153a5a1b3Sopenharmony_ci/* Copyright (C) 2007-2008 Jean-Marc Valin 253a5a1b3Sopenharmony_ci Copyright (C) 2008 Thorvald Natvig 353a5a1b3Sopenharmony_ci 453a5a1b3Sopenharmony_ci File: resample.c 553a5a1b3Sopenharmony_ci Arbitrary resampling code 653a5a1b3Sopenharmony_ci 753a5a1b3Sopenharmony_ci Redistribution and use in source and binary forms, with or without 853a5a1b3Sopenharmony_ci modification, are permitted provided that the following conditions are 953a5a1b3Sopenharmony_ci met: 1053a5a1b3Sopenharmony_ci 1153a5a1b3Sopenharmony_ci 1. Redistributions of source code must retain the above copyright notice, 1253a5a1b3Sopenharmony_ci this list of conditions and the following disclaimer. 1353a5a1b3Sopenharmony_ci 1453a5a1b3Sopenharmony_ci 2. Redistributions in binary form must reproduce the above copyright 1553a5a1b3Sopenharmony_ci notice, this list of conditions and the following disclaimer in the 1653a5a1b3Sopenharmony_ci documentation and/or other materials provided with the distribution. 1753a5a1b3Sopenharmony_ci 1853a5a1b3Sopenharmony_ci 3. The name of the author may not be used to endorse or promote products 1953a5a1b3Sopenharmony_ci derived from this software without specific prior written permission. 2053a5a1b3Sopenharmony_ci 2153a5a1b3Sopenharmony_ci THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 2253a5a1b3Sopenharmony_ci IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 2353a5a1b3Sopenharmony_ci OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 2453a5a1b3Sopenharmony_ci DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, 2553a5a1b3Sopenharmony_ci INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 2653a5a1b3Sopenharmony_ci (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 2753a5a1b3Sopenharmony_ci SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 2853a5a1b3Sopenharmony_ci HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 2953a5a1b3Sopenharmony_ci STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 3053a5a1b3Sopenharmony_ci ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 3153a5a1b3Sopenharmony_ci POSSIBILITY OF SUCH DAMAGE. 3253a5a1b3Sopenharmony_ci*/ 3353a5a1b3Sopenharmony_ci 3453a5a1b3Sopenharmony_ci/* 3553a5a1b3Sopenharmony_ci The design goals of this code are: 3653a5a1b3Sopenharmony_ci - Very fast algorithm 3753a5a1b3Sopenharmony_ci - SIMD-friendly algorithm 3853a5a1b3Sopenharmony_ci - Low memory requirement 3953a5a1b3Sopenharmony_ci - Good *perceptual* quality (and not best SNR) 4053a5a1b3Sopenharmony_ci 4153a5a1b3Sopenharmony_ci Warning: This resampler is relatively new. Although I think I got rid of 4253a5a1b3Sopenharmony_ci all the major bugs and I don't expect the API to change anymore, there 4353a5a1b3Sopenharmony_ci may be something I've missed. So use with caution. 4453a5a1b3Sopenharmony_ci 4553a5a1b3Sopenharmony_ci This algorithm is based on this original resampling algorithm: 4653a5a1b3Sopenharmony_ci Smith, Julius O. Digital Audio Resampling Home Page 4753a5a1b3Sopenharmony_ci Center for Computer Research in Music and Acoustics (CCRMA), 4853a5a1b3Sopenharmony_ci Stanford University, 2007. 4953a5a1b3Sopenharmony_ci Web published at https://ccrma.stanford.edu/~jos/resample/. 5053a5a1b3Sopenharmony_ci 5153a5a1b3Sopenharmony_ci There is one main difference, though. This resampler uses cubic 5253a5a1b3Sopenharmony_ci interpolation instead of linear interpolation in the above paper. This 5353a5a1b3Sopenharmony_ci makes the table much smaller and makes it possible to compute that table 5453a5a1b3Sopenharmony_ci on a per-stream basis. In turn, being able to tweak the table for each 5553a5a1b3Sopenharmony_ci stream makes it possible to both reduce complexity on simple ratios 5653a5a1b3Sopenharmony_ci (e.g. 2/3), and get rid of the rounding operations in the inner loop. 5753a5a1b3Sopenharmony_ci The latter both reduces CPU time and makes the algorithm more SIMD-friendly. 5853a5a1b3Sopenharmony_ci*/ 5953a5a1b3Sopenharmony_ci 6053a5a1b3Sopenharmony_ci#ifdef HAVE_CONFIG_H 6153a5a1b3Sopenharmony_ci#include "config.h" 6253a5a1b3Sopenharmony_ci#endif 6353a5a1b3Sopenharmony_ci 6453a5a1b3Sopenharmony_ci#ifdef OUTSIDE_SPEEX 6553a5a1b3Sopenharmony_ci#include <stdlib.h> 6653a5a1b3Sopenharmony_cistatic void *speex_alloc(int size) {return calloc(size,1);} 6753a5a1b3Sopenharmony_cistatic void *speex_realloc(void *ptr, int size) {return realloc(ptr, size);} 6853a5a1b3Sopenharmony_cistatic void speex_free(void *ptr) {free(ptr);} 6953a5a1b3Sopenharmony_ci#ifndef EXPORT 7053a5a1b3Sopenharmony_ci#define EXPORT 7153a5a1b3Sopenharmony_ci#endif 7253a5a1b3Sopenharmony_ci#include "speex_resampler.h" 7353a5a1b3Sopenharmony_ci#include "arch.h" 7453a5a1b3Sopenharmony_ci#else /* OUTSIDE_SPEEX */ 7553a5a1b3Sopenharmony_ci 7653a5a1b3Sopenharmony_ci#include "speex/speex_resampler.h" 7753a5a1b3Sopenharmony_ci#include "arch.h" 7853a5a1b3Sopenharmony_ci#include "os_support.h" 7953a5a1b3Sopenharmony_ci#endif /* OUTSIDE_SPEEX */ 8053a5a1b3Sopenharmony_ci 8153a5a1b3Sopenharmony_ci#include <math.h> 8253a5a1b3Sopenharmony_ci#include <limits.h> 8353a5a1b3Sopenharmony_ci 8453a5a1b3Sopenharmony_ci#ifndef M_PI 8553a5a1b3Sopenharmony_ci#define M_PI 3.14159265358979323846 8653a5a1b3Sopenharmony_ci#endif 8753a5a1b3Sopenharmony_ci 8853a5a1b3Sopenharmony_ci#define IMAX(a,b) ((a) > (b) ? (a) : (b)) 8953a5a1b3Sopenharmony_ci#define IMIN(a,b) ((a) < (b) ? (a) : (b)) 9053a5a1b3Sopenharmony_ci 9153a5a1b3Sopenharmony_ci#ifndef NULL 9253a5a1b3Sopenharmony_ci#define NULL 0 9353a5a1b3Sopenharmony_ci#endif 9453a5a1b3Sopenharmony_ci 9553a5a1b3Sopenharmony_ci#ifndef UINT32_MAX 9653a5a1b3Sopenharmony_ci#define UINT32_MAX 4294967295U 9753a5a1b3Sopenharmony_ci#endif 9853a5a1b3Sopenharmony_ci 9953a5a1b3Sopenharmony_ci#ifdef USE_SSE 10053a5a1b3Sopenharmony_ci#include "resample_sse.h" 10153a5a1b3Sopenharmony_ci#endif 10253a5a1b3Sopenharmony_ci 10353a5a1b3Sopenharmony_ci#ifdef USE_NEON 10453a5a1b3Sopenharmony_ci#include "resample_neon.h" 10553a5a1b3Sopenharmony_ci#endif 10653a5a1b3Sopenharmony_ci 10753a5a1b3Sopenharmony_ci/* Numer of elements to allocate on the stack */ 10853a5a1b3Sopenharmony_ci#ifdef VAR_ARRAYS 10953a5a1b3Sopenharmony_ci#define FIXED_STACK_ALLOC 8192 11053a5a1b3Sopenharmony_ci#else 11153a5a1b3Sopenharmony_ci#define FIXED_STACK_ALLOC 1024 11253a5a1b3Sopenharmony_ci#endif 11353a5a1b3Sopenharmony_ci 11453a5a1b3Sopenharmony_ci#define EXPORT __attribute__((visibility("default"))) 11553a5a1b3Sopenharmony_ci 11653a5a1b3Sopenharmony_citypedef int (*resampler_basic_func)(SpeexResamplerState *, spx_uint32_t , const spx_word16_t *, spx_uint32_t *, spx_word16_t *, spx_uint32_t *); 11753a5a1b3Sopenharmony_ci 11853a5a1b3Sopenharmony_cistruct SpeexResamplerState_ { 11953a5a1b3Sopenharmony_ci spx_uint32_t in_rate; 12053a5a1b3Sopenharmony_ci spx_uint32_t out_rate; 12153a5a1b3Sopenharmony_ci spx_uint32_t num_rate; 12253a5a1b3Sopenharmony_ci spx_uint32_t den_rate; 12353a5a1b3Sopenharmony_ci 12453a5a1b3Sopenharmony_ci int quality; 12553a5a1b3Sopenharmony_ci spx_uint32_t nb_channels; 12653a5a1b3Sopenharmony_ci spx_uint32_t filt_len; 12753a5a1b3Sopenharmony_ci spx_uint32_t mem_alloc_size; 12853a5a1b3Sopenharmony_ci spx_uint32_t buffer_size; 12953a5a1b3Sopenharmony_ci int int_advance; 13053a5a1b3Sopenharmony_ci int frac_advance; 13153a5a1b3Sopenharmony_ci float cutoff; 13253a5a1b3Sopenharmony_ci spx_uint32_t oversample; 13353a5a1b3Sopenharmony_ci int initialised; 13453a5a1b3Sopenharmony_ci int started; 13553a5a1b3Sopenharmony_ci 13653a5a1b3Sopenharmony_ci /* These are per-channel */ 13753a5a1b3Sopenharmony_ci spx_int32_t *last_sample; 13853a5a1b3Sopenharmony_ci spx_uint32_t *samp_frac_num; 13953a5a1b3Sopenharmony_ci spx_uint32_t *magic_samples; 14053a5a1b3Sopenharmony_ci 14153a5a1b3Sopenharmony_ci spx_word16_t *mem; 14253a5a1b3Sopenharmony_ci spx_word16_t *sinc_table; 14353a5a1b3Sopenharmony_ci spx_uint32_t sinc_table_length; 14453a5a1b3Sopenharmony_ci resampler_basic_func resampler_ptr; 14553a5a1b3Sopenharmony_ci 14653a5a1b3Sopenharmony_ci int in_stride; 14753a5a1b3Sopenharmony_ci int out_stride; 14853a5a1b3Sopenharmony_ci} ; 14953a5a1b3Sopenharmony_ci 15053a5a1b3Sopenharmony_cistatic const double kaiser12_table[68] = { 15153a5a1b3Sopenharmony_ci 0.99859849, 1.00000000, 0.99859849, 0.99440475, 0.98745105, 0.97779076, 15253a5a1b3Sopenharmony_ci 0.96549770, 0.95066529, 0.93340547, 0.91384741, 0.89213598, 0.86843014, 15353a5a1b3Sopenharmony_ci 0.84290116, 0.81573067, 0.78710866, 0.75723148, 0.72629970, 0.69451601, 15453a5a1b3Sopenharmony_ci 0.66208321, 0.62920216, 0.59606986, 0.56287762, 0.52980938, 0.49704014, 15553a5a1b3Sopenharmony_ci 0.46473455, 0.43304576, 0.40211431, 0.37206735, 0.34301800, 0.31506490, 15653a5a1b3Sopenharmony_ci 0.28829195, 0.26276832, 0.23854851, 0.21567274, 0.19416736, 0.17404546, 15753a5a1b3Sopenharmony_ci 0.15530766, 0.13794294, 0.12192957, 0.10723616, 0.09382272, 0.08164178, 15853a5a1b3Sopenharmony_ci 0.07063950, 0.06075685, 0.05193064, 0.04409466, 0.03718069, 0.03111947, 15953a5a1b3Sopenharmony_ci 0.02584161, 