1// Protocol Buffers - Google's data interchange format 2// Copyright 2014 Google Inc. All rights reserved. 3// https://developers.google.com/protocol-buffers/ 4// 5// Redistribution and use in source and binary forms, with or without 6// modification, are permitted provided that the following conditions are 7// met: 8// 9// * Redistributions of source code must retain the above copyright 10// notice, this list of conditions and the following disclaimer. 11// * Redistributions in binary form must reproduce the above 12// copyright notice, this list of conditions and the following disclaimer 13// in the documentation and/or other materials provided with the 14// distribution. 15// * Neither the name of Google Inc. nor the names of its 16// contributors may be used to endorse or promote products derived from 17// this software without specific prior written permission. 18// 19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 30 31#include "protobuf.h" 32 33// ----------------------------------------------------------------------------- 34// Class/module creation from msgdefs and enumdefs, respectively. 35// ----------------------------------------------------------------------------- 36 37void* Message_data(void* msg) { 38 return ((uint8_t *)msg) + sizeof(MessageHeader); 39} 40 41void Message_mark(void* _self) { 42 MessageHeader* self = (MessageHeader *)_self; 43 layout_mark(self->descriptor->layout, Message_data(self)); 44} 45 46void Message_free(void* self) { 47 stringsink* unknown = ((MessageHeader *)self)->unknown_fields; 48 if (unknown != NULL) { 49 stringsink_uninit(unknown); 50 free(unknown); 51 } 52 xfree(self); 53} 54 55rb_data_type_t Message_type = { 56 "Message", 57 { Message_mark, Message_free, NULL }, 58}; 59 60VALUE Message_alloc(VALUE klass) { 61 VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); 62 Descriptor* desc = ruby_to_Descriptor(descriptor); 63 MessageHeader* msg; 64 VALUE ret; 65 66 if (desc->layout == NULL) { 67 create_layout(desc); 68 } 69 70 msg = (void*)ALLOC_N(uint8_t, sizeof(MessageHeader) + desc->layout->size); 71 msg->descriptor = desc; 72 msg->unknown_fields = NULL; 73 memcpy(Message_data(msg), desc->layout->empty_template, desc->layout->size); 74 75 ret = TypedData_Wrap_Struct(klass, &Message_type, msg); 76 rb_ivar_set(ret, descriptor_instancevar_interned, descriptor); 77 78 return ret; 79} 80 81static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) { 82 uint32_t oneof_case; 83 const upb_fielddef* f; 84 85 oneof_case = 86 slot_read_oneof_case(self->descriptor->layout, Message_data(self), o); 87 88 if (oneof_case == ONEOF_CASE_NONE) { 89 return NULL; 90 } 91 92 // oneof_case is a field index, so find that field. 93 f = upb_oneofdef_itof(o, oneof_case); 94 assert(f != NULL); 95 96 return f; 97} 98 99enum { 100 METHOD_UNKNOWN = 0, 101 METHOD_GETTER = 1, 102 METHOD_SETTER = 2, 103 METHOD_CLEAR = 3, 104 METHOD_PRESENCE = 4, 105 METHOD_ENUM_GETTER = 5, 106 METHOD_WRAPPER_GETTER = 6, 107 METHOD_WRAPPER_SETTER = 7 108}; 109 110// Check if the field is a well known wrapper type 111bool is_wrapper_type_field(const upb_fielddef* field) { 112 const upb_msgdef *m; 113 if (upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { 114 return false; 115 } 116 m = upb_fielddef_msgsubdef(field); 117 switch (upb_msgdef_wellknowntype(m)) { 118 case UPB_WELLKNOWN_DOUBLEVALUE: 119 case UPB_WELLKNOWN_FLOATVALUE: 120 case UPB_WELLKNOWN_INT64VALUE: 121 case UPB_WELLKNOWN_UINT64VALUE: 122 case UPB_WELLKNOWN_INT32VALUE: 123 case UPB_WELLKNOWN_UINT32VALUE: 124 case UPB_WELLKNOWN_STRINGVALUE: 125 case