3Sopenharmony_cistatic IIR1* IIR1_init(REAL Fc) { 24153a5a1b3Sopenharmony_ci IIR1 *i = pa_xnew(IIR1, 1); 24253a5a1b3Sopenharmony_ci i->b1 = expf(-2.0f * M_PI * Fc); 24353a5a1b3Sopenharmony_ci i->a0 = (1.0f + i->b1) / 2.0f; 24453a5a1b3Sopenharmony_ci i->a1 = -(i->a0); 24553a5a1b3Sopenharmony_ci i->in0 = 0.0f; 24653a5a1b3Sopenharmony_ci i->out0 = 0.0f; 24753a5a1b3Sopenharmony_ci return i; 24853a5a1b3Sopenharmony_ci } 24953a5a1b3Sopenharmony_ci 25053a5a1b3Sopenharmony_cistatic REAL IIR1_highpass(IIR1 *i, REAL in) { 25153a5a1b3Sopenharmony_ci REAL out = i->a0 * in + i->a1 * i->in0 + i->b1 * i->out0; 25253a5a1b3Sopenharmony_ci i->in0 = in; 25353a5a1b3Sopenharmony_ci i->out0 = out; 25453a5a1b3Sopenharmony_ci return out; 25553a5a1b3Sopenharmony_ci } 25653a5a1b3Sopenharmony_ci 25753a5a1b3Sopenharmony_ci 25853a5a1b3Sopenharmony_ci#if 0 25953a5a1b3Sopenharmony_ci/* Recursive two pole IIR Infinite Impulse Response filter 26053a5a1b3Sopenharmony_ci * Coefficients calculated with 26153a5a1b3Sopenharmony_ci * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html 26253a5a1b3Sopenharmony_ci */ 26353a5a1b3Sopenharmony_ciclass IIR2 { 26453a5a1b3Sopenharmony_ci REAL x[2], y[2]; 26553a5a1b3Sopenharmony_ci 26653a5a1b3Sopenharmony_cipublic: 26753a5a1b3Sopenharmony_ci IIR2() { 26853a5a1b3Sopenharmony_ci memset(this, 0, sizeof(IIR2)); 26953a5a1b3Sopenharmony_ci } 27053a5a1b3Sopenharmony_ci 27153a5a1b3Sopenharmony_ci REAL highpass(REAL in) { 27253a5a1b3Sopenharmony_ci // Butterworth IIR filter, Filter type: HP 27353a5a1b3Sopenharmony_ci // Passband: 2000 - 4000.0 Hz, Order: 2 27453a5a1b3Sopenharmony_ci const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f }; 27553a5a1b3Sopenharmony_ci const REAL b[] = { 1.3007072E-16f, 0.17157288f }; 27653a5a1b3Sopenharmony_ci REAL out = 27753a5a1b3Sopenharmony_ci a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1]; 27853a5a1b3Sopenharmony_ci 27953a5a1b3Sopenharmony_ci x[1] = x[0]; 28053a5a1b3Sopenharmony_ci x[0] = in; 28153a5a1b3Sopenharmony_ci y[1] = y[0]; 28253a5a1b3Sopenharmony_ci y[0] = out; 28353a5a1b3Sopenharmony_ci return out; 28453a5a1b3Sopenharmony_ci } 28553a5a1b3Sopenharmony_ci}; 28653a5a1b3Sopenharmony_ci#endif 28753a5a1b3Sopenharmony_ci 28853a5a1b3Sopenharmony_ci 28953a5a1b3Sopenharmony_ci// Extension in taps to reduce mem copies 29053a5a1b3Sopenharmony_ci#define NLMS_EXT (10*8) 29153a5a1b3Sopenharmony_ci 29253a5a1b3Sopenharmony_ci// block size in taps to optimize DTD calculation 29353a5a1b3Sopenharmony_ci#define DTD_LEN 16 29453a5a1b3Sopenharmony_ci 29553a5a1b3Sopenharmony_citypedef struct AEC AEC; 29653a5a1b3Sopenharmony_ci 29753a5a1b3Sopenharmony_cistruct AEC { 29853a5a1b3Sopenharmony_ci // Time domain Filters 29953a5a1b3Sopenharmony_ci IIR_HP *acMic, *acSpk; // DC-level remove Highpass) 30053a5a1b3Sopenharmony_ci FIR_HP_300Hz *cutoff; // 150Hz cut-off Highpass 30153a5a1b3Sopenharmony_ci REAL gain; // Mic signal amplify 30253a5a1b3Sopenharmony_ci IIR1 *Fx, *Fe; // pre-whitening Highpass for x, e 30353a5a1b3Sopenharmony_ci 30453a5a1b3Sopenharmony_ci // Adrian soft decision DTD (Double Talk Detector) 30553a5a1b3Sopenharmony_ci REAL dfast, xfast; 30653a5a1b3Sopenharmony_ci REAL dslow, xslow; 30753a5a1b3Sopenharmony_ci 30853a5a1b3Sopenharmony_ci // NLMS-pw 30953a5a1b3Sopenharmony_ci REAL x[NLMS_LEN + NLMS_EXT]; // tap delayed loudspeaker signal 31053a5a1b3Sopenharmony_ci REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal 31153a5a1b3Sopenharmony_ci REAL w_arr[NLMS_LEN + (16 / sizeof(REAL))]; // tap weights 31253a5a1b3Sopenharmony_ci REAL *w; // this will be a 16-byte aligned pointer into w_arr 31353a5a1b3Sopenharmony_ci int j; // optimize: less memory copies 31453a5a1b3Sopenharmony_ci double dotp_xf_xf; // double