0.02127838, 0.01736250, 0.01402878, 0.01121463, 0.00886058, 16053a5a1b3Sopenharmony_ci 0.00691064, 0.00531256, 0.00401805, 0.00298291, 0.00216702, 0.00153438, 16153a5a1b3Sopenharmony_ci 0.00105297, 0.00069463, 0.00043489, 0.00025272, 0.00013031, 0.0000527734, 16253a5a1b3Sopenharmony_ci 0.00001000, 0.00000000}; 16353a5a1b3Sopenharmony_ci/* 16453a5a1b3Sopenharmony_cistatic const double kaiser12_table[36] = { 16553a5a1b3Sopenharmony_ci 0.99440475, 1.00000000, 0.99440475, 0.97779076, 0.95066529, 0.91384741, 16653a5a1b3Sopenharmony_ci 0.86843014, 0.81573067, 0.75723148, 0.69451601, 0.62920216, 0.56287762, 16753a5a1b3Sopenharmony_ci 0.49704014, 0.43304576, 0.37206735, 0.31506490, 0.26276832, 0.21567274, 16853a5a1b3Sopenharmony_ci 0.17404546, 0.13794294, 0.10723616, 0.08164178, 0.06075685, 0.04409466, 16953a5a1b3Sopenharmony_ci 0.03111947, 0.02127838, 0.01402878, 0.00886058, 0.00531256, 0.00298291, 17053a5a1b3Sopenharmony_ci 0.00153438, 0.00069463, 0.00025272, 0.0000527734, 0.00000500, 0.00000000}; 17153a5a1b3Sopenharmony_ci*/ 17253a5a1b3Sopenharmony_cistatic const double kaiser10_table[36] = { 17353a5a1b3Sopenharmony_ci 0.99537781, 1.00000000, 0.99537781, 0.98162644, 0.95908712, 0.92831446, 17453a5a1b3Sopenharmony_ci 0.89005583, 0.84522401, 0.79486424, 0.74011713, 0.68217934, 0.62226347, 17553a5a1b3Sopenharmony_ci 0.56155915, 0.50119680, 0.44221549, 0.38553619, 0.33194107, 0.28205962, 17653a5a1b3Sopenharmony_ci 0.23636152, 0.19515633, 0.15859932, 0.12670280, 0.09935205, 0.07632451, 17753a5a1b3Sopenharmony_ci 0.05731132, 0.04193980, 0.02979584, 0.02044510, 0.01345224, 0.00839739, 17853a5a1b3Sopenharmony_ci 0.00488951, 0.00257636, 0.00115101, 0.00035515, 0.00000000, 0.00000000}; 17953a5a1b3Sopenharmony_ci 18053a5a1b3Sopenharmony_cistatic const double kaiser8_table[36] = { 18153a5a1b3Sopenharmony_ci 0.99635258, 1.00000000, 0.99635258, 0.98548012, 0.96759014, 0.94302200, 18253a5a1b3Sopenharmony_ci 0.91223751, 0.87580811, 0.83439927, 0.78875245, 0.73966538, 0.68797126, 18353a5a1b3Sopenharmony_ci 0.63451750, 0.58014482, 0.52566725, 0.47185369, 0.41941150, 0.36897272, 18453a5a1b3Sopenharmony_ci 0.32108304, 0.27619388, 0.23465776, 0.19672670, 0.16255380, 0.13219758, 18553a5a1b3Sopenharmony_ci 0.10562887, 0.08273982, 0.06335451, 0.04724088, 0.03412321, 0.02369490, 18653a5a1b3Sopenharmony_ci 0.01563093, 0.00959968, 0.00527363, 0.00233883, 0.00050000, 0.00000000}; 18753a5a1b3Sopenharmony_ci 18853a5a1b3Sopenharmony_cistatic const double kaiser6_table[36] = { 18953a5a1b3Sopenharmony_ci 0.99733006, 1.00000000, 0.99733006, 0.98935595, 0.97618418, 0.95799003, 19053a5a1b3Sopenharmony_ci 0.93501423, 0.90755855, 0.87598009, 0.84068475, 0.80211977, 0.76076565, 19153a5a1b3Sopenharmony_ci 0.71712752, 0.67172623, 0.62508937, 0.57774224, 0.53019925, 0.48295561, 19253a5a1b3Sopenharmony_ci 0.43647969, 0.39120616, 0.34752997, 0.30580127, 0.26632152, 0.22934058, 19353a5a1b3Sopenharmony_ci 0.19505503, 0.16360756, 0.13508755, 0.10953262, 0.08693120, 0.06722600, 19453a5a1b3Sopenharmony_ci 0.05031820, 0.03607231, 0.02432151, 0.01487334, 0.00752000, 0.00000000}; 19553a5a1b3Sopenharmony_ci 19653a5a1b3Sopenharmony_cistruct FuncDef { 19753a5a1b3Sopenharmony_ci const double *table; 19853a5a1b3Sopenharmony_ci int oversample; 19953a5a1b3Sopenharmony_ci}; 20053a5a1b3Sopenharmony_ci 20153a5a1b3Sopenharmony_cistatic const struct FuncDef kaiser12_funcdef = {kaiser12_table, 64}; 20253a5a1b3Sopenharmony_ci#define KAISER12 (&kaiser12_funcdef) 20353a5a1b3Sopenharmony_cistatic const struct FuncDef kaiser10_funcdef = {kaiser10_table, 32}; 20453a5a1b3Sopenharmony_ci#define KAISER10 (&kaiser10_funcdef) 20553a5a1b3Sopenharmony_cistatic const struct FuncDef kaiser8_funcdef = {kaiser8_table, 32}; 20653a5a1b3Sopenharmony_ci#define KAISER8 (&kaiser8_funcdef) 20753a5a1b3Sopenharmony_cistatic const struct FuncDef kaiser6_funcdef = {kaiser6_table, 32}; 20853a5a1b3Sopenharmony_ci#define KAISER6 (&kaiser6_funcdef) 20953a5a1b3Sopenharmony_ci 21053a5a1b3Sopenharmony_cistruct QualityMapping { 21153a5a1b3Sopenharmony_ci int base_length; 21253a5a1b3Sopenharmony_ci int oversample; 21353a5a1b3Sopenharmony_ci float downsample_bandwidth; 21453a5a1b3Sopenharmony_ci float upsample_bandwidth; 21553a5a1b3Sopenharmony_ci const struct FuncDef *window_func; 21653a5a1b3Sopenharmony_ci}; 21753a5a1b3Sopenharmony_ci 21853a5a1b3Sopenharmony_ci 21953a5a1b3Sopenharmony_ci/* This table maps conversion quality to internal parameters. There are two 22053a5a1b3Sopenharmony_ci reasons that explain why the up-sampling bandwidth is larger than the 22153a5a1b3Sopenharmony_ci down-sampling bandwidth: 22253a5a1b3Sopenharmony_ci 1) When up-sampling, we can assume that the spectrum is already attenuated 22353a5a1b3Sopenharmony_ci close to the Nyquist rate (from an A/D or a previous resampling filter) 22453a5a1b3Sopenharmony_ci 2) Any aliasing that occurs very close to the Nyquist rate will be masked 22553a5a1b3Sopenharmony_ci by the sinusoids/noise just below the Nyquist rate (guaranteed only for 22653a5a1b3Sopenharmony_ci up-sampling). 22753a5a1b3Sopenharmony_ci*/ 22853a5a1b3Sopenharmony_cistatic const struct QualityMapping quality_map[11] = { 22953a5a1b3Sopenharmony_ci { 8, 4, 0.830f, 0.860f, KAISER6 }, /* Q0 */ 23053a5a1b3Sopenharmony_ci { 16, 4, 0.850f, 0.880f, KAISER6 }, /* Q1 */ 23153a5a1b3Sopenharmony_ci { 32, 4, 0.882f, 0.910f, KAISER6 }, /* Q2 */ /* 82.3% cutoff ( ~60 dB stop) 6 */ 23253a5a1b3Sopenharmony_ci { 48, 8, 0.895f, 0.917f, KAISER8 }, /* Q3 */ /* 84.9% cutoff ( ~80 dB stop) 8 */ 23353a5a1b3Sopenharmony_ci { 64, 8, 0.921f, 0.940f, KAISER8 }, /* Q4 */ /* 88.7% cutoff ( ~80 dB stop) 8 */ 23453a5a1b3Sopenharmony_ci { 80, 16, 0.922f, 0.940f, KAISER10}, /* Q5 */ /* 89.1% cutoff (~100 dB stop) 10 */ 23553a5a1b3Sopenharmony_ci { 96, 16, 0.940f, 0.945f, KAISER10}, /* Q6 */ /* 91.5% cutoff (~100 dB stop) 10 */ 23653a5a1b3Sopenharmony_ci {128, 16, 0.950f, 0.950f, KAISER10}, /* Q7 */ /* 93.1% cutoff (~100 dB stop) 10 */ 23753a5a1b3Sopenharmony_ci {160, 16, 0.960f, 0.960f, KAISER10}, /* Q8 */ /* 94.5% cutoff (~100 dB stop) 10 */ 23853a5a1b3Sopenharmony_ci {192, 32, 0.968f, 0.968f, KAISER12}, /* Q9 */ /* 95.5% cutoff (~100 dB stop) 10 */ 23953a5a1b3Sopenharmony_ci {256, 32, 0.975f, 0.975f, KAISER12}, /* Q10 */ /* 96.6% cutoff (~100 dB stop) 10 */ 24053a5a1b3Sopenharmony_ci}; 24153a5a1b3Sopenharmony_ci/*8,24,40,56,80,104,128,160,200,256,320*/ 24253a5a1b3Sopenharmony_cistatic double compute_func(float x, const struct FuncDef *func) 24353a5a1b3Sopenharmony_ci{ 24453a5a1b3Sopenharmony_ci float y, frac; 24553a5a1b3Sopenharmony_ci double interp[4]; 24653a5a1b3Sopenharmony_ci int ind; 24753a5a1b3Sopenharmony_ci y = x*func->oversample; 24853a5a1b3Sopenharmony_ci ind = (int)floor(y); 24953a5a1b3Sopenharmony_ci frac = (y-ind); 25053a5a1b3Sopenharmony_ci /* CSE with handle the repeated powers */ 25153a5a1b3Sopenharmony_ci interp[3] = -0.1666666667*frac + 0.1666666667*(frac*frac*frac); 25253a5a1b3Sopenharmony_ci interp[2] = frac + 0.5*(frac*frac) - 0.5*(frac*frac*frac); 25353a5a1b3Sopenharmony_ci /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ 25453a5a1b3Sopenharmony_ci interp[0] = -0.3333333333*frac + 0.5*(frac*frac) - 0.1666666667*(frac*frac*frac); 25553a5a1b3Sopenharmony_ci /* Just to make sure we don't have rounding problems */ 25653a5a1b3Sopenharmony_ci interp[1] = 1.f-interp[3]-interp[2]-interp[0]; 25753a5a1b3Sopenharmony_ci 25853a5a1b3Sopenharmony_ci /*sum = frac*accum[1] + (1-frac)*accum[2];*/ 25953a5a1b3Sopenharmony_ci return interp[0]*func->table[ind] + interp[1]*func->table[ind+1] + interp[2]*func->table[ind+2] + interp[3]*func->table[ind+3]; 26053a5a1b3Sopenharmony_ci} 26153a5a1b3Sopenharmony_ci 26253a5a1b3Sopenharmony_ci#if 0 26353a5a1b3Sopenharmony_ci#include <stdio.h> 26453a5a1b3Sopenharmony_ciint main(int argc, char **argv) 26553a5a1b3Sopenharmony_ci{ 26653a5a1b3Sopenharmony_ci int i; 26753a5a1b3Sopenharmony_ci for (i=0;i<256;i++) 26853a5a1b3Sopenharmony_ci { 26953a5a1b3Sopenharmony_ci printf ("%f\n", compute_func(i/256., KAISER12)); 27053a5a1b3Sopenharmony_ci } 27153a5a1b3Sopenharmony_ci return 0; 27253a5a1b3Sopenharmony_ci} 27353a5a1b3Sopenharmony_ci#endif 27453a5a1b3Sopenharmony_ci 27553a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 27653a5a1b3Sopenharmony_ci/* The slow way of computing a sinc for the table. Should improve that some day */ 27753a5a1b3Sopenharmony_cistatic spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func) 27853a5a1b3Sopenharmony_ci{ 27953a5a1b3Sopenharmony_ci /*fprintf (stderr, "%f ", x);*/ 28053a5a1b3Sopenharmony_ci float xx = x * cutoff; 28153a5a1b3Sopenharmony_ci if (fabs(x)<1e-6f) 28253a5a1b3Sopenharmony_ci return WORD2INT(32768.*cutoff); 28353a5a1b3Sopenharmony_ci else if (fabs(x) > .5f*N) 28453a5a1b3Sopenharmony_ci return 0; 28553a5a1b3Sopenharmony_ci /*FIXME: Can it really be any slower than this? */ 28653a5a1b3Sopenharmony_ci return WORD2INT(32768.*cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func)); 28753a5a1b3Sopenharmony_ci} 28853a5a1b3Sopenharmony_ci#else 28953a5a1b3Sopenharmony_ci/* The slow way of computing a sinc for the table. Should improve that some day */ 29053a5a1b3Sopenharmony_cistatic spx_word16_t sinc(float cutoff, float x, int N, const struct FuncDef *window_func) 29153a5a1b3Sopenharmony_ci{ 29253a5a1b3Sopenharmony_ci /*fprintf (stderr, "%f ", x);*/ 29353a5a1b3Sopenharmony_ci float xx = x * cutoff; 29453a5a1b3Sopenharmony_ci if (fabs(x)<1e-6) 29553a5a1b3Sopenharmony_ci return cutoff; 29653a5a1b3Sopenharmony_ci else if (fabs(x) > .5*N) 29753a5a1b3Sopenharmony_ci return 0; 29853a5a1b3Sopenharmony_ci /*FIXME: Can it really be any slower than this? */ 29953a5a1b3Sopenharmony_ci return cutoff*sin(M_PI*xx)/(M_PI*xx) * compute_func(fabs(2.*x/N), window_func); 30053a5a1b3Sopenharmony_ci} 30153a5a1b3Sopenharmony_ci#endif 30253a5a1b3Sopenharmony_ci 30353a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 30453a5a1b3Sopenharmony_cistatic void cubic_coef(spx_word16_t x, spx_word16_t interp[4]) 30553a5a1b3Sopenharmony_ci{ 30653a5a1b3Sopenharmony_ci /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation 30753a5a1b3Sopenharmony_ci but I know it's MMSE-optimal on a sinc */ 30853a5a1b3Sopenharmony_ci spx_word16_t x2, x3; 30953a5a1b3Sopenharmony_ci x2 = MULT16_16_P15(x, x); 31053a5a1b3Sopenharmony_ci x3 = MULT16_16_P15(x, x2); 31153a5a1b3Sopenharmony_ci interp[0] = PSHR32(MULT16_16(QCONST16(-0.16667f, 15),x) + MULT16_16(QCONST16(0.16667f, 15),x3),15); 31253a5a1b3Sopenharmony_ci interp[1] = EXTRACT16(EXTEND32(x) + SHR32(SUB32(EXTEND32(x2),EXTEND32(x3)),1)); 31353a5a1b3Sopenharmony_ci interp[3] = PSHR32(MULT16_16(QCONST16(-0.33333f, 15),x) + MULT16_16(QCONST16(.5f,15),x2) - MULT16_16(QCONST16(0.16667f, 15),x3),15); 31453a5a1b3Sopenharmony_ci /* Just to make sure we don't have rounding problems */ 31553a5a1b3Sopenharmony_ci interp[2] = Q15_ONE-interp[0]-interp[1]-interp[3]; 31653a5a1b3Sopenharmony_ci if (interp[2]<32767) 31753a5a1b3Sopenharmony_ci interp[2]+=1; 31853a5a1b3Sopenharmony_ci} 31953a5a1b3Sopenharmony_ci#else 32053a5a1b3Sopenharmony_cistatic void cubic_coef(spx_word16_t frac, spx_word16_t interp[4]) 32153a5a1b3Sopenharmony_ci{ 32253a5a1b3Sopenharmony_ci /* Compute interpolation coefficients. I'm not sure whether this corresponds to cubic interpolation 32353a5a1b3Sopenharmony_ci but I know it's MMSE-optimal on a sinc */ 32453a5a1b3Sopenharmony_ci interp[0] = -0.16667f*frac + 0.16667f*frac*frac*frac; 32553a5a1b3Sopenharmony_ci interp[1] = frac + 0.5f*frac*frac - 0.5f*frac*frac*frac; 32653a5a1b3Sopenharmony_ci /*interp[2] = 1.f - 0.5f*frac - frac*frac + 0.5f*frac*frac*frac;*/ 32753a5a1b3Sopenharmony_ci interp[3] = -0.33333f*frac + 0.5f*frac*frac - 0.16667f*frac*frac*frac; 32853a5a1b3Sopenharmony_ci /* Just to make sure we don't have rounding problems */ 32953a5a1b3Sopenharmony_ci interp[2] = 1.-interp[0]-interp[1]-interp[3]; 33053a5a1b3Sopenharmony_ci} 33153a5a1b3Sopenharmony_ci#endif 33253a5a1b3Sopenharmony_ci 33353a5a1b3Sopenharmony_cistatic int resampler_basic_direct_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 33453a5a1b3Sopenharmony_ci{ 33553a5a1b3Sopenharmony_ci const int N = st->filt_len; 33653a5a1b3Sopenharmony_ci int out_sample = 0; 33753a5a1b3Sopenharmony_ci int last_sample = st->last_sample[channel_index]; 33853a5a1b3Sopenharmony_ci spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; 33953a5a1b3Sopenharmony_ci const spx_word16_t *sinc_table = st->sinc_table; 34053a5a1b3Sopenharmony_ci const int out_stride = st->out_stride; 34153a5a1b3Sopenharmony_ci const int int_advance = st->int_advance; 34253a5a1b3Sopenharmony_ci const int frac_advance = st->frac_advance; 34353a5a1b3Sopenharmony_ci const spx_uint32_t den_rate = st->den_rate; 34453a5a1b3Sopenharmony_ci spx_word32_t sum; 34553a5a1b3Sopenharmony_ci 34653a5a1b3Sopenharmony_ci while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) 34753a5a1b3Sopenharmony_ci { 34853a5a1b3Sopenharmony_ci const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; 34953a5a1b3Sopenharmony_ci const spx_word16_t *iptr = & in[last_sample]; 35053a5a1b3Sopenharmony_ci 35153a5a1b3Sopenharmony_ci#ifndef OVERRIDE_INNER_PRODUCT_SINGLE 35253a5a1b3Sopenharmony_ci int j; 35353a5a1b3Sopenharmony_ci sum = 0; 35453a5a1b3Sopenharmony_ci for(j=0;j<N;j++) sum += MULT16_16(sinct[j], iptr[j]); 35553a5a1b3Sopenharmony_ci 35653a5a1b3Sopenharmony_ci/* This code is slower on most DSPs which have only 2 accumulators. 35753a5a1b3Sopenharmony_ci Plus this this forces truncation to 32 bits and you lose the HW guard bits. 35853a5a1b3Sopenharmony_ci I think we can trust the compiler and let it vectorize and/or unroll itself. 35953a5a1b3Sopenharmony_ci spx_word32_t accum[4] = {0,0,0,0}; 36053a5a1b3Sopenharmony_ci for(j=0;j<N;j+=4) { 36153a5a1b3Sopenharmony_ci accum[0] += MULT16_16(sinct[j], iptr[j]); 36253a5a1b3Sopenharmony_ci accum[1] += MULT16_16(sinct[j+1], iptr[j+1]); 36353a5a1b3Sopenharmony_ci accum[2] += MULT16_16(sinct[j+2], iptr[j+2]); 36453a5a1b3Sopenharmony_ci accum[3] += MULT16_16(sinct[j+3], iptr[j+3]); 36553a5a1b3Sopenharmony_ci } 36653a5a1b3Sopenharmony_ci sum = accum[0] + accum[1] + accum[2] + accum[3]; 36753a5a1b3Sopenharmony_ci*/ 36853a5a1b3Sopenharmony_ci sum = SATURATE32PSHR(sum, 15, 32767); 36953a5a1b3Sopenharmony_ci#else 37053a5a1b3Sopenharmony_ci sum = inner_product_single(sinct, iptr, N); 37153a5a1b3Sopenharmony_ci#endif 37253a5a1b3Sopenharmony_ci 37353a5a1b3Sopenharmony_ci out[out_stride * out_sample++] = sum; 37453a5a1b3Sopenharmony_ci last_sample += int_advance; 37553a5a1b3Sopenharmony_ci samp_frac_num += frac_advance; 37653a5a1b3Sopenharmony_ci if (samp_frac_num >= den_rate) 37753a5a1b3Sopenharmony_ci { 37853a5a1b3Sopenharmony_ci samp_frac_num -= den_rate; 37953a5a1b3Sopenharmony_ci last_sample++; 38053a5a1b3Sopenharmony_ci } 38153a5a1b3Sopenharmony_ci } 38253a5a1b3Sopenharmony_ci 38353a5a1b3Sopenharmony_ci st->last_sample[channel_index] = last_sample; 38453a5a1b3Sopenharmony_ci st->samp_frac_num[channel_index] = samp_frac_num; 38553a5a1b3Sopenharmony_ci return out_sample; 38653a5a1b3Sopenharmony_ci} 38753a5a1b3Sopenharmony_ci 38853a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 38953a5a1b3Sopenharmony_ci#else 39053a5a1b3Sopenharmony_ci/* This is the same as the previous function, except with a double-precision accumulator */ 39153a5a1b3Sopenharmony_cistatic int resampler_basic_direct_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 39253a5a1b3Sopenharmony_ci{ 39353a5a1b3Sopenharmony_ci const int N = st->filt_len; 39453a5a1b3Sopenharmony_ci int out_sample = 0; 39553a5a1b3Sopenharmony_ci int last_sample = st->last_sample[channel_index]; 39653a5a1b3Sopenharmony_ci spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; 39753a5a1b3Sopenharmony_ci const spx_word16_t *sinc_table = st->sinc_table; 39853a5a1b3Sopenharmony_ci const int out_stride = st->out_stride; 39953a5a1b3Sopenharmony_ci const int int_advance = st->int_advance; 40053a5a1b3Sopenharmony_ci const int frac_advance = st->frac_advance; 40153a5a1b3Sopenharmony_ci const spx_uint32_t den_rate = st->den_rate; 40253a5a1b3Sopenharmony_ci double sum; 40353a5a1b3Sopenharmony_ci 40453a5a1b3Sopenharmony_ci while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) 40553a5a1b3Sopenharmony_ci { 40653a5a1b3Sopenharmony_ci const spx_word16_t *sinct = & sinc_table[samp_frac_num*N]; 40753a5a1b3Sopenharmony_ci const spx_word16_t *iptr = & in[last_sample]; 40853a5a1b3Sopenharmony_ci 40953a5a1b3Sopenharmony_ci#ifndef OVERRIDE_INNER_PRODUCT_DOUBLE 41053a5a1b3Sopenharmony_ci int j; 41153a5a1b3Sopenharmony_ci double accum[4] = {0,0,0,0}; 41253a5a1b3Sopenharmony_ci 41353a5a1b3Sopenharmony_ci for(j=0;j<N;j+=4) { 41453a5a1b3Sopenharmony_ci accum[0] += sinct[j]*iptr[j]; 41553a5a1b3Sopenharmony_ci accum[1] += sinct[j+1]*iptr[j+1]; 41653a5a1b3Sopenharmony_ci accum[2] += sinct[j+2]*iptr[j+2]; 41753a5a1b3Sopenharmony_ci accum[3] += sinct[j+3]*iptr[j+3]; 41853a5a1b3Sopenharmony_ci } 41953a5a1b3Sopenharmony_ci sum = accum[0] + accum[1] + accum[2] + accum[3]; 42053a5a1b3Sopenharmony_ci#else 42153a5a1b3Sopenharmony_ci sum = inner_product_double(sinct, iptr, N); 42253a5a1b3Sopenharmony_ci#endif 42353a5a1b3Sopenharmony_ci 42453a5a1b3Sopenharmony_ci out[out_stride * out_sample++] = PSHR32(sum, 15); 42553a5a1b3Sopenharmony_ci last_sample += int_advance; 42653a5a1b3Sopenharmony_ci samp_frac_num += frac_advance; 42753a5a1b3Sopenharmony_ci if (samp_frac_num >= den_rate) 42853a5a1b3Sopenharmony_ci { 42953a5a1b3Sopenharmony_ci samp_frac_num -= den_rate; 43053a5a1b3Sopenharmony_ci last_sample++; 43153a5a1b3Sopenharmony_ci } 43253a5a1b3Sopenharmony_ci } 43353a5a1b3Sopenharmony_ci 43453a5a1b3Sopenharmony_ci st->last_sample[channel_index] = last_sample; 43553a5a1b3Sopenharmony_ci st->samp_frac_num[channel_index] = samp_frac_num; 43653a5a1b3Sopenharmony_ci return out_sample; 43753a5a1b3Sopenharmony_ci} 43853a5a1b3Sopenharmony_ci#endif 43953a5a1b3Sopenharmony_ci 44053a5a1b3Sopenharmony_cistatic int resampler_basic_interpolate_single(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 44153a5a1b3Sopenharmony_ci{ 