UPB_WELLKNOWN_BYTESVALUE: 126 case UPB_WELLKNOWN_BOOLVALUE: 127 return true; 128 default: 129 return false; 130 } 131} 132 133// Get a new Ruby wrapper type and set the initial value 134VALUE ruby_wrapper_type(VALUE type_class, VALUE value) { 135 if (value != Qnil) { 136 VALUE hash = rb_hash_new(); 137 rb_hash_aset(hash, rb_str_new2("value"), value); 138 { 139 VALUE args[1] = {hash}; 140 return rb_class_new_instance(1, args, type_class); 141 } 142 } 143 return Qnil; 144} 145 146static int extract_method_call(VALUE method_name, MessageHeader* self, 147 const upb_fielddef **f, const upb_oneofdef **o) { 148 VALUE method_str; 149 char* name; 150 size_t name_len; 151 int accessor_type; 152 const upb_oneofdef* test_o; 153 const upb_fielddef* test_f; 154 bool has_field; 155 156 Check_Type(method_name, T_SYMBOL); 157 158 method_str = rb_id2str(SYM2ID(method_name)); 159 name = RSTRING_PTR(method_str); 160 name_len = RSTRING_LEN(method_str); 161 162 if (name[name_len - 1] == '=') { 163 accessor_type = METHOD_SETTER; 164 name_len--; 165 // We want to ensure if the proto has something named clear_foo or has_foo?, 166 // we don't strip the prefix. 167 } else if (strncmp("clear_", name, 6) == 0 && 168 !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, 169 &test_f, &test_o)) { 170 accessor_type = METHOD_CLEAR; 171 name = name + 6; 172 name_len = name_len - 6; 173 } else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' && 174 !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, 175 &test_f, &test_o)) { 176 accessor_type = METHOD_PRESENCE; 177 name = name + 4; 178 name_len = name_len - 5; 179 } else { 180 accessor_type = METHOD_GETTER; 181 } 182 183 has_field = upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len, 184 &test_f, &test_o); 185 186 // Look for wrapper type accessor of the form <field_name>_as_value 187 if (!has_field && 188 (accessor_type == METHOD_GETTER || accessor_type == METHOD_SETTER) && 189 name_len > 9 && strncmp(name + name_len - 9, "_as_value", 9) == 0) { 190 const upb_oneofdef* test_o_wrapper; 191 const upb_fielddef* test_f_wrapper; 192 char wrapper_field_name[name_len - 8]; 193 194 // Find the field name 195 strncpy(wrapper_field_name, name, name_len - 9); 196 wrapper_field_name[name_len - 9] = '\0'; 197 198 // Check if field exists and is a wrapper type 199 if (upb_msgdef_lookupname(self->descriptor->msgdef, wrapper_field_name, 200 name_len - 9, &test_f_wrapper, &test_o_wrapper) && 201 is_wrapper_type_field(test_f_wrapper)) { 202 // It does exist! 203 has_field = true; 204 if (accessor_type == METHOD_SETTER) { 205 accessor_type = METHOD_WRAPPER_SETTER; 206 } else { 207 accessor_type = METHOD_WRAPPER_GETTER; 208 } 209 test_o = test_o_wrapper; 210 test_f = test_f_wrapper; 211 } 212 } 213 214 // Look for enum accessor of the form <enum_name>_const 215 if (!has_field && accessor_type == METHOD_GETTER && 216 name_len > 6 && strncmp(name + name_len - 6, "_const", 6) == 0) { 217 const upb_oneofdef* test_o_enum; 218 const upb_fielddef* test_f_enum; 219 char enum_name[name_len - 5]; 220 221 // Find enum field name 222 strncpy(enum_name, name, name_len - 6); 223 enum_name[name_len - 6] = '\0'; 224 225 // Check if enum field exists 226 if (upb_msgdef_lookupname(self->descriptor->msgdef, enum_name, name_len - 6, 227 &test_f_enum, &test_o_enum) && 228 upb_fielddef_type(test_f_enum) == UPB_TYPE_ENUM) { 229 // It does exist! 230 has_field = true; 231 accessor_type = METHOD_ENUM_GETTER; 232 test_o = test_o_enum; 233 test_f = test_f_enum; 234 } 235 } 236 237 // Verify the name corresponds to a oneof or field in this message. 