153a5a1b3Sopenharmony_ci/* aec.h
253a5a1b3Sopenharmony_ci *
353a5a1b3Sopenharmony_ci * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005).
453a5a1b3Sopenharmony_ci * All Rights Reserved.
553a5a1b3Sopenharmony_ci * Author: Andre Adrian
653a5a1b3Sopenharmony_ci *
753a5a1b3Sopenharmony_ci * Acoustic Echo Cancellation Leaky NLMS-pw algorithm
853a5a1b3Sopenharmony_ci *
953a5a1b3Sopenharmony_ci * Version 0.3 filter created with www.dsptutor.freeuk.com
1053a5a1b3Sopenharmony_ci * Version 0.3.1 Allow change of stability parameter delta
1153a5a1b3Sopenharmony_ci * Version 0.4 Leaky Normalized LMS - pre whitening algorithm
1253a5a1b3Sopenharmony_ci */
1353a5a1b3Sopenharmony_ci
1453a5a1b3Sopenharmony_ci#ifndef _AEC_H                  /* include only once */
1553a5a1b3Sopenharmony_ci
1653a5a1b3Sopenharmony_ci#ifdef HAVE_CONFIG_H
1753a5a1b3Sopenharmony_ci#include <config.h>
1853a5a1b3Sopenharmony_ci#endif
1953a5a1b3Sopenharmony_ci
2053a5a1b3Sopenharmony_ci#include <pulse/gccmacro.h>
2153a5a1b3Sopenharmony_ci#include <pulse/xmalloc.h>
2253a5a1b3Sopenharmony_ci
2353a5a1b3Sopenharmony_ci#include <pulsecore/macro.h>
2453a5a1b3Sopenharmony_ci
2553a5a1b3Sopenharmony_ci#define WIDEB 2
2653a5a1b3Sopenharmony_ci
2753a5a1b3Sopenharmony_ci// use double if your CPU does software-emulation of float
2853a5a1b3Sopenharmony_ci#define REAL float
2953a5a1b3Sopenharmony_ci
3053a5a1b3Sopenharmony_ci/* dB Values */
3153a5a1b3Sopenharmony_ci#define M0dB 1.0f
3253a5a1b3Sopenharmony_ci#define M3dB 0.71f
3353a5a1b3Sopenharmony_ci#define M6dB 0.50f
3453a5a1b3Sopenharmony_ci#define M9dB 0.35f
3553a5a1b3Sopenharmony_ci#define M12dB 0.25f
3653a5a1b3Sopenharmony_ci#define M18dB 0.125f
3753a5a1b3Sopenharmony_ci#define M24dB 0.063f
3853a5a1b3Sopenharmony_ci
3953a5a1b3Sopenharmony_ci/* dB values for 16bit PCM */
4053a5a1b3Sopenharmony_ci/* MxdB_PCM = 32767 * 10 ^(x / 20) */
4153a5a1b3Sopenharmony_ci#define M10dB_PCM 10362.0f
4253a5a1b3Sopenharmony_ci#define M20dB_PCM 3277.0f
4353a5a1b3Sopenharmony_ci#define M25dB_PCM 1843.0f
4453a5a1b3Sopenharmony_ci#define M30dB_PCM 1026.0f
4553a5a1b3Sopenharmony_ci#define M35dB_PCM 583.0f
4653a5a1b3Sopenharmony_ci#define M40dB_PCM 328.0f
4753a5a1b3Sopenharmony_ci#define M45dB_PCM 184.0f
4853a5a1b3Sopenharmony_ci#define M50dB_PCM 104.0f
4953a5a1b3Sopenharmony_ci#define M55dB_PCM 58.0f
5053a5a1b3Sopenharmony_ci#define M60dB_PCM 33.0f
5153a5a1b3Sopenharmony_ci#define M65dB_PCM 18.0f
5253a5a1b3Sopenharmony_ci#define M70dB_PCM 10.0f
5353a5a1b3Sopenharmony_ci#define M75dB_PCM 6.0f
5453a5a1b3Sopenharmony_ci#define M80dB_PCM 3.0f
5553a5a1b3Sopenharmony_ci#define M85dB_PCM 2.0f
5653a5a1b3Sopenharmony_ci#define M90dB_PCM 1.0f
5753a5a1b3Sopenharmony_ci
5853a5a1b3Sopenharmony_ci#define MAXPCM 32767.0f
5953a5a1b3Sopenharmony_ci
6053a5a1b3Sopenharmony_ci/* Design constants (Change to fine tune the algorithms */
6153a5a1b3Sopenharmony_ci
6253a5a1b3Sopenharmony_ci/* The following values are for hardware AEC and studio quality
6353a5a1b3Sopenharmony_ci * microphone */
6453a5a1b3Sopenharmony_ci
6553a5a1b3Sopenharmony_ci/* NLMS filter length in taps (samples). A longer filter length gives
6653a5a1b3Sopenharmony_ci * better Echo Cancellation, but maybe slower convergence speed and
6753a5a1b3Sopenharmony_ci * needs more CPU power (Order of NLMS is linear) */
6853a5a1b3Sopenharmony_ci#define NLMS_LEN  (100*WIDEB*8)
6953a5a1b3Sopenharmony_ci
7053a5a1b3Sopenharmony_ci/* Vector w visualization length in taps (samples).