44253a5a1b3Sopenharmony_ci const int N = st->filt_len; 44353a5a1b3Sopenharmony_ci int out_sample = 0; 44453a5a1b3Sopenharmony_ci int last_sample = st->last_sample[channel_index]; 44553a5a1b3Sopenharmony_ci spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; 44653a5a1b3Sopenharmony_ci const int out_stride = st->out_stride; 44753a5a1b3Sopenharmony_ci const int int_advance = st->int_advance; 44853a5a1b3Sopenharmony_ci const int frac_advance = st->frac_advance; 44953a5a1b3Sopenharmony_ci const spx_uint32_t den_rate = st->den_rate; 45053a5a1b3Sopenharmony_ci spx_word32_t sum; 45153a5a1b3Sopenharmony_ci 45253a5a1b3Sopenharmony_ci while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) 45353a5a1b3Sopenharmony_ci { 45453a5a1b3Sopenharmony_ci const spx_word16_t *iptr = & in[last_sample]; 45553a5a1b3Sopenharmony_ci 45653a5a1b3Sopenharmony_ci const int offset = samp_frac_num*st->oversample/st->den_rate; 45753a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 45853a5a1b3Sopenharmony_ci const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); 45953a5a1b3Sopenharmony_ci#else 46053a5a1b3Sopenharmony_ci const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; 46153a5a1b3Sopenharmony_ci#endif 46253a5a1b3Sopenharmony_ci spx_word16_t interp[4]; 46353a5a1b3Sopenharmony_ci 46453a5a1b3Sopenharmony_ci 46553a5a1b3Sopenharmony_ci#ifndef OVERRIDE_INTERPOLATE_PRODUCT_SINGLE 46653a5a1b3Sopenharmony_ci int j; 46753a5a1b3Sopenharmony_ci spx_word32_t accum[4] = {0,0,0,0}; 46853a5a1b3Sopenharmony_ci 46953a5a1b3Sopenharmony_ci for(j=0;j<N;j++) { 47053a5a1b3Sopenharmony_ci const spx_word16_t curr_in=iptr[j]; 47153a5a1b3Sopenharmony_ci accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); 47253a5a1b3Sopenharmony_ci accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); 47353a5a1b3Sopenharmony_ci accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); 47453a5a1b3Sopenharmony_ci accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); 47553a5a1b3Sopenharmony_ci } 47653a5a1b3Sopenharmony_ci 47753a5a1b3Sopenharmony_ci cubic_coef(frac, interp); 47853a5a1b3Sopenharmony_ci sum = MULT16_32_Q15(interp[0],SHR32(accum[0], 1)) + MULT16_32_Q15(interp[1],SHR32(accum[1], 1)) + MULT16_32_Q15(interp[2],SHR32(accum[2], 1)) + MULT16_32_Q15(interp[3],SHR32(accum[3], 1)); 47953a5a1b3Sopenharmony_ci sum = SATURATE32PSHR(sum, 15, 32767); 48053a5a1b3Sopenharmony_ci#else 48153a5a1b3Sopenharmony_ci cubic_coef(frac, interp); 48253a5a1b3Sopenharmony_ci sum = interpolate_product_single(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); 48353a5a1b3Sopenharmony_ci#endif 48453a5a1b3Sopenharmony_ci 48553a5a1b3Sopenharmony_ci out[out_stride * out_sample++] = sum; 48653a5a1b3Sopenharmony_ci last_sample += int_advance; 48753a5a1b3Sopenharmony_ci samp_frac_num += frac_advance; 48853a5a1b3Sopenharmony_ci if (samp_frac_num >= den_rate) 48953a5a1b3Sopenharmony_ci { 49053a5a1b3Sopenharmony_ci samp_frac_num -= den_rate; 49153a5a1b3Sopenharmony_ci last_sample++; 49253a5a1b3Sopenharmony_ci } 49353a5a1b3Sopenharmony_ci } 49453a5a1b3Sopenharmony_ci 49553a5a1b3Sopenharmony_ci st->last_sample[channel_index] = last_sample; 49653a5a1b3Sopenharmony_ci st->samp_frac_num[channel_index] = samp_frac_num; 49753a5a1b3Sopenharmony_ci return out_sample; 49853a5a1b3Sopenharmony_ci} 49953a5a1b3Sopenharmony_ci 50053a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 50153a5a1b3Sopenharmony_ci#else 50253a5a1b3Sopenharmony_ci/* This is the same as the previous function, except with a double-precision accumulator */ 50353a5a1b3Sopenharmony_cistatic int resampler_basic_interpolate_double(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 50453a5a1b3Sopenharmony_ci{ 50553a5a1b3Sopenharmony_ci const int N = st->filt_len; 50653a5a1b3Sopenharmony_ci int out_sample = 0; 50753a5a1b3Sopenharmony_ci int last_sample = st->last_sample[channel_index]; 50853a5a1b3Sopenharmony_ci spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; 50953a5a1b3Sopenharmony_ci const int out_stride = st->out_stride; 51053a5a1b3Sopenharmony_ci const int int_advance = st->int_advance; 51153a5a1b3Sopenharmony_ci const int frac_advance = st->frac_advance; 51253a5a1b3Sopenharmony_ci const spx_uint32_t den_rate = st->den_rate; 51353a5a1b3Sopenharmony_ci spx_word32_t sum; 51453a5a1b3Sopenharmony_ci 51553a5a1b3Sopenharmony_ci while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) 51653a5a1b3Sopenharmony_ci { 51753a5a1b3Sopenharmony_ci const spx_word16_t *iptr = & in[last_sample]; 51853a5a1b3Sopenharmony_ci 51953a5a1b3Sopenharmony_ci const int offset = samp_frac_num*st->oversample/st->den_rate; 52053a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 52153a5a1b3Sopenharmony_ci const spx_word16_t frac = PDIV32(SHL32((samp_frac_num*st->oversample) % st->den_rate,15),st->den_rate); 52253a5a1b3Sopenharmony_ci#else 52353a5a1b3Sopenharmony_ci const spx_word16_t frac = ((float)((samp_frac_num*st->oversample) % st->den_rate))/st->den_rate; 52453a5a1b3Sopenharmony_ci#endif 52553a5a1b3Sopenharmony_ci spx_word16_t interp[4]; 52653a5a1b3Sopenharmony_ci 52753a5a1b3Sopenharmony_ci 52853a5a1b3Sopenharmony_ci#ifndef OVERRIDE_INTERPOLATE_PRODUCT_DOUBLE 52953a5a1b3Sopenharmony_ci int j; 53053a5a1b3Sopenharmony_ci double accum[4] = {0,0,0,0}; 53153a5a1b3Sopenharmony_ci 53253a5a1b3Sopenharmony_ci for(j=0;j<N;j++) { 53353a5a1b3Sopenharmony_ci const double curr_in=iptr[j]; 53453a5a1b3Sopenharmony_ci accum[0] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-2]); 53553a5a1b3Sopenharmony_ci accum[1] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset-1]); 53653a5a1b3Sopenharmony_ci accum[2] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset]); 53753a5a1b3Sopenharmony_ci accum[3] += MULT16_16(curr_in,st->sinc_table[4+(j+1)*st->oversample-offset+1]); 53853a5a1b3Sopenharmony_ci } 53953a5a1b3Sopenharmony_ci 54053a5a1b3Sopenharmony_ci cubic_coef(frac, interp); 54153a5a1b3Sopenharmony_ci sum = MULT16_32_Q15(interp[0],accum[0]) + MULT16_32_Q15(interp[1],accum[1]) + MULT16_32_Q15(interp[2],accum[2]) + MULT16_32_Q15(interp[3],accum[3]); 54253a5a1b3Sopenharmony_ci#else 54353a5a1b3Sopenharmony_ci cubic_coef(frac, interp); 54453a5a1b3Sopenharmony_ci sum = interpolate_product_double(iptr, st->sinc_table + st->oversample + 4 - offset - 2, N, st->oversample, interp); 54553a5a1b3Sopenharmony_ci#endif 54653a5a1b3Sopenharmony_ci 54753a5a1b3Sopenharmony_ci out[out_stride * out_sample++] = PSHR32(sum,15); 54853a5a1b3Sopenharmony_ci last_sample += int_advance; 54953a5a1b3Sopenharmony_ci samp_frac_num += frac_advance; 55053a5a1b3Sopenharmony_ci if (samp_frac_num >= den_rate) 55153a5a1b3Sopenharmony_ci { 55253a5a1b3Sopenharmony_ci samp_frac_num -= den_rate; 55353a5a1b3Sopenharmony_ci last_sample++; 55453a5a1b3Sopenharmony_ci } 55553a5a1b3Sopenharmony_ci } 55653a5a1b3Sopenharmony_ci 55753a5a1b3Sopenharmony_ci st->last_sample[channel_index] = last_sample; 55853a5a1b3Sopenharmony_ci st->samp_frac_num[channel_index] = samp_frac_num; 55953a5a1b3Sopenharmony_ci return out_sample; 56053a5a1b3Sopenharmony_ci} 56153a5a1b3Sopenharmony_ci#endif 56253a5a1b3Sopenharmony_ci 56353a5a1b3Sopenharmony_ci/* This resampler is used to produce zero output in situations where memory 56453a5a1b3Sopenharmony_ci for the filter could not be allocated. The expected numbers of input and 56553a5a1b3Sopenharmony_ci output samples are still processed so that callers failing to check error 56653a5a1b3Sopenharmony_ci codes are not surprised, possibly getting into infinite loops. */ 56753a5a1b3Sopenharmony_cistatic int resampler_basic_zero(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_word16_t *in, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 56853a5a1b3Sopenharmony_ci{ 56953a5a1b3Sopenharmony_ci int out_sample = 0; 57053a5a1b3Sopenharmony_ci int last_sample = st->last_sample[channel_index]; 57153a5a1b3Sopenharmony_ci spx_uint32_t samp_frac_num = st->samp_frac_num[channel_index]; 57253a5a1b3Sopenharmony_ci const int out_stride = st->out_stride; 57353a5a1b3Sopenharmony_ci const int int_advance = st->int_advance; 57453a5a1b3Sopenharmony_ci const int frac_advance = st->frac_advance; 57553a5a1b3Sopenharmony_ci const spx_uint32_t den_rate = st->den_rate; 57653a5a1b3Sopenharmony_ci 57753a5a1b3Sopenharmony_ci (void)in; 57853a5a1b3Sopenharmony_ci while (!