238 if (!has_field) { 239 return METHOD_UNKNOWN; 240 } 241 242 // Method calls like 'has_foo?' are not allowed if field "foo" does not have 243 // a hasbit (e.g. repeated fields or non-message type fields for proto3 244 // syntax). 245 if (accessor_type == METHOD_PRESENCE && test_f != NULL) { 246 if (!upb_fielddef_haspresence(test_f)) return METHOD_UNKNOWN; 247 248 // TODO(haberman): remove this case, allow for proto3 oneofs. 249 if (upb_fielddef_realcontainingoneof(test_f) && 250 upb_filedef_syntax(upb_fielddef_file(test_f)) == UPB_SYNTAX_PROTO3) { 251 return METHOD_UNKNOWN; 252 } 253 } 254 255 *o = test_o; 256 *f = test_f; 257 return accessor_type; 258} 259 260/* 261 * call-seq: 262 * Message.method_missing(*args) 263 * 264 * Provides accessors and setters and methods to clear and check for presence of 265 * message fields according to their field names. 266 * 267 * For any field whose name does not conflict with a built-in method, an 268 * accessor is provided with the same name as the field, and a setter is 269 * provided with the name of the field plus the '=' suffix. Thus, given a 270 * message instance 'msg' with field 'foo', the following code is valid: 271 * 272 * msg.foo = 42 273 * puts msg.foo 274 * 275 * This method also provides read-only accessors for oneofs. If a oneof exists 276 * with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to 277 * the name of the field in that oneof that is currently set, or nil if none. 278 * 279 * It also provides methods of the form 'clear_fieldname' to clear the value 280 * of the field 'fieldname'. For basic data types, this will set the default 281 * value of the field. 282 * 283 * Additionally, it provides methods of the form 'has_fieldname?', which returns 284 * true if the field 'fieldname' is set in the message object, else false. For 285 * 'proto3' syntax, calling this for a basic type field will result in an error. 286 */ 287VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) { 288 MessageHeader* self; 289 const upb_oneofdef* o; 290 const upb_fielddef* f; 291 int accessor_type; 292 293 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 294 if (argc < 1) { 295 rb_raise(rb_eArgError, "Expected method name as first argument."); 296 } 297 298 accessor_type = extract_method_call(argv[0], self, &f, &o); 299 if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) { 300 return rb_call_super(argc, argv); 301 } else if (accessor_type == METHOD_SETTER || accessor_type == METHOD_WRAPPER_SETTER) { 302 if (argc != 2) { 303 rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc); 304 } 305 rb_check_frozen(_self); 306 } else if (argc != 1) { 307 rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc); 308 } 309 310 // Return which of the oneof fields are set 311 if (o != NULL) { 312 const upb_fielddef* oneof_field = which_oneof_field(self, o); 313 314 if (accessor_type == METHOD_SETTER) { 315 rb_raise(rb_eRuntimeError, "Oneof accessors are read-only."); 316 } 317 318 if (accessor_type == METHOD_PRESENCE) { 319 return oneof_field == NULL ? Qfalse : Qtrue; 320 } else if (accessor_type == METHOD_CLEAR) { 321 if (oneof_field != NULL) { 322 layout_clear(self->descriptor->layout, Message_data(self), oneof_field); 323 } 324 return Qnil; 325 } else { 326 // METHOD_ACCESSOR 327 return oneof_field == NULL ? Qnil : 328 ID2SYM(rb_intern(upb_fielddef_name(oneof_field))); 329 } 330 // Otherwise we're operating on a single proto field 331 } else if (accessor_type == METHOD_SETTER) { 332 layout_set(self->descriptor->layout, Message_data(self), f, argv[1]); 333 return Qnil; 