7153a5a1b3Sopenharmony_ci * Must match argv value for wdisplay.tcl */
7253a5a1b3Sopenharmony_ci#define DUMP_LEN  (40*WIDEB*8)
7353a5a1b3Sopenharmony_ci
7453a5a1b3Sopenharmony_ci/* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal
7553a5a1b3Sopenharmony_ci * to microphone ambient Noise level */
7653a5a1b3Sopenharmony_ci#define NoiseFloor M55dB_PCM
7753a5a1b3Sopenharmony_ci
7853a5a1b3Sopenharmony_ci/* Leaky hangover in taps.
7953a5a1b3Sopenharmony_ci */
8053a5a1b3Sopenharmony_ci#define Thold (60 * WIDEB * 8)
8153a5a1b3Sopenharmony_ci
8253a5a1b3Sopenharmony_ci// Adrian soft decision DTD
8353a5a1b3Sopenharmony_ci// left point. X is ratio, Y is stepsize
8453a5a1b3Sopenharmony_ci#define STEPX1 1.0
8553a5a1b3Sopenharmony_ci#define STEPY1 1.0
8653a5a1b3Sopenharmony_ci// right point. STEPX2=2.0 is good double talk, 3.0 is good single talk.
8753a5a1b3Sopenharmony_ci#define STEPX2 2.5
8853a5a1b3Sopenharmony_ci#define STEPY2 0
8953a5a1b3Sopenharmony_ci#define ALPHAFAST (1.0f / 100.0f)
9053a5a1b3Sopenharmony_ci#define ALPHASLOW (1.0f / 20000.0f)
9153a5a1b3Sopenharmony_ci
9253a5a1b3Sopenharmony_ci
9353a5a1b3Sopenharmony_ci
9453a5a1b3Sopenharmony_ci/* Ageing multiplier for LMS memory vector w */
9553a5a1b3Sopenharmony_ci#define Leaky 0.9999f
9653a5a1b3Sopenharmony_ci
9753a5a1b3Sopenharmony_ci/* Double Talk Detector Speaker/Microphone Threshold. Range <=1
9853a5a1b3Sopenharmony_ci * Large value (M0dB) is good for Single-Talk Echo cancellation,
9953a5a1b3Sopenharmony_ci * small value (M12dB) is good for Double-Talk AEC */
10053a5a1b3Sopenharmony_ci#define GeigelThreshold M6dB
10153a5a1b3Sopenharmony_ci
10253a5a1b3Sopenharmony_ci/* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good
10353a5a1b3Sopenharmony_ci * for Double-Talk, small value (M12dB) is good for Single-Talk */
10453a5a1b3Sopenharmony_ci#define NLPAttenuation M12dB
10553a5a1b3Sopenharmony_ci
10653a5a1b3Sopenharmony_ci/* Below this line there are no more design constants */
10753a5a1b3Sopenharmony_ci
10853a5a1b3Sopenharmony_citypedef struct IIR_HP IIR_HP;
10953a5a1b3Sopenharmony_ci
11053a5a1b3Sopenharmony_ci/* Exponential Smoothing or IIR Infinite Impulse Response Filter */
11153a5a1b3Sopenharmony_cistruct IIR_HP {
11253a5a1b3Sopenharmony_ci  REAL x;
11353a5a1b3Sopenharmony_ci};
11453a5a1b3Sopenharmony_ci
11553a5a1b3Sopenharmony_cistatic  IIR_HP* IIR_HP_init(void) {
11653a5a1b3Sopenharmony_ci    IIR_HP *i = pa_xnew(IIR_HP, 1);
11753a5a1b3Sopenharmony_ci    i->x = 0.0f;
11853a5a1b3Sopenharmony_ci    return i;
11953a5a1b3Sopenharmony_ci  }
12053a5a1b3Sopenharmony_ci
12153a5a1b3Sopenharmony_cistatic  REAL IIR_HP_highpass(IIR_HP *i, REAL in) {