(last_sample >= (spx_int32_t)*in_len || out_sample >= (spx_int32_t)*out_len)) 57953a5a1b3Sopenharmony_ci { 58053a5a1b3Sopenharmony_ci out[out_stride * out_sample++] = 0; 58153a5a1b3Sopenharmony_ci last_sample += int_advance; 58253a5a1b3Sopenharmony_ci samp_frac_num += frac_advance; 58353a5a1b3Sopenharmony_ci if (samp_frac_num >= den_rate) 58453a5a1b3Sopenharmony_ci { 58553a5a1b3Sopenharmony_ci samp_frac_num -= den_rate; 58653a5a1b3Sopenharmony_ci last_sample++; 58753a5a1b3Sopenharmony_ci } 58853a5a1b3Sopenharmony_ci } 58953a5a1b3Sopenharmony_ci 59053a5a1b3Sopenharmony_ci st->last_sample[channel_index] = last_sample; 59153a5a1b3Sopenharmony_ci st->samp_frac_num[channel_index] = samp_frac_num; 59253a5a1b3Sopenharmony_ci return out_sample; 59353a5a1b3Sopenharmony_ci} 59453a5a1b3Sopenharmony_ci 59553a5a1b3Sopenharmony_cistatic int multiply_frac(spx_uint32_t *result, spx_uint32_t value, spx_uint32_t num, spx_uint32_t den) 59653a5a1b3Sopenharmony_ci{ 59753a5a1b3Sopenharmony_ci spx_uint32_t major = value / den; 59853a5a1b3Sopenharmony_ci spx_uint32_t remain = value % den; 59953a5a1b3Sopenharmony_ci /* TODO: Could use 64 bits operation to check for overflow. But only guaranteed in C99+ */ 60053a5a1b3Sopenharmony_ci if (remain > UINT32_MAX / num || major > UINT32_MAX / num 60153a5a1b3Sopenharmony_ci || major * num > UINT32_MAX - remain * num / den) 60253a5a1b3Sopenharmony_ci return RESAMPLER_ERR_OVERFLOW; 60353a5a1b3Sopenharmony_ci *result = remain * num / den + major * num; 60453a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 60553a5a1b3Sopenharmony_ci} 60653a5a1b3Sopenharmony_ci 60753a5a1b3Sopenharmony_cistatic int update_filter(SpeexResamplerState *st) 60853a5a1b3Sopenharmony_ci{ 60953a5a1b3Sopenharmony_ci spx_uint32_t old_length = st->filt_len; 61053a5a1b3Sopenharmony_ci spx_uint32_t old_alloc_size = st->mem_alloc_size; 61153a5a1b3Sopenharmony_ci int use_direct; 61253a5a1b3Sopenharmony_ci spx_uint32_t min_sinc_table_length; 61353a5a1b3Sopenharmony_ci spx_uint32_t min_alloc_size; 61453a5a1b3Sopenharmony_ci 61553a5a1b3Sopenharmony_ci st->int_advance = st->num_rate/st->den_rate; 61653a5a1b3Sopenharmony_ci st->frac_advance = st->num_rate%st->den_rate; 61753a5a1b3Sopenharmony_ci st->oversample = quality_map[st->quality].oversample; 61853a5a1b3Sopenharmony_ci st->filt_len = quality_map[st->quality].base_length; 61953a5a1b3Sopenharmony_ci 62053a5a1b3Sopenharmony_ci if (st->num_rate > st->den_rate) 62153a5a1b3Sopenharmony_ci { 62253a5a1b3Sopenharmony_ci /* down-sampling */ 62353a5a1b3Sopenharmony_ci st->cutoff = quality_map[st->quality].downsample_bandwidth * st->den_rate / st->num_rate; 62453a5a1b3Sopenharmony_ci if (multiply_frac(&st->filt_len,st->filt_len,st->num_rate,st->den_rate) != RESAMPLER_ERR_SUCCESS) 62553a5a1b3Sopenharmony_ci goto fail; 62653a5a1b3Sopenharmony_ci /* Round up to make sure we have a multiple of 8 for SSE */ 62753a5a1b3Sopenharmony_ci st->filt_len = ((st->filt_len-1)&(~0x7))+8; 62853a5a1b3Sopenharmony_ci if (2*st->den_rate < st->num_rate) 62953a5a1b3Sopenharmony_ci st->oversample >>= 1; 63053a5a1b3Sopenharmony_ci if (4*st->den_rate < st->num_rate) 63153a5a1b3Sopenharmony_ci st->oversample >>= 1; 63253a5a1b3Sopenharmony_ci if (8*st->den_rate < st->num_rate) 63353a5a1b3Sopenharmony_ci st->oversample >>= 1; 63453a5a1b3Sopenharmony_ci if (16*st->den_rate < st->num_rate) 63553a5a1b3Sopenharmony_ci st->oversample >>= 1; 63653a5a1b3Sopenharmony_ci if (st->oversample < 1) 63753a5a1b3Sopenharmony_ci st->oversample = 1; 63853a5a1b3Sopenharmony_ci } else { 63953a5a1b3Sopenharmony_ci /* up-sampling */ 64053a5a1b3Sopenharmony_ci st->cutoff = quality_map[st->quality].upsample_bandwidth; 64153a5a1b3Sopenharmony_ci } 64253a5a1b3Sopenharmony_ci 64353a5a1b3Sopenharmony_ci#ifdef RESAMPLE_FULL_SINC_TABLE 64453a5a1b3Sopenharmony_ci use_direct = 1; 64553a5a1b3Sopenharmony_ci if (INT_MAX/sizeof(spx_word16_t)/st->den_rate < st->filt_len) 64653a5a1b3Sopenharmony_ci goto fail; 64753a5a1b3Sopenharmony_ci#else 64853a5a1b3Sopenharmony_ci /* Choose the resampling type that requires the least amount of memory */ 64953a5a1b3Sopenharmony_ci use_direct = st->filt_len*st->den_rate <= st->filt_len*st->oversample+8 65053a5a1b3Sopenharmony_ci && INT_MAX/sizeof(spx_word16_t)/st->den_rate >= st->filt_len; 65153a5a1b3Sopenharmony_ci#endif 65253a5a1b3Sopenharmony_ci if (use_direct) 65353a5a1b3Sopenharmony_ci { 65453a5a1b3Sopenharmony_ci min_sinc_table_length = st->filt_len*st->den_rate; 65553a5a1b3Sopenharmony_ci } else { 65653a5a1b3Sopenharmony_ci if ((INT_MAX/sizeof(spx_word16_t)-8)/st->oversample < st->filt_len) 65753a5a1b3Sopenharmony_ci goto fail; 65853a5a1b3Sopenharmony_ci 65953a5a1b3Sopenharmony_ci min_sinc_table_length = st->filt_len*st->oversample+8; 66053a5a1b3Sopenharmony_ci } 66153a5a1b3Sopenharmony_ci if (st->sinc_table_length < min_sinc_table_length) 66253a5a1b3Sopenharmony_ci { 66353a5a1b3Sopenharmony_ci spx_word16_t *sinc_table = (spx_word16_t *)speex_realloc(st->sinc_table,min_sinc_table_length*sizeof(spx_word16_t)); 66453a5a1b3Sopenharmony_ci if (!sinc_table) 66553a5a1b3Sopenharmony_ci goto fail; 66653a5a1b3Sopenharmony_ci 66753a5a1b3Sopenharmony_ci st->sinc_table = sinc_table; 66853a5a1b3Sopenharmony_ci st->sinc_table_length = min_sinc_table_length; 66953a5a1b3Sopenharmony_ci } 67053a5a1b3Sopenharmony_ci if (use_direct) 67153a5a1b3Sopenharmony_ci { 67253a5a1b3Sopenharmony_ci spx_uint32_t i; 67353a5a1b3Sopenharmony_ci for (i=0;i<st->den_rate;i++) 67453a5a1b3Sopenharmony_ci { 67553a5a1b3Sopenharmony_ci spx_int32_t j; 67653a5a1b3Sopenharmony_ci for (j=0;j<st->filt_len;j++) 67753a5a1b3Sopenharmony_ci { 67853a5a1b3Sopenharmony_ci st->sinc_table[i*st->filt_len+j] = sinc(st->cutoff,((j-(spx_int32_t)st->filt_len/2+1)-((float)i)/st->den_rate), st->filt_len, quality_map[st->quality].window_func); 67953a5a1b3Sopenharmony_ci } 68053a5a1b3Sopenharmony_ci } 68153a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 68253a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_direct_single; 68353a5a1b3Sopenharmony_ci#else 68453a5a1b3Sopenharmony_ci if (st->quality>8) 68553a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_direct_double; 68653a5a1b3Sopenharmony_ci else 68753a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_direct_single; 68853a5a1b3Sopenharmony_ci#endif 68953a5a1b3Sopenharmony_ci /*fprintf (stderr, "resampler uses direct sinc table and normalised cutoff %f\n", cutoff);*/ 69053a5a1b3Sopenharmony_ci } else { 69153a5a1b3Sopenharmony_ci spx_int32_t i; 69253a5a1b3Sopenharmony_ci for (i=-4;i<(spx_int32_t)(st->oversample*st->filt_len+4);i++) 69353a5a1b3Sopenharmony_ci st->sinc_table[i+4] = sinc(st->cutoff,(i/(float)st->oversample - st->filt_len/2), st->filt_len, quality_map[st->quality].window_func); 69453a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 69553a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_interpolate_single; 69653a5a1b3Sopenharmony_ci#else 69753a5a1b3Sopenharmony_ci if (st->quality>8) 69853a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_interpolate_double; 69953a5a1b3Sopenharmony_ci else 70053a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_interpolate_single; 70153a5a1b3Sopenharmony_ci#endif 70253a5a1b3Sopenharmony_ci /*fprintf (stderr, "resampler uses interpolated sinc table and normalised cutoff %f\n", cutoff);*/ 70353a5a1b3Sopenharmony_ci } 70453a5a1b3Sopenharmony_ci 70553a5a1b3Sopenharmony_ci /* Here's the place where we update the filter memory to take into account 70653a5a1b3Sopenharmony_ci the change in filter length. It's probably the messiest part of the code 70753a5a1b3Sopenharmony_ci due to handling of lots of corner cases. */ 70853a5a1b3Sopenharmony_ci 70953a5a1b3Sopenharmony_ci /* Adding buffer_size to filt_len won't overflow here because filt_len 71053a5a1b3Sopenharmony_ci could be multiplied by sizeof(spx_word16_t) above. */ 71153a5a1b3Sopenharmony_ci min_alloc_size = st->filt_len-1 + st->buffer_size; 71253a5a1b3Sopenharmony_ci if (min_alloc_size > st->mem_alloc_size) 71353a5a1b3Sopenharmony_ci { 71453a5a1b3Sopenharmony_ci spx_word16_t *mem; 71553a5a1b3Sopenharmony_ci if (INT_MAX/sizeof(spx_word16_t)/st->nb_channels < min_alloc_size) 71653a5a1b3Sopenharmony_ci goto fail; 71753a5a1b3Sopenharmony_ci else if (!(mem = (spx_word16_t*)speex_realloc(st->mem, st->nb_channels*min_alloc_size * sizeof(*mem)))) 71853a5a1b3Sopenharmony_ci goto fail; 71953a5a1b3Sopenharmony_ci 72053a5a1b3Sopenharmony_ci st->mem = mem; 72153a5a1b3Sopenharmony_ci st->mem_alloc_size = min_alloc_size; 72253a5a1b3Sopenharmony_ci } 72353a5a1b3Sopenharmony_ci if (!st->started) 72453a5a1b3Sopenharmony_ci { 72553a5a1b3Sopenharmony_ci spx_uint32_t i; 72653a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels*st->mem_alloc_size;i++) 72753a5a1b3Sopenharmony_ci st->mem[i] = 0; 72853a5a1b3Sopenharmony_ci /*speex_warning("reinit filter");*/ 72953a5a1b3Sopenharmony_ci } else if (st->filt_len > old_length) 73053a5a1b3Sopenharmony_ci { 73153a5a1b3Sopenharmony_ci spx_uint32_t i; 73253a5a1b3Sopenharmony_ci /* Increase the filter length */ 73353a5a1b3Sopenharmony_ci /*speex_warning("increase filter size");*/ 73453a5a1b3Sopenharmony_ci for (i=st->nb_channels;i--;) 73553a5a1b3Sopenharmony_ci { 73653a5a1b3Sopenharmony_ci spx_uint32_t j; 73753a5a1b3Sopenharmony_ci spx_uint32_t olen = old_length; 73853a5a1b3Sopenharmony_ci /*if (st->magic_samples[i])*/ 73953a5a1b3Sopenharmony_ci { 74053a5a1b3Sopenharmony_ci /* Try and remove the magic samples as if nothing had happened */ 74153a5a1b3Sopenharmony_ci 74253a5a1b3Sopenharmony_ci /* FIXME: This is wrong but for now we need it to avoid going over the array bounds */ 74353a5a1b3Sopenharmony_ci olen = old_length + 2*st->magic_samples[i]; 74453a5a1b3Sopenharmony_ci for (j=old_length-1+st->magic_samples[i];j--;) 