334 } else if (accessor_type == METHOD_CLEAR) { 335 layout_clear(self->descriptor->layout, Message_data(self), f); 336 return Qnil; 337 } else if (accessor_type == METHOD_PRESENCE) { 338 return layout_has(self->descriptor->layout, Message_data(self), f); 339 } else if (accessor_type == METHOD_WRAPPER_GETTER) { 340 VALUE value = layout_get(self->descriptor->layout, Message_data(self), f); 341 switch (TYPE(value)) { 342 case T_DATA: 343 return rb_funcall(value, rb_intern("value"), 0); 344 case T_NIL: 345 return Qnil; 346 default: 347 return value; 348 } 349 } else if (accessor_type == METHOD_WRAPPER_SETTER) { 350 VALUE wrapper = ruby_wrapper_type( 351 field_type_class(self->descriptor->layout, f), argv[1]); 352 layout_set(self->descriptor->layout, Message_data(self), f, wrapper); 353 return Qnil; 354 } else if (accessor_type == METHOD_ENUM_GETTER) { 355 VALUE enum_type = field_type_class(self->descriptor->layout, f); 356 VALUE method = rb_intern("const_get"); 357 VALUE raw_value = layout_get(self->descriptor->layout, Message_data(self), f); 358 359 // Map repeated fields to a new type with ints 360 if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) { 361 int array_size = FIX2INT(rb_funcall(raw_value, rb_intern("length"), 0)); 362 int i; 363 VALUE array_args[1] = { ID2SYM(rb_intern("int64")) }; 364 VALUE array = rb_class_new_instance(1, array_args, CLASS_OF(raw_value)); 365 for (i = 0; i < array_size; i++) { 366 VALUE entry = rb_funcall(enum_type, method, 1, rb_funcall(raw_value, 367 rb_intern("at"), 1, INT2NUM(i))); 368 rb_funcall(array, rb_intern("push"), 1, entry); 369 } 370 return array; 371 } 372 // Convert the value for singular fields 373 return rb_funcall(enum_type, method, 1, raw_value); 374 } else { 375 return layout_get(self->descriptor->layout, Message_data(self), f); 376 } 377} 378 379 380VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) { 381 MessageHeader* self; 382 const upb_oneofdef* o; 383 const upb_fielddef* f; 384 int accessor_type; 385 386 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 387 if (argc < 1) { 388 rb_raise(rb_eArgError, "Expected method name as first argument."); 389 } 390 391 accessor_type = extract_method_call(argv[0], self, &f, &o); 392 if (accessor_type == METHOD_UNKNOWN) { 393 return rb_call_super(argc, argv); 394 } else if (o != NULL) { 395 return accessor_type == METHOD_SETTER ? Qfalse : Qtrue; 396 } else { 397 return Qtrue; 398 } 399} 400 401VALUE create_submsg_from_hash(const MessageLayout* layout, 402 const upb_fielddef* f, VALUE hash) { 403 VALUE args[1] = { hash }; 404 return rb_class_new_instance(1, args, field_type_class(layout, f)); 405} 406 407int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) { 408 MessageHeader* self; 409 char *name; 410 const upb_fielddef* f; 411 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 412 413 if (TYPE(key) == T_STRING) { 414 name = RSTRING_PTR(key); 415 } else if (TYPE(key) == T_SYMBOL) { 416 name = RSTRING_PTR(rb_id2str(SYM2ID(key))); 417 } else { 418 rb_raise(rb_eArgError, 419 "Expected string or symbols as hash keys when initializing proto from hash."); 420 } 421 422 f = upb_msgdef_ntofz(self->descriptor->msgdef, name); 423 if (f == NULL) { 424 rb_raise(rb_eArgError, 425 "Unknown field name '%s' in initialization map entry.", name); 426 } 427 428 if (TYPE(val) == T_NIL) { 429 return 0; 430 } 431 432 if (is_map_field(f)) { 433 VALUE map; 434 435 if (TYPE(val) != T_HASH) { 436 rb_raise(rb_eArgError, 437 "Expected Hash object as initializer value for map field '%s' (given %s).", 438 name, rb_class2name(CLASS_OF(val))); 