12253a5a1b3Sopenharmony_ci    const REAL a0 = 0.01f;      /* controls Transfer Frequency */
12353a5a1b3Sopenharmony_ci    /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */
12453a5a1b3Sopenharmony_ci    i->x += a0 * (in - i->x);
12553a5a1b3Sopenharmony_ci    return in - i->x;
12653a5a1b3Sopenharmony_ci  }
12753a5a1b3Sopenharmony_ci
12853a5a1b3Sopenharmony_citypedef struct FIR_HP_300Hz FIR_HP_300Hz;
12953a5a1b3Sopenharmony_ci
13053a5a1b3Sopenharmony_ci#if WIDEB==1
13153a5a1b3Sopenharmony_ci/* 17 taps FIR Finite Impulse Response filter
13253a5a1b3Sopenharmony_ci * Coefficients calculated with
13353a5a1b3Sopenharmony_ci * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
13453a5a1b3Sopenharmony_ci */
13553a5a1b3Sopenharmony_ciclass FIR_HP_300Hz {
13653a5a1b3Sopenharmony_ci  REAL z[18];
13753a5a1b3Sopenharmony_ci
13853a5a1b3Sopenharmony_cipublic:
13953a5a1b3Sopenharmony_ci   FIR_HP_300Hz() {
14053a5a1b3Sopenharmony_ci    memset(this, 0, sizeof(FIR_HP_300Hz));
14153a5a1b3Sopenharmony_ci  }
14253a5a1b3Sopenharmony_ci
14353a5a1b3Sopenharmony_ci  REAL highpass(REAL in) {
14453a5a1b3Sopenharmony_ci    const REAL a[18] = {
14553a5a1b3Sopenharmony_ci    // Kaiser Window FIR Filter, Filter type: High pass
14653a5a1b3Sopenharmony_ci    // Passband: 300.0 - 4000.0 Hz, Order: 16
14753a5a1b3Sopenharmony_ci    // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB
14853a5a1b3Sopenharmony_ci    -0.034870606, -0.039650206, -0.044063766, -0.04800318,
14953a5a1b3Sopenharmony_ci    -0.051370874, -0.054082647, -0.056070227, -0.057283327,
15053a5a1b3Sopenharmony_ci    0.8214126, -0.057283327, -0.056070227, -0.054082647,
15153a5a1b3Sopenharmony_ci    -0.051370874, -0.04800318, -0.044063766, -0.039650206,
15253a5a1b3Sopenharmony_ci    -0.034870606, 0.0
15353a5a1b3Sopenharmony_ci    };
15453a5a1b3Sopenharmony_ci    memmove(z + 1, z, 17 * sizeof(REAL));
15553a5a1b3Sopenharmony_ci    z[0] = in;
15653a5a1b3Sopenharmony_ci    REAL sum0 = 0.0, sum1 = 0.0;
15753a5a1b3Sopenharmony_ci    int j;
15853a5a1b3Sopenharmony_ci
15953a5a1b3Sopenharmony_ci    for (j = 0; j < 18; j += 2) {
16053a5a1b3Sopenharmony_ci      // optimize: partial loop unrolling
16153a5a1b3Sopenharmony_ci      sum0 += a[j] * z[j];
16253a5a1b3Sopenharmony_ci      sum1 += a[j + 1] * z[j + 1];
16353a5a1b3Sopenharmony_ci    }
16453a5a1b3Sopenharmony_ci    return sum0 + sum1;
16553a5a1b3Sopenharmony_ci  }
16653a5a1b3Sopenharmony_ci};
16753a5a1b3Sopenharmony_ci
16853a5a1b3Sopenharmony_ci#else
16953a5a1b3Sopenharmony_ci
17053a5a1b3Sopenharmony_ci/* 35 taps FIR Finite Impulse Response filter
17153a5a1b3Sopenharmony_ci * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz
17253a5a1b3Sopenharmony_ci * sample rate.