74553a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]] = st->mem[i*old_alloc_size+j]; 74653a5a1b3Sopenharmony_ci for (j=0;j<st->magic_samples[i];j++) 74753a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+j] = 0; 74853a5a1b3Sopenharmony_ci st->magic_samples[i] = 0; 74953a5a1b3Sopenharmony_ci } 75053a5a1b3Sopenharmony_ci if (st->filt_len > olen) 75153a5a1b3Sopenharmony_ci { 75253a5a1b3Sopenharmony_ci /* If the new filter length is still bigger than the "augmented" length */ 75353a5a1b3Sopenharmony_ci /* Copy data going backward */ 75453a5a1b3Sopenharmony_ci for (j=0;j<olen-1;j++) 75553a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = st->mem[i*st->mem_alloc_size+(olen-2-j)]; 75653a5a1b3Sopenharmony_ci /* Then put zeros for lack of anything better */ 75753a5a1b3Sopenharmony_ci for (;j<st->filt_len-1;j++) 75853a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+(st->filt_len-2-j)] = 0; 75953a5a1b3Sopenharmony_ci /* Adjust last_sample */ 76053a5a1b3Sopenharmony_ci st->last_sample[i] += (st->filt_len - olen)/2; 76153a5a1b3Sopenharmony_ci } else { 76253a5a1b3Sopenharmony_ci /* Put back some of the magic! */ 76353a5a1b3Sopenharmony_ci st->magic_samples[i] = (olen - st->filt_len)/2; 76453a5a1b3Sopenharmony_ci for (j=0;j<st->filt_len-1+st->magic_samples[i];j++) 76553a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; 76653a5a1b3Sopenharmony_ci } 76753a5a1b3Sopenharmony_ci } 76853a5a1b3Sopenharmony_ci } else if (st->filt_len < old_length) 76953a5a1b3Sopenharmony_ci { 77053a5a1b3Sopenharmony_ci spx_uint32_t i; 77153a5a1b3Sopenharmony_ci /* Reduce filter length, this a bit tricky. We need to store some of the memory as "magic" 77253a5a1b3Sopenharmony_ci samples so they can be used directly as input the next time(s) */ 77353a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 77453a5a1b3Sopenharmony_ci { 77553a5a1b3Sopenharmony_ci spx_uint32_t j; 77653a5a1b3Sopenharmony_ci spx_uint32_t old_magic = st->magic_samples[i]; 77753a5a1b3Sopenharmony_ci st->magic_samples[i] = (old_length - st->filt_len)/2; 77853a5a1b3Sopenharmony_ci /* We must copy some of the memory that's no longer used */ 77953a5a1b3Sopenharmony_ci /* Copy data going backward */ 78053a5a1b3Sopenharmony_ci for (j=0;j<st->filt_len-1+st->magic_samples[i]+old_magic;j++) 78153a5a1b3Sopenharmony_ci st->mem[i*st->mem_alloc_size+j] = st->mem[i*st->mem_alloc_size+j+st->magic_samples[i]]; 78253a5a1b3Sopenharmony_ci st->magic_samples[i] += old_magic; 78353a5a1b3Sopenharmony_ci } 78453a5a1b3Sopenharmony_ci } 78553a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 78653a5a1b3Sopenharmony_ci 78753a5a1b3Sopenharmony_cifail: 78853a5a1b3Sopenharmony_ci st->resampler_ptr = resampler_basic_zero; 78953a5a1b3Sopenharmony_ci /* st->mem may still contain consumed input samples for the filter. 79053a5a1b3Sopenharmony_ci Restore filt_len so that filt_len - 1 still points to the position after 79153a5a1b3Sopenharmony_ci the last of these samples. */ 79253a5a1b3Sopenharmony_ci st->filt_len = old_length; 79353a5a1b3Sopenharmony_ci return RESAMPLER_ERR_ALLOC_FAILED; 79453a5a1b3Sopenharmony_ci} 79553a5a1b3Sopenharmony_ci 79653a5a1b3Sopenharmony_ciEXPORT SpeexResamplerState *speex_resampler_init(spx_uint32_t nb_channels, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) 79753a5a1b3Sopenharmony_ci{ 79853a5a1b3Sopenharmony_ci return speex_resampler_init_frac(nb_channels, in_rate, out_rate, in_rate, out_rate, quality, err); 79953a5a1b3Sopenharmony_ci} 80053a5a1b3Sopenharmony_ci 80153a5a1b3Sopenharmony_ciEXPORT SpeexResamplerState *speex_resampler_init_frac(spx_uint32_t nb_channels, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate, int quality, int *err) 80253a5a1b3Sopenharmony_ci{ 80353a5a1b3Sopenharmony_ci SpeexResamplerState *st; 80453a5a1b3Sopenharmony_ci int filter_err; 80553a5a1b3Sopenharmony_ci 80653a5a1b3Sopenharmony_ci if (nb_channels == 0 || ratio_num == 0 || ratio_den == 0 || quality > 10 || quality < 0) 80753a5a1b3Sopenharmony_ci { 80853a5a1b3Sopenharmony_ci if (err) 80953a5a1b3Sopenharmony_ci *err = RESAMPLER_ERR_INVALID_ARG; 81053a5a1b3Sopenharmony_ci return NULL; 81153a5a1b3Sopenharmony_ci } 81253a5a1b3Sopenharmony_ci st = (SpeexResamplerState *)speex_alloc(sizeof(SpeexResamplerState)); 81353a5a1b3Sopenharmony_ci if (!st) 81453a5a1b3Sopenharmony_ci { 81553a5a1b3Sopenharmony_ci if (err) 81653a5a1b3Sopenharmony_ci *err = RESAMPLER_ERR_ALLOC_FAILED; 81753a5a1b3Sopenharmony_ci return NULL; 81853a5a1b3Sopenharmony_ci } 81953a5a1b3Sopenharmony_ci st->initialised = 0; 82053a5a1b3Sopenharmony_ci st->started = 0; 82153a5a1b3Sopenharmony_ci st->in_rate = 0; 82253a5a1b3Sopenharmony_ci st->out_rate = 0; 82353a5a1b3Sopenharmony_ci st->num_rate = 0; 82453a5a1b3Sopenharmony_ci st->den_rate = 0; 82553a5a1b3Sopenharmony_ci st->quality = -1; 82653a5a1b3Sopenharmony_ci st->sinc_table_length = 0; 82753a5a1b3Sopenharmony_ci st->mem_alloc_size = 0; 82853a5a1b3Sopenharmony_ci st->filt_len = 0; 82953a5a1b3Sopenharmony_ci st->mem = 0; 83053a5a1b3Sopenharmony_ci st->resampler_ptr = 0; 83153a5a1b3Sopenharmony_ci 83253a5a1b3Sopenharmony_ci st->cutoff = 1.f; 83353a5a1b3Sopenharmony_ci st->nb_channels = nb_channels; 83453a5a1b3Sopenharmony_ci st->in_stride = 1; 83553a5a1b3Sopenharmony_ci st->out_stride = 1; 83653a5a1b3Sopenharmony_ci 83753a5a1b3Sopenharmony_ci st->buffer_size = 160; 83853a5a1b3Sopenharmony_ci 83953a5a1b3Sopenharmony_ci /* Per channel data */ 84053a5a1b3Sopenharmony_ci if (!(st->last_sample = (spx_int32_t*)speex_alloc(nb_channels*sizeof(spx_int32_t)))) 84153a5a1b3Sopenharmony_ci goto fail; 84253a5a1b3Sopenharmony_ci if (!(st->magic_samples = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)))) 84353a5a1b3Sopenharmony_ci goto fail; 84453a5a1b3Sopenharmony_ci if (!(st->samp_frac_num = (spx_uint32_t*)speex_alloc(nb_channels*sizeof(spx_uint32_t)))) 84553a5a1b3Sopenharmony_ci goto fail; 84653a5a1b3Sopenharmony_ci 84753a5a1b3Sopenharmony_ci speex_resampler_set_quality(st, quality); 84853a5a1b3Sopenharmony_ci speex_resampler_set_rate_frac(st, ratio_num, ratio_den, in_rate, out_rate); 84953a5a1b3Sopenharmony_ci 85053a5a1b3Sopenharmony_ci filter_err = update_filter(st); 85153a5a1b3Sopenharmony_ci if (filter_err == RESAMPLER_ERR_SUCCESS) 85253a5a1b3Sopenharmony_ci { 85353a5a1b3Sopenharmony_ci st->initialised = 1; 85453a5a1b3Sopenharmony_ci } else { 85553a5a1b3Sopenharmony_ci speex_resampler_destroy(st); 85653a5a1b3Sopenharmony_ci st = NULL; 85753a5a1b3Sopenharmony_ci } 85853a5a1b3Sopenharmony_ci if (err) 85953a5a1b3Sopenharmony_ci *err = filter_err; 86053a5a1b3Sopenharmony_ci 86153a5a1b3Sopenharmony_ci return st; 86253a5a1b3Sopenharmony_ci 86353a5a1b3Sopenharmony_cifail: 86453a5a1b3Sopenharmony_ci if (err) 86553a5a1b3Sopenharmony_ci *err = RESAMPLER_ERR_ALLOC_FAILED; 86653a5a1b3Sopenharmony_ci speex_resampler_destroy(st); 86753a5a1b3Sopenharmony_ci return NULL; 86853a5a1b3Sopenharmony_ci} 86953a5a1b3Sopenharmony_ci 87053a5a1b3Sopenharmony_ciEXPORT void speex_resampler_destroy(SpeexResamplerState *st) 87153a5a1b3Sopenharmony_ci{ 87253a5a1b3Sopenharmony_ci speex_free(st->mem); 87353a5a1b3Sopenharmony_ci speex_free(st->sinc_table); 87453a5a1b3Sopenharmony_ci speex_free(st->last_sample); 87553a5a1b3Sopenharmony_ci speex_free(st->magic_samples); 87653a5a1b3Sopenharmony_ci speex_free(st->samp_frac_num); 87753a5a1b3Sopenharmony_ci speex_free(st); 87853a5a1b3Sopenharmony_ci} 87953a5a1b3Sopenharmony_ci 88053a5a1b3Sopenharmony_cistatic int speex_resampler_process_native(SpeexResamplerState *st, spx_uint32_t channel_index, spx_uint32_t *in_len, spx_word16_t *out, spx_uint32_t *out_len) 88153a5a1b3Sopenharmony_ci{ 88253a5a1b3Sopenharmony_ci int j=0; 88353a5a1b3Sopenharmony_ci const int N = st->filt_len; 88453a5a1b3Sopenharmony_ci int out_sample = 0; 88553a5a1b3Sopenharmony_ci spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; 88653a5a1b3Sopenharmony_ci spx_uint32_t ilen; 88753a5a1b3Sopenharmony_ci 88853a5a1b3Sopenharmony_ci st->started = 1; 88953a5a1b3Sopenharmony_ci 89053a5a1b3Sopenharmony_ci /* Call the right resampler through the function ptr */ 89153a5a1b3Sopenharmony_ci out_sample = st->resampler_ptr(st, channel_index, mem, in_len, out, out_len); 89253a5a1b3Sopenharmony_ci 89353a5a1b3Sopenharmony_ci if (st->last_sample[channel_index] < (spx_int32_t)*in_len) 89453a5a1b3Sopenharmony_ci *in_len = st->last_sample[channel_index]; 89553a5a1b3Sopenharmony_ci *out_len = out_sample; 89653a5a1b3Sopenharmony_ci st->last_sample[channel_index] -= *in_len; 89753a5a1b3Sopenharmony_ci 89853a5a1b3Sopenharmony_ci ilen = *in_len; 89953a5a1b3Sopenharmony_ci 90053a5a1b3Sopenharmony_ci for(j=0;j<N-1;++j) 90153a5a1b3Sopenharmony_ci mem[j] = mem[j+ilen]; 90253a5a1b3Sopenharmony_ci 90353a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 90453a5a1b3Sopenharmony_ci} 90553a5a1b3Sopenharmony_ci 90653a5a1b3Sopenharmony_cistatic int speex_resampler_magic(SpeexResamplerState *st, spx_uint32_t channel_index, spx_word16_t **out, spx_uint32_t out_len) { 90753a5a1b3Sopenharmony_ci spx_uint32_t tmp_in_len = st->magic_samples[channel_index]; 90853a5a1b3Sopenharmony_ci spx_word16_t *mem = st->mem + channel_index * st->mem_alloc_size; 90953a5a1b3Sopenharmony_ci const int N = st->filt_len; 91053a5a1b3Sopenharmony_ci 91153a5a1b3Sopenharmony_ci speex_resampler_process_native(st, channel_index, &tmp_in_len, *out, &out_len); 91253a5a1b3Sopenharmony_ci 91353a5a1b3Sopenharmony_ci st->magic_samples[channel_index] -= tmp_in_len; 91453a5a1b3Sopenharmony_ci 91553a5a1b3Sopenharmony_ci /* If we couldn't process all "magic" input samples, save the rest for next time */ 91653a5a1b3Sopenharmony_ci if (st->magic_samples[channel_index]) 91753a5a1b3Sopenharmony_ci { 91853a5a1b3Sopenharmony_ci spx_uint32_t i; 91953a5a1b3Sopenharmony_ci for (i=0;i<st->magic_samples[channel_index];i++) 92053a5a1b3Sopenharmony_ci mem[N-1+i]=mem[N-1+i+tmp_in_len]; 92153a5a1b3Sopenharmony_ci } 92253a5a1b3Sopenharmony_ci *out += out_len*st->out_stride; 92353a5a1b3Sopenharmony_ci return out_len; 92453a5a1b3Sopenharmony_ci} 92553a5a1b3Sopenharmony_ci 92653a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 92753a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) 92853a5a1b3Sopenharmony_ci#else 92953a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) 93053a5a1b3Sopenharmony_ci#endif 93153a5a1b3Sopenharmony_ci{ 93253a5a1b3Sopenharmony_ci int j; 93353a5a1b3Sopenharmony_ci spx_uint32_t ilen = *in_len; 93453a5a1b3Sopenharmony_ci spx_uint32_t olen = *out_len; 93553a5a1b3Sopenharmony_ci spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; 93653a5a1b3Sopenharmony_ci const int filt_offs = st->filt_len - 1; 93753a5a1b3Sopenharmony_ci const spx_uint32_t xlen = st->mem_alloc_size - filt_offs; 93853a5a1b3Sopenharmony_ci const int istride = st->in_stride; 93953a5a1b3Sopenharmony_ci 94053a5a1b3Sopenharmony_ci if (st->magic_samples[channel_index]) 94153a5a1b3Sopenharmony_ci olen -= speex_resampler_magic(st, channel_index, &out, olen); 94253a5a1b3Sopenharmony_ci if (! st->magic_samples[channel_index]) { 94353a5a1b3Sopenharmony_ci while (ilen && olen) { 94453a5a1b3Sopenharmony_ci spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; 94553a5a1b3Sopenharmony_ci spx_uint32_t ochunk = olen; 94653a5a1b3Sopenharmony_ci 94753a5a1b3Sopenharmony_ci if (in) { 94853a5a1b3Sopenharmony_ci for(j=0;j<ichunk;++j) 94953a5a1b3Sopenharmony_ci x[j+filt_offs]=in[j*istride]; 95053a5a1b3Sopenharmony_ci } else { 95153a5a1b3Sopenharmony_ci for(j=0;j<ichunk;++j) 95253a5a1b3Sopenharmony_ci x[j+filt_offs]=0; 95353a5a1b3Sopenharmony_ci } 95453a5a1b3Sopenharmony_ci speex_resampler_process_native(st, channel_index, &ichunk, out, &ochunk); 95553a5a1b3Sopenharmony_ci ilen -= ichunk; 95653a5a1b3Sopenharmony_ci olen -= ochunk; 95753a5a1b3Sopenharmony_ci out += ochunk * st->out_stride; 95853a5a1b3Sopenharmony_ci if (in) 95953a5a1b3Sopenharmony_ci in += ichunk * istride; 96053a5a1b3Sopenharmony_ci } 96153a5a1b3Sopenharmony_ci } 96253a5a1b3Sopenharmony_ci *in_len -= ilen; 96353a5a1b3Sopenharmony_ci *out_len -= olen; 96453a5a1b3Sopenharmony_ci return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; 96553a5a1b3Sopenharmony_ci} 96653a5a1b3Sopenharmony_ci 96753a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 96853a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_float(SpeexResamplerState *st, spx_uint32_t channel_index, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) 96953a5a1b3Sopenharmony_ci#else 97053a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_int(SpeexResamplerState *st, spx_uint32_t channel_index, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) 97153a5a1b3Sopenharmony_ci#endif 97253a5a1b3Sopenharmony_ci{ 97353a5a1b3Sopenharmony_ci int j; 97453a5a1b3Sopenharmony_ci const int istride_save = st->in_stride; 97553a5a1b3Sopenharmony_ci const int ostride_save = st->out_stride; 97653a5a1b3Sopenharmony_ci spx_uint32_t ilen = *in_len; 97753a5a1b3Sopenharmony_ci spx_uint32_t olen = *out_len; 97853a5a1b3Sopenharmony_ci spx_word16_t *x = st->mem + channel_index * st->mem_alloc_size; 97953a5a1b3Sopenharmony_ci const spx_uint32_t xlen = st->mem_alloc_size - (st->filt_len - 1); 98053a5a1b3Sopenharmony_ci#ifdef VAR_ARRAYS 98153a5a1b3Sopenharmony_ci const unsigned int ylen = (olen < FIXED_STACK_ALLOC) ? olen : FIXED_STACK_ALLOC; 98253a5a1b3Sopenharmony_ci spx_word16_t ystack[ylen]; 98353a5a1b3Sopenharmony_ci#else 98453a5a1b3Sopenharmony_ci const unsigned int ylen = FIXED_STACK_ALLOC; 98553a5a1b3Sopenharmony_ci spx_word16_t ystack[FIXED_STACK_ALLOC]; 98653a5a1b3Sopenharmony_ci#endif 98753a5a1b3Sopenharmony_ci 98853a5a1b3Sopenharmony_ci st->out_stride = 1; 98953a5a1b3Sopenharmony_ci 99053a5a1b3Sopenharmony_ci while (ilen && olen) { 99153a5a1b3Sopenharmony_ci spx_word16_t *y = ystack; 99253a5a1b3Sopenharmony_ci spx_uint32_t ichunk = (ilen > xlen) ? xlen : ilen; 99353a5a1b3Sopenharmony_ci spx_uint32_t ochunk = (olen > ylen) ? ylen : olen; 99453a5a1b3Sopenharmony_ci spx_uint32_t omagic = 0; 99553a5a1b3Sopenharmony_ci 99653a5a1b3Sopenharmony_ci if (st->magic_samples[channel_index]) { 99753a5a1b3Sopenharmony_ci omagic = speex_resampler_magic(st, channel_index, &y, ochunk); 99853a5a1b3Sopenharmony_ci ochunk -= omagic; 99953a5a1b3Sopenharmony_ci olen -= omagic; 100053a5a1b3Sopenharmony_ci } 100153a5a1b3Sopenharmony_ci if (! st->magic_samples[channel_index]) { 100253a5a1b3Sopenharmony_ci if (in) { 100353a5a1b3Sopenharmony_ci for(j=0;j<ichunk;++j) 100453a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 100553a5a1b3Sopenharmony_ci x[j+st->filt_len-1]=WORD2INT(in[j*istride_save]); 100653a5a1b3Sopenharmony_ci#else 100753a5a1b3Sopenharmony_ci x[j+st->filt_len-1]=in[j*istride_save]; 100853a5a1b3Sopenharmony_ci#endif 100953a5a1b3Sopenharmony_ci } else { 101053a5a1b3Sopenharmony_ci for(j=0;j<ichunk;++j) 101153a5a1b3Sopenharmony_ci x[j+st->filt_len-1]=0; 101253a5a1b3Sopenharmony_ci } 101353a5a1b3Sopenharmony_ci 101453a5a1b3Sopenharmony_ci speex_resampler_process_native(st, channel_index, &ichunk, y, &ochunk); 101553a5a1b3Sopenharmony_ci } else { 101653a5a1b3Sopenharmony_ci ichunk = 0; 101753a5a1b3Sopenharmony_ci ochunk = 0; 101853a5a1b3Sopenharmony_ci } 101953a5a1b3Sopenharmony_ci 102053a5a1b3Sopenharmony_ci for (j=0;j<ochunk+omagic;++j) 102153a5a1b3Sopenharmony_ci#ifdef FIXED_POINT 102253a5a1b3Sopenharmony_ci out[j*ostride_save] = ystack[j]; 102353a5a1b3Sopenharmony_ci#else 102453a5a1b3Sopenharmony_ci out[j*ostride_save] = WORD2INT(ystack[j]); 102553a5a1b3Sopenharmony_ci#endif 102653a5a1b3Sopenharmony_ci 102753a5a1b3Sopenharmony_ci ilen -= ichunk; 102853a5a1b3Sopenharmony_ci olen -= ochunk; 102953a5a1b3Sopenharmony_ci out += (ochunk+omagic) * ostride_save; 103053a5a1b3Sopenharmony_ci if (in) 103153a5a1b3Sopenharmony_ci in += ichunk * istride_save; 103253a5a1b3Sopenharmony_ci } 103353a5a1b3Sopenharmony_ci st->out_stride = ostride_save; 103453a5a1b3Sopenharmony_ci *in_len -= ilen; 103553a5a1b3Sopenharmony_ci *out_len -= olen; 103653a5a1b3Sopenharmony_ci 103753a5a1b3Sopenharmony_ci return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; 103853a5a1b3Sopenharmony_ci} 103953a5a1b3Sopenharmony_ci 104053a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_interleaved_float(SpeexResamplerState *st, const float *in, spx_uint32_t *in_len, float *out, spx_uint32_t *out_len) 104153a5a1b3Sopenharmony_ci{ 104253a5a1b3Sopenharmony_ci spx_uint32_t i; 104353a5a1b3Sopenharmony_ci int istride_save, ostride_save; 104453a5a1b3Sopenharmony_ci spx_uint32_t bak_out_len = *out_len; 104553a5a1b3Sopenharmony_ci spx_uint32_t bak_in_len = *in_len; 104653a5a1b3Sopenharmony_ci istride_save = st->in_stride; 104753a5a1b3Sopenharmony_ci ostride_save = st->out_stride; 104853a5a1b3Sopenharmony_ci st->in_stride = st->out_stride = st->nb_channels; 104953a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 105053a5a1b3Sopenharmony_ci { 105153a5a1b3Sopenharmony_ci *out_len = bak_out_len; 105253a5a1b3Sopenharmony_ci *in_len = bak_in_len; 105353a5a1b3Sopenharmony_ci if (in != NULL) 105453a5a1b3Sopenharmony_ci speex_resampler_process_float(st, i, in+i, in_len, out+i, out_len); 105553a5a1b3Sopenharmony_ci else 105653a5a1b3Sopenharmony_ci speex_resampler_process_float(st, i, NULL, in_len, out+i, out_len); 105753a5a1b3Sopenharmony_ci } 105853a5a1b3Sopenharmony_ci st->in_stride = istride_save; 105953a5a1b3Sopenharmony_ci st->out_stride = ostride_save; 106053a5a1b3Sopenharmony_ci return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; 106153a5a1b3Sopenharmony_ci} 106253a5a1b3Sopenharmony_ci 106353a5a1b3Sopenharmony_ciEXPORT int speex_resampler_process_interleaved_int(SpeexResamplerState *st, const spx_int16_t *in, spx_uint32_t *in_len, spx_int16_t *out, spx_uint32_t *out_len) 106453a5a1b3Sopenharmony_ci{ 106553a5a1b3Sopenharmony_ci spx_uint32_t i; 106653a5a1b3Sopenharmony_ci int istride_save, ostride_save; 106753a5a1b3Sopenharmony_ci spx_uint32_t bak_out_len = *out_len; 106853a5a1b3Sopenharmony_ci spx_uint32_t bak_in_len = *in_len; 106953a5a1b3Sopenharmony_ci istride_save = st->in_stride; 107053a5a1b3Sopenharmony_ci ostride_save = st->out_stride; 