439 } 440 map = layout_get(self->descriptor->layout, Message_data(self), f); 441 Map_merge_into_self(map, val); 442 } else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) { 443 VALUE ary; 444 int i; 445 446 if (TYPE(val) != T_ARRAY) { 447 rb_raise(rb_eArgError, 448 "Expected array as initializer value for repeated field '%s' (given %s).", 449 name, rb_class2name(CLASS_OF(val))); 450 } 451 ary = layout_get(self->descriptor->layout, Message_data(self), f); 452 for (i = 0; i < RARRAY_LEN(val); i++) { 453 VALUE entry = rb_ary_entry(val, i); 454 if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) { 455 entry = create_submsg_from_hash(self->descriptor->layout, f, entry); 456 } 457 458 RepeatedField_push(ary, entry); 459 } 460 } else { 461 if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) { 462 val = create_submsg_from_hash(self->descriptor->layout, f, val); 463 } 464 465 layout_set(self->descriptor->layout, Message_data(self), f, val); 466 } 467 return 0; 468} 469 470/* 471 * call-seq: 472 * Message.new(kwargs) => new_message 473 * 474 * Creates a new instance of the given message class. Keyword arguments may be 475 * provided with keywords corresponding to field names. 476 * 477 * Note that no literal Message class exists. Only concrete classes per message 478 * type exist, as provided by the #msgclass method on Descriptors after they 479 * have been added to a pool. The method definitions described here on the 480 * Message class are provided on each concrete message class. 481 */ 482VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) { 483 MessageHeader* self; 484 VALUE hash_args; 485 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 486 487 layout_init(self->descriptor->layout, Message_data(self)); 488 489 if (argc == 0) { 490 return Qnil; 491 } 492 if (argc != 1) { 493 rb_raise(rb_eArgError, "Expected 0 or 1 arguments."); 494 } 495 hash_args = argv[0]; 496 if (TYPE(hash_args) != T_HASH) { 497 rb_raise(rb_eArgError, "Expected hash arguments."); 498 } 499 500 rb_hash_foreach(hash_args, Message_initialize_kwarg, _self); 501 return Qnil; 502} 503 504/* 505 * call-seq: 506 * Message.dup => new_message 507 * 508 * Performs a shallow copy of this message and returns the new copy. 509 */ 510VALUE Message_dup(VALUE _self) { 511 MessageHeader* self; 512 VALUE new_msg; 513 MessageHeader* new_msg_self; 514 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 515 516 new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); 517 TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); 518 519 layout_dup(self->descriptor->layout, 520 Message_data(new_msg_self), 521 Message_data(self)); 522 523 return new_msg; 524} 525 526// Internal only; used by Google::Protobuf.deep_copy. 527VALUE Message_deep_copy(VALUE _self) { 528 MessageHeader* self; 529 MessageHeader* new_msg_self; 530 VALUE new_msg; 531 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 532 533 new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); 534 TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self); 535 536 layout_deep_copy(self->descriptor->layout, 537 Message_data(new_msg_self), 538 Message_data(self)); 539 540 return new_msg; 541} 542 543/* 544 * call-seq: 545 * Message.==(other) => boolean 546 * 547 * Performs a deep comparison of this message with another. Messages are equal 548 * if they have the same type and if each field is equal according to the :== 549 * method's semantics (a more efficient comparison may actually be done if the 550 * field is of a primitive type). 