to avoid loss of precision 31553a5a1b3Sopenharmony_ci float delta; // noise floor to stabilize NLMS 31653a5a1b3Sopenharmony_ci 31753a5a1b3Sopenharmony_ci // AES 31853a5a1b3Sopenharmony_ci float aes_y2; // not in use! 31953a5a1b3Sopenharmony_ci 32053a5a1b3Sopenharmony_ci // w vector visualization 32153a5a1b3Sopenharmony_ci REAL ws[DUMP_LEN]; // tap weights sums 32253a5a1b3Sopenharmony_ci int fdwdisplay; // TCP file descriptor 32353a5a1b3Sopenharmony_ci int dumpcnt; // wdisplay output counter 32453a5a1b3Sopenharmony_ci 32553a5a1b3Sopenharmony_ci // variables are public for visualization 32653a5a1b3Sopenharmony_ci int hangover; 32753a5a1b3Sopenharmony_ci float stepsize; 32853a5a1b3Sopenharmony_ci 32953a5a1b3Sopenharmony_ci // vfuncs that are picked based on processor features available 33053a5a1b3Sopenharmony_ci REAL (*dotp) (REAL[], REAL[]); 33153a5a1b3Sopenharmony_ci}; 33253a5a1b3Sopenharmony_ci 33353a5a1b3Sopenharmony_ci/* Double-Talk Detector 33453a5a1b3Sopenharmony_ci * 33553a5a1b3Sopenharmony_ci * in d: microphone sample (PCM as REALing point value) 33653a5a1b3Sopenharmony_ci * in x: loudspeaker sample (PCM as REALing point value) 33753a5a1b3Sopenharmony_ci * return: from 0 for doubletalk to 1.0 for single talk 33853a5a1b3Sopenharmony_ci */ 33953a5a1b3Sopenharmony_cistatic float AEC_dtd(AEC *a, REAL d, REAL x); 34053a5a1b3Sopenharmony_ci 34153a5a1b3Sopenharmony_cistatic void AEC_leaky(AEC *a); 34253a5a1b3Sopenharmony_ci 34353a5a1b3Sopenharmony_ci/* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw) 34453a5a1b3Sopenharmony_ci * The LMS algorithm was developed by Bernard Widrow 34553a5a1b3Sopenharmony_ci * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002 34653a5a1b3Sopenharmony_ci * 34753a5a1b3Sopenharmony_ci * in d: microphone sample (16bit PCM value) 34853a5a1b3Sopenharmony_ci * in x_: loudspeaker sample (16bit PCM value) 34953a5a1b3Sopenharmony_ci * in stepsize: NLMS adaptation variable 35053a5a1b3Sopenharmony_ci * return: echo cancelled microphone sample 35153a5a1b3Sopenharmony_ci */ 35253a5a1b3Sopenharmony_cistatic REAL AEC_nlms_pw(AEC *a, REAL d, REAL x_, float stepsize); 35353a5a1b3Sopenharmony_ci 35453a5a1b3Sopenharmony_ciAEC* AEC_init(int RATE, int have_vector); 35553a5a1b3Sopenharmony_civoid AEC_done(AEC *a); 35653a5a1b3Sopenharmony_ci 35753a5a1b3Sopenharmony_ci/* Acoustic Echo Cancellation and Suppression of one sample 35853a5a1b3Sopenharmony_ci * in d: microphone signal with echo 35953a5a1b3Sopenharmony_ci * in x: loudspeaker signal 36053a5a1b3Sopenharmony_ci * return: echo cancelled microphone signal 36153a5a1b3Sopenharmony_ci */ 36253a5a1b3Sopenharmony_ci int AEC_doAEC(AEC *a, int d_, int x_); 36353a5a1b3Sopenharmony_ci 36453a5a1b3Sopenharmony_ciPA_GCC_UNUSED static float AEC_getambient(AEC *a) { 36553a5a1b3Sopenharmony_ci return a->dfast; 36653a5a1b3Sopenharmony_ci } 36753a5a1b3Sopenharmony_cistatic void AEC_setambient(AEC *a, float Min_xf) { 36853a5a1b3Sopenharmony_ci a->dotp_xf_xf -= a->delta; // subtract old delta 36953a5a1b3Sopenharmony_ci a->delta = (NLMS_LEN-1) * Min_xf * Min_xf; 37053a5a1b3Sopenharmony_ci a->dotp_xf_xf += a->delta; // add new delta 37153a5a1b3Sopenharmony_ci } 37253a5a1b3Sopenharmony_ciPA_GCC_UNUSED static void AEC_setgain(AEC *a, float gain_) { 37353a5a1b3Sopenharmony_ci a->gain = gain_; 37453a5a1b3Sopenharmony_ci } 37553a5a1b3Sopenharmony_ci#if 0 37653a5a1b3Sopenharmony_ci void AEC_openwdisplay(AEC *a); 37753a5a1b3Sopenharmony_ci#endif 37853a5a1b3Sopenharmony_ciPA_GCC_UNUSED static void AEC_setaes(AEC *a, float aes_y2_) { 37953a5a1b3Sopenharmony_ci a->aes_y2 = aes_y2_; 38053a5a1b3Sopenharmony_ci } 38153a5a1b3Sopenharmony_ci 38253a5a1b3Sopenharmony_ci#define _AEC_H 38353a5a1b3Sopenharmony_ci#endif 384