17353a5a1b3Sopenharmony_ci * Coefficients calculated with
17453a5a1b3Sopenharmony_ci * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
17553a5a1b3Sopenharmony_ci */
17653a5a1b3Sopenharmony_cistruct FIR_HP_300Hz {
17753a5a1b3Sopenharmony_ci  REAL z[36];
17853a5a1b3Sopenharmony_ci};
17953a5a1b3Sopenharmony_ci
18053a5a1b3Sopenharmony_cistatic  FIR_HP_300Hz* FIR_HP_300Hz_init(void) {
18153a5a1b3Sopenharmony_ci    FIR_HP_300Hz *ret = pa_xnew(FIR_HP_300Hz, 1);
18253a5a1b3Sopenharmony_ci    memset(ret, 0, sizeof(FIR_HP_300Hz));
18353a5a1b3Sopenharmony_ci    return ret;
18453a5a1b3Sopenharmony_ci  }
18553a5a1b3Sopenharmony_ci
18653a5a1b3Sopenharmony_cistatic  REAL FIR_HP_300Hz_highpass(FIR_HP_300Hz *f, REAL in) {
18753a5a1b3Sopenharmony_ci    REAL sum0 = 0.0, sum1 = 0.0;
18853a5a1b3Sopenharmony_ci    int j;
18953a5a1b3Sopenharmony_ci    const REAL a[36] = {
19053a5a1b3Sopenharmony_ci      // Kaiser Window FIR Filter, Filter type: High pass
19153a5a1b3Sopenharmony_ci      // Passband: 150.0 - 4000.0 Hz, Order: 34
19253a5a1b3Sopenharmony_ci      // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB
19353a5a1b3Sopenharmony_ci      -0.016165324, -0.017454365, -0.01871232, -0.019931411,
19453a5a1b3Sopenharmony_ci      -0.021104068, -0.022222936, -0.02328091, -0.024271343,
19553a5a1b3Sopenharmony_ci      -0.025187887, -0.02602462, -0.026776174, -0.027437767,
19653a5a1b3Sopenharmony_ci      -0.028004972, -0.028474221, -0.028842418, -0.029107114,
19753a5a1b3Sopenharmony_ci      -0.02926664, 0.8524841, -0.02926664, -0.029107114,
19853a5a1b3Sopenharmony_ci      -0.028842418, -0.028474221, -0.028004972, -0.027437767,
19953a5a1b3Sopenharmony_ci      -0.026776174, -0.02602462, -0.025187887, -0.024271343,
20053a5a1b3Sopenharmony_ci      -0.02328091, -0.022222936, -0.021104068, -0.019931411,
20153a5a1b3Sopenharmony_ci      -0.01871232, -0.017454365, -0.016165324, 0.0
20253a5a1b3Sopenharmony_ci    };
20353a5a1b3Sopenharmony_ci    memmove(f->z + 1, f->z, 35 * sizeof(REAL));
20453a5a1b3Sopenharmony_ci    f->z[0] = in;
20553a5a1b3Sopenharmony_ci
20653a5a1b3Sopenharmony_ci    for (j = 0; j < 36; j += 2) {
20753a5a1b3Sopenharmony_ci      // optimize: partial loop unrolling
20853a5a1b3Sopenharmony_ci      sum0 += a[j] * f->z[j];
20953a5a1b3Sopenharmony_ci      sum1 += a[j + 1] * f->z[j + 1];
21053a5a1b3Sopenharmony_ci    }
21153a5a1b3Sopenharmony_ci    return sum0 + sum1;
21253a5a1b3Sopenharmony_ci  }
21353a5a1b3Sopenharmony_ci#endif
21453a5a1b3Sopenharmony_ci
21553a5a1b3Sopenharmony_citypedef struct IIR1 IIR1;
21653a5a1b3Sopenharmony_ci