107153a5a1b3Sopenharmony_ci st->in_stride = st->out_stride = st->nb_channels; 107253a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 107353a5a1b3Sopenharmony_ci { 107453a5a1b3Sopenharmony_ci *out_len = bak_out_len; 107553a5a1b3Sopenharmony_ci *in_len = bak_in_len; 107653a5a1b3Sopenharmony_ci if (in != NULL) 107753a5a1b3Sopenharmony_ci speex_resampler_process_int(st, i, in+i, in_len, out+i, out_len); 107853a5a1b3Sopenharmony_ci else 107953a5a1b3Sopenharmony_ci speex_resampler_process_int(st, i, NULL, in_len, out+i, out_len); 108053a5a1b3Sopenharmony_ci } 108153a5a1b3Sopenharmony_ci st->in_stride = istride_save; 108253a5a1b3Sopenharmony_ci st->out_stride = ostride_save; 108353a5a1b3Sopenharmony_ci return st->resampler_ptr == resampler_basic_zero ? RESAMPLER_ERR_ALLOC_FAILED : RESAMPLER_ERR_SUCCESS; 108453a5a1b3Sopenharmony_ci} 108553a5a1b3Sopenharmony_ci 108653a5a1b3Sopenharmony_ciEXPORT int speex_resampler_set_rate(SpeexResamplerState *st, spx_uint32_t in_rate, spx_uint32_t out_rate) 108753a5a1b3Sopenharmony_ci{ 108853a5a1b3Sopenharmony_ci return speex_resampler_set_rate_frac(st, in_rate, out_rate, in_rate, out_rate); 108953a5a1b3Sopenharmony_ci} 109053a5a1b3Sopenharmony_ci 109153a5a1b3Sopenharmony_ciEXPORT void speex_resampler_get_rate(SpeexResamplerState *st, spx_uint32_t *in_rate, spx_uint32_t *out_rate) 109253a5a1b3Sopenharmony_ci{ 109353a5a1b3Sopenharmony_ci *in_rate = st->in_rate; 109453a5a1b3Sopenharmony_ci *out_rate = st->out_rate; 109553a5a1b3Sopenharmony_ci} 109653a5a1b3Sopenharmony_ci 109753a5a1b3Sopenharmony_cistatic inline spx_uint32_t compute_gcd(spx_uint32_t a, spx_uint32_t b) 109853a5a1b3Sopenharmony_ci{ 109953a5a1b3Sopenharmony_ci while (b != 0) 110053a5a1b3Sopenharmony_ci { 110153a5a1b3Sopenharmony_ci spx_uint32_t temp = a; 110253a5a1b3Sopenharmony_ci 110353a5a1b3Sopenharmony_ci a = b; 110453a5a1b3Sopenharmony_ci b = temp % b; 110553a5a1b3Sopenharmony_ci } 110653a5a1b3Sopenharmony_ci return a; 110753a5a1b3Sopenharmony_ci} 110853a5a1b3Sopenharmony_ci 110953a5a1b3Sopenharmony_ciEXPORT int speex_resampler_set_rate_frac(SpeexResamplerState *st, spx_uint32_t ratio_num, spx_uint32_t ratio_den, spx_uint32_t in_rate, spx_uint32_t out_rate) 111053a5a1b3Sopenharmony_ci{ 111153a5a1b3Sopenharmony_ci spx_uint32_t fact; 111253a5a1b3Sopenharmony_ci spx_uint32_t old_den; 111353a5a1b3Sopenharmony_ci spx_uint32_t i; 111453a5a1b3Sopenharmony_ci 111553a5a1b3Sopenharmony_ci if (ratio_num == 0 || ratio_den == 0) 111653a5a1b3Sopenharmony_ci return RESAMPLER_ERR_INVALID_ARG; 111753a5a1b3Sopenharmony_ci 111853a5a1b3Sopenharmony_ci if (st->in_rate == in_rate && st->out_rate == out_rate && st->num_rate == ratio_num && st->den_rate == ratio_den) 111953a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 112053a5a1b3Sopenharmony_ci 112153a5a1b3Sopenharmony_ci old_den = st->den_rate; 112253a5a1b3Sopenharmony_ci st->in_rate = in_rate; 112353a5a1b3Sopenharmony_ci st->out_rate = out_rate; 112453a5a1b3Sopenharmony_ci st->num_rate = ratio_num; 112553a5a1b3Sopenharmony_ci st->den_rate = ratio_den; 112653a5a1b3Sopenharmony_ci 112753a5a1b3Sopenharmony_ci fact = compute_gcd(st->num_rate, st->den_rate); 112853a5a1b3Sopenharmony_ci 112953a5a1b3Sopenharmony_ci st->num_rate /= fact; 113053a5a1b3Sopenharmony_ci st->den_rate /= fact; 113153a5a1b3Sopenharmony_ci 113253a5a1b3Sopenharmony_ci if (old_den > 0) 113353a5a1b3Sopenharmony_ci { 113453a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 113553a5a1b3Sopenharmony_ci { 113653a5a1b3Sopenharmony_ci if (multiply_frac(&st->samp_frac_num[i],st->samp_frac_num[i],st->den_rate,old_den) != RESAMPLER_ERR_SUCCESS) 113753a5a1b3Sopenharmony_ci return RESAMPLER_ERR_OVERFLOW; 113853a5a1b3Sopenharmony_ci /* Safety net */ 113953a5a1b3Sopenharmony_ci if (st->samp_frac_num[i] >= st->den_rate) 114053a5a1b3Sopenharmony_ci st->samp_frac_num[i] = st->den_rate-1; 114153a5a1b3Sopenharmony_ci } 114253a5a1b3Sopenharmony_ci } 114353a5a1b3Sopenharmony_ci 114453a5a1b3Sopenharmony_ci if (st->initialised) 114553a5a1b3Sopenharmony_ci return update_filter(st); 114653a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 114753a5a1b3Sopenharmony_ci} 114853a5a1b3Sopenharmony_ci 114953a5a1b3Sopenharmony_ciEXPORT void speex_resampler_get_ratio(SpeexResamplerState *st, spx_uint32_t *ratio_num, spx_uint32_t *ratio_den) 115053a5a1b3Sopenharmony_ci{ 115153a5a1b3Sopenharmony_ci *ratio_num = st->num_rate; 115253a5a1b3Sopenharmony_ci *ratio_den = st->den_rate; 115353a5a1b3Sopenharmony_ci} 115453a5a1b3Sopenharmony_ci 115553a5a1b3Sopenharmony_ciEXPORT int speex_resampler_set_quality(SpeexResamplerState *st, int quality) 115653a5a1b3Sopenharmony_ci{ 115753a5a1b3Sopenharmony_ci if (quality > 10 || quality < 0) 115853a5a1b3Sopenharmony_ci return RESAMPLER_ERR_INVALID_ARG; 115953a5a1b3Sopenharmony_ci if (st->quality == quality) 116053a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 116153a5a1b3Sopenharmony_ci st->quality = quality; 116253a5a1b3Sopenharmony_ci if (st->initialised) 116353a5a1b3Sopenharmony_ci return update_filter(st); 116453a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 116553a5a1b3Sopenharmony_ci} 116653a5a1b3Sopenharmony_ci 116753a5a1b3Sopenharmony_ciEXPORT void speex_resampler_get_quality(SpeexResamplerState *st, int *quality) 116853a5a1b3Sopenharmony_ci{ 116953a5a1b3Sopenharmony_ci *quality = st->quality; 117053a5a1b3Sopenharmony_ci} 117153a5a1b3Sopenharmony_ci 117253a5a1b3Sopenharmony_ciEXPORT void speex_resampler_set_input_stride(SpeexResamplerState *st, spx_uint32_t stride) 117353a5a1b3Sopenharmony_ci{ 117453a5a1b3Sopenharmony_ci st->in_stride = stride; 117553a5a1b3Sopenharmony_ci} 117653a5a1b3Sopenharmony_ci 117753a5a1b3Sopenharmony_ciEXPORT void speex_resampler_get_input_stride(SpeexResamplerState *st, spx_uint32_t *stride) 117853a5a1b3Sopenharmony_ci{ 117953a5a1b3Sopenharmony_ci *stride = st->in_stride; 118053a5a1b3Sopenharmony_ci} 118153a5a1b3Sopenharmony_ci 118253a5a1b3Sopenharmony_ciEXPORT void speex_resampler_set_output_stride(SpeexResamplerState *st, spx_uint32_t stride) 118353a5a1b3Sopenharmony_ci{ 118453a5a1b3Sopenharmony_ci st->out_stride = stride; 118553a5a1b3Sopenharmony_ci} 118653a5a1b3Sopenharmony_ci 118753a5a1b3Sopenharmony_ciEXPORT void speex_resampler_get_output_stride(SpeexResamplerState *st, spx_uint32_t *stride) 118853a5a1b3Sopenharmony_ci{ 118953a5a1b3Sopenharmony_ci *stride = st->out_stride; 119053a5a1b3Sopenharmony_ci} 119153a5a1b3Sopenharmony_ci 119253a5a1b3Sopenharmony_ciEXPORT int speex_resampler_get_input_latency(SpeexResamplerState *st) 119353a5a1b3Sopenharmony_ci{ 119453a5a1b3Sopenharmony_ci return st->filt_len / 2; 119553a5a1b3Sopenharmony_ci} 119653a5a1b3Sopenharmony_ci 119753a5a1b3Sopenharmony_ciEXPORT int speex_resampler_get_output_latency(SpeexResamplerState *st) 119853a5a1b3Sopenharmony_ci{ 119953a5a1b3Sopenharmony_ci return ((st->filt_len / 2) * st->den_rate + (st->num_rate >> 1)) / st->num_rate; 120053a5a1b3Sopenharmony_ci} 120153a5a1b3Sopenharmony_ci 120253a5a1b3Sopenharmony_ciEXPORT int speex_resampler_skip_zeros(SpeexResamplerState *st) 120353a5a1b3Sopenharmony_ci{ 120453a5a1b3Sopenharmony_ci spx_uint32_t i; 120553a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 120653a5a1b3Sopenharmony_ci st->last_sample[i] = st->filt_len/2; 120753a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 120853a5a1b3Sopenharmony_ci} 120953a5a1b3Sopenharmony_ci 121053a5a1b3Sopenharmony_ciEXPORT int speex_resampler_reset_mem(SpeexResamplerState *st) 121153a5a1b3Sopenharmony_ci{ 121253a5a1b3Sopenharmony_ci spx_uint32_t i; 121353a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels;i++) 121453a5a1b3Sopenharmony_ci { 121553a5a1b3Sopenharmony_ci st->last_sample[i] = 0; 121653a5a1b3Sopenharmony_ci st->magic_samples[i] = 0; 121753a5a1b3Sopenharmony_ci st->samp_frac_num[i] = 0; 121853a5a1b3Sopenharmony_ci } 121953a5a1b3Sopenharmony_ci for (i=0;i<st->nb_channels*st->mem_alloc_size;i++) 122053a5a1b3Sopenharmony_ci st->mem[i] = 0; 122153a5a1b3Sopenharmony_ci return RESAMPLER_ERR_SUCCESS; 122253a5a1b3Sopenharmony_ci} 122353a5a1b3Sopenharmony_ci 122453a5a1b3Sopenharmony_ciEXPORT const char *speex_resampler_strerror(int err) 122553a5a1b3Sopenharmony_ci{ 122653a5a1b3Sopenharmony_ci switch (err) 122753a5a1b3Sopenharmony_ci { 122853a5a1b3Sopenharmony_ci case RESAMPLER_ERR_SUCCESS: 122953a5a1b3Sopenharmony_ci return "Success."; 123053a5a1b3Sopenharmony_ci case RESAMPLER_ERR_ALLOC_FAILED: 123153a5a1b3Sopenharmony_ci return "Memory allocation failed."; 123253a5a1b3Sopenharmony_ci case RESAMPLER_ERR_BAD_STATE: 123353a5a1b3Sopenharmony_ci return "Bad resampler state."; 123453a5a1b3Sopenharmony_ci case RESAMPLER_ERR_INVALID_ARG: 123553a5a1b3Sopenharmony_ci return "Invalid argument."; 123653a5a1b3Sopenharmony_ci case RESAMPLER_ERR_PTR_OVERLAP: 123753a5a1b3Sopenharmony_ci return "Input and output buffers overlap."; 123853a5a1b3Sopenharmony_ci default: 123953a5a1b3Sopenharmony_ci return "Unknown error. Bad error code or strange version mismatch."; 124053a5a1b3Sopenharmony_ci } 124153a5a1b3Sopenharmony_ci} 1242