21753a5a1b3Sopenharmony_ci/* Recursive single pole IIR Infinite Impulse response High-pass filter
21853a5a1b3Sopenharmony_ci *
21953a5a1b3Sopenharmony_ci * Reference: The Scientist and Engineer's Guide to Digital Processing
22053a5a1b3Sopenharmony_ci *
22153a5a1b3Sopenharmony_ci * 	output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
22253a5a1b3Sopenharmony_ci *
22353a5a1b3Sopenharmony_ci *      X  = exp(-2.0 * pi * Fc)
22453a5a1b3Sopenharmony_ci *      A0 = (1 + X) / 2
22553a5a1b3Sopenharmony_ci *      A1 = -(1 + X) / 2
22653a5a1b3Sopenharmony_ci *      B1 = X
22753a5a1b3Sopenharmony_ci *      Fc = cutoff freq / sample rate
22853a5a1b3Sopenharmony_ci */
22953a5a1b3Sopenharmony_cistruct IIR1 {
23053a5a1b3Sopenharmony_ci  REAL in0, out0;
23153a5a1b3Sopenharmony_ci  REAL a0, a1, b1;
23253a5a1b3Sopenharmony_ci};
23353a5a1b3Sopenharmony_ci
23453a5a1b3Sopenharmony_ci#if 0
23553a5a1b3Sopenharmony_ci  IIR1() {
23653a5a1b3Sopenharmony_ci    memset(this, 0, sizeof(IIR1));
23753a5a1b3Sopenharmony_ci  }
23853a5a1b3Sopenharmony_ci#endif
23953a5a1b3Sopenharmony_ci
24053a5a1b3Sopenharmony_cistatic  IIR1* IIR1_init(REAL Fc) {
24153a5a1b3Sopenharmony_ci    IIR1 *i = pa_xnew(IIR1, 1);
24253a5a1b3Sopenharmony_ci    i->b1 = expf(-2.0f * M_PI * Fc);
24353a5a1b3Sopenharmony_ci    i->a0 = (1.0f + i->b1) / 2.0f;
24453a5a1b3Sopenharmony_ci    i->a1 = -(i->a0);
24553a5a1b3Sopenharmony_ci    i->in0 = 0.0f;
24653a5a1b3Sopenharmony_ci    i->out0 = 0.0f;
24753a5a1b3Sopenharmony_ci    return i;
24853a5a1b3Sopenharmony_ci  }
24953a5a1b3Sopenharmony_ci
25053a5a1b3Sopenharmony_cistatic  REAL IIR1_highpass(IIR1 *i, REAL in) {
25153a5a1b3Sopenharmony_ci    REAL out = i->a0 * in + i->a1 * i->in0 + i->b1 * i->out0;
25253a5a1b3Sopenharmony_ci    i->in0 = in;
25353a5a1b3Sopenharmony_ci    i->out0 = out;
25453a5a1b3Sopenharmony_ci    return out;
25553a5a1b3Sopenharmony_ci  }
25653a5a1b3Sopenharmony_ci
25753a5a1b3Sopenharmony_ci
25853a5a1b3Sopenharmony_ci#if 0
25953a5a1b3Sopenharmony_ci/* Recursive two pole IIR Infinite Impulse Response filter
26053a5a1b3Sopenharmony_ci * Coefficients calculated with
26153a5a1b3Sopenharmony_ci * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html
26253a5a1b3Sopenharmony_ci */
26353a5a1b3Sopenharmony_ciclass IIR2 {
26453a5a1b3Sopenharmony_ci  REAL x[2], y[2];
26553a5a1b3Sopenharmony_ci
26653a5a1b3Sopenharmony_cipublic:
26753a5a1b3Sopenharmony_ci   IIR2() {
26853a5a1b3Sopenharmony_ci    memset(this, 0, sizeof(IIR2));
26953a5a1b3Sopenharmony_ci  }
27053a5a1b3Sopenharmony_ci
27153a5a1b3Sopenharmony_ci  REAL highpass(REAL in) {
27253a5a1b3Sopenharmony_ci    // Butterworth IIR filter, Filter type: HP
27353a5a1b3Sopenharmony_ci    // Passband: 2000 - 4000.0 Hz, Order: 2
27453a5a1b3Sopenharmony_ci    const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f };
27553a5a1b3Sopenharmony_ci    const REAL b[] = { 1.3007072E-16f, 0.17157288f };
27653a5a1b3Sopenharmony_ci    REAL out =
27753a5a1b3Sopenharmony_ci      a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1];
27853a5a1b3Sopenharmony_ci
27953a5a1b3Sopenharmony_ci    x[1] = x[0];
28053a5a1b3Sopenharmony_ci    x[0] = in;
28153a5a1b3Sopenharmony_ci    y[1] = y[0];
28253a5a1b3Sopenharmony_ci    y[0] = out;
28353a5a1b3Sopenharmony_ci    return out;
28453a5a1b3Sopenharmony_ci  }
28553a5a1b3Sopenharmony_ci};
28653a5a1b3Sopenharmony_ci#endif
28753a5a1b3Sopenharmony_ci
28853a5a1b3Sopenharmony_ci
28953a5a1b3Sopenharmony_ci// Extension in taps to reduce mem copies
29053a5a1b3Sopenharmony_ci#define NLMS_EXT  (10*8)
29153a5a1b3Sopenharmony_ci
29253a5a1b3Sopenharmony_ci// block size in taps to optimize DTD calculation
29353a5a1b3Sopenharmony_ci#define DTD_LEN   16
29453a5a1b3Sopenharmony_ci
29553a5a1b3Sopenharmony_citypedef struct AEC AEC;
29653a5a1b3Sopenharmony_ci
29753a5a1b3Sopenharmony_cistruct AEC {
29853a5a1b3Sopenharmony_ci  // Time domain Filters
29953a5a1b3Sopenharmony_ci  IIR_HP *acMic, *acSpk;        // DC-level remove Highpass)
30053a5a1b3Sopenharmony_ci  FIR_HP_300Hz *cutoff;         // 150Hz cut-off Highpass
30153a5a1b3Sopenharmony_ci  REAL gain;                    // Mic signal amplify
30253a5a1b3Sopenharmony_ci  IIR1 *Fx, *Fe;                // pre-whitening Highpass for x, e
30353a5a1b3Sopenharmony_ci
30453a5a1b3Sopenharmony_ci  // Adrian soft decision DTD (Double Talk Detector)
30553a5a1b3Sopenharmony_ci  REAL dfast, xfast;
30653a5a1b3Sopenharmony_ci  REAL dslow, xslow;
30753a5a1b3Sopenharmony_ci
30853a5a1b3Sopenharmony_ci  // NLMS-pw
30953a5a1b3Sopenharmony_ci  REAL x[NLMS_LEN + NLMS_EXT];  // tap delayed loudspeaker signal
31053a5a1b3Sopenharmony_ci  REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal
31153a5a1b3Sopenharmony_ci  REAL w_arr[NLMS_LEN + (16 / sizeof(REAL))]; // tap weights
31253a5a1b3Sopenharmony_ci  REAL *w;                      // this will be a 16-byte aligned pointer into w_arr
31353a5a1b3Sopenharmony_ci  int j;                        // optimize: less memory copies
31453a5a1b3Sopenharmony_ci  double dotp_xf_xf;            // double to avoid loss of precision
31553a5a1b3Sopenharmony_ci  float delta;                  // noise floor to stabilize NLMS
31653a5a1b3Sopenharmony_ci
31753a5a1b3Sopenharmony_ci  // AES
31853a5a1b3Sopenharmony_ci  float aes_y2;                 // not in use!
31953a5a1b3Sopenharmony_ci
32053a5a1b3Sopenharmony_ci  // w vector visualization
32153a5a1b3Sopenharmony_ci  REAL ws[DUMP_LEN];            // tap weights sums
32253a5a1b3Sopenharmony_ci  int fdwdisplay;               // TCP file descriptor
32353a5a1b3Sopenharmony_ci  int dumpcnt;                  // wdisplay output counter
32453a5a1b3Sopenharmony_ci
32553a5a1b3Sopenharmony_ci  // variables are public for visualization
32653a5a1b3Sopenharmony_ci  int hangover;
32753a5a1b3Sopenharmony_ci  float stepsize;
32853a5a1b3Sopenharmony_ci
32953a5a1b3Sopenharmony_ci  // vfuncs that are picked based on processor features available
33053a5a1b3Sopenharmony_ci  REAL (*dotp) (REAL[], REAL[]);
33153a5a1b3Sopenharmony_ci};
33253a5a1b3Sopenharmony_ci
33353a5a1b3Sopenharmony_ci/* Double-Talk Detector
33453a5a1b3Sopenharmony_ci *
33553a5a1b3Sopenharmony_ci * in d: microphone sample (PCM as REALing point value)
33653a5a1b3Sopenharmony_ci * in x: loudspeaker sample (PCM as REALing point value)
33753a5a1b3Sopenharmony_ci * return: from 0 for doubletalk to 1.0 for single talk
33853a5a1b3Sopenharmony_ci */
33953a5a1b3Sopenharmony_cistatic  float AEC_dtd(AEC *a, REAL d, REAL x);
34053a5a1b3Sopenharmony_ci
34153a5a1b3Sopenharmony_cistatic  void AEC_leaky(AEC *a);
34253a5a1b3Sopenharmony_ci
34353a5a1b3Sopenharmony_ci/* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw)
34453a5a1b3Sopenharmony_ci * The LMS algorithm was developed by Bernard Widrow
34553a5a1b3Sopenharmony_ci * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002
34653a5a1b3Sopenharmony_ci *
34753a5a1b3Sopenharmony_ci * in d: microphone sample (16bit PCM value)
34853a5a1b3Sopenharmony_ci * in x_: loudspeaker sample (16bit PCM value)
34953a5a1b3Sopenharmony_ci * in stepsize: NLMS adaptation variable
35053a5a1b3Sopenharmony_ci * return: echo cancelled microphone sample
35153a5a1b3Sopenharmony_ci */
35253a5a1b3Sopenharmony_cistatic  REAL AEC_nlms_pw(AEC *a, REAL d, REAL x_, float stepsize);
35353a5a1b3Sopenharmony_ci
35453a5a1b3Sopenharmony_ciAEC* AEC_init(int RATE, int have_vector);
35553a5a1b3Sopenharmony_civoid AEC_done(AEC *a);
35653a5a1b3Sopenharmony_ci
35753a5a1b3Sopenharmony_ci/* Acoustic Echo Cancellation and Suppression of one sample
35853a5a1b3Sopenharmony_ci * in   d:  microphone signal with echo
35953a5a1b3Sopenharmony_ci * in   x:  loudspeaker signal
36053a5a1b3Sopenharmony_ci * return:  echo cancelled microphone signal
36153a5a1b3Sopenharmony_ci */
36253a5a1b3Sopenharmony_ci  int AEC_doAEC(AEC *a, int d_, int x_);
36353a5a1b3Sopenharmony_ci
36453a5a1b3Sopenharmony_ciPA_GCC_UNUSED static  float AEC_getambient(AEC *a) {
36553a5a1b3Sopenharmony_ci    return a->dfast;
36653a5a1b3Sopenharmony_ci  }
36753a5a1b3Sopenharmony_cistatic  void AEC_setambient(AEC *a, float Min_xf) {
36853a5a1b3Sopenharmony_ci    a->dotp_xf_xf -= a->delta;  // subtract old delta
36953a5a1b3Sopenharmony_ci    a->delta = (NLMS_LEN-1) * Min_xf * Min_xf;
37053a5a1b3Sopenharmony_ci    a->dotp_xf_xf += a->delta;  // add new delta
37153a5a1b3Sopenharmony_ci  }
37253a5a1b3Sopenharmony_ciPA_GCC_UNUSED static  void AEC_setgain(AEC *a, float gain_) {
37353a5a1b3Sopenharmony_ci    a->gain = gain_;
37453a5a1b3Sopenharmony_ci  }
37553a5a1b3Sopenharmony_ci#if 0
37653a5a1b3Sopenharmony_ci  void AEC_openwdisplay(AEC *a);
37753a5a1b3Sopenharmony_ci#endif
37853a5a1b3Sopenharmony_ciPA_GCC_UNUSED static  void AEC_setaes(AEC *a, float aes_y2_) {
37953a5a1b3Sopenharmony_ci    a->aes_y2 = aes_y2_;
38053a5a1b3Sopenharmony_ci  }
38153a5a1b3Sopenharmony_ci
38253a5a1b3Sopenharmony_ci#define _AEC_H
38353a5a1b3Sopenharmony_ci#endif
384