551 */ 552VALUE Message_eq(VALUE _self, VALUE _other) { 553 MessageHeader* self; 554 MessageHeader* other; 555 if (TYPE(_self) != TYPE(_other)) { 556 return Qfalse; 557 } 558 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 559 TypedData_Get_Struct(_other, MessageHeader, &Message_type, other); 560 561 if (self->descriptor != other->descriptor) { 562 return Qfalse; 563 } 564 565 return layout_eq(self->descriptor->layout, 566 Message_data(self), 567 Message_data(other)); 568} 569 570/* 571 * call-seq: 572 * Message.hash => hash_value 573 * 574 * Returns a hash value that represents this message's field values. 575 */ 576VALUE Message_hash(VALUE _self) { 577 MessageHeader* self; 578 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 579 580 return layout_hash(self->descriptor->layout, Message_data(self)); 581} 582 583/* 584 * call-seq: 585 * Message.inspect => string 586 * 587 * Returns a human-readable string representing this message. It will be 588 * formatted as "<MessageType: field1: value1, field2: value2, ...>". Each 589 * field's value is represented according to its own #inspect method. 590 */ 591VALUE Message_inspect(VALUE _self) { 592 MessageHeader* self; 593 VALUE str; 594 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 595 596 str = rb_str_new2("<"); 597 str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self)))); 598 str = rb_str_cat2(str, ": "); 599 str = rb_str_append(str, layout_inspect( 600 self->descriptor->layout, Message_data(self))); 601 str = rb_str_cat2(str, ">"); 602 return str; 603} 604 605/* 606 * call-seq: 607 * Message.to_h => {} 608 * 609 * Returns the message as a Ruby Hash object, with keys as symbols. 610 */ 611VALUE Message_to_h(VALUE _self) { 612 MessageHeader* self; 613 VALUE hash = rb_hash_new(); 614 upb_msg_field_iter it; 615 bool is_proto2; 616 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 617 618 // We currently have a few behaviors that are specific to proto2. 619 // This is unfortunate, we should key behaviors off field attributes (like 620 // whether a field has presence), not proto2 vs. proto3. We should see if we 621 // can change this without breaking users. 622 is_proto2 = 623 upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2; 624 625 for (upb_msg_field_begin(&it, self->descriptor->msgdef); 626 !upb_msg_field_done(&it); 627 upb_msg_field_next(&it)) { 628 const upb_fielddef* field = upb_msg_iter_field(&it); 629 VALUE msg_value; 630 VALUE msg_key; 631 632 // Do not include fields that are not present (oneof or optional fields). 633 if (is_proto2 && upb_fielddef_haspresence(field) && 634 !layout_has(self->descriptor->layout, Message_data(self), field)) { 635 continue; 636 } 637 638 msg_value = layout_get(self->descriptor->layout, Message_data(self), field); 639 msg_key = ID2SYM(rb_intern(upb_fielddef_name(field))); 640 if (is_map_field(field)) { 641 msg_value = Map_to_h(msg_value); 642 } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { 643 msg_value = RepeatedField_to_ary(msg_value); 644 if (is_proto2 && RARRAY_LEN(msg_value) == 0) { 645 continue; 646 } 647 648 if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { 649 int i; 650 for (i = 0; i < RARRAY_LEN(msg_value); i++) { 651 VALUE elem = rb_ary_entry(msg_value, i); 652 rb_ary_store(msg_value, i, Message_to_h(elem)); 653 } 654 } 655 656 } else if (msg_value != Qnil && 657 upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { 658 msg_value = Message_to_h(msg_value); 659 } 660 rb_hash_aset(hash, msg_key, msg_value); 661 } 662 return hash; 663} 664 665 666 667/* 668 * call-seq: 669 * Message.[](index) => value 670 * 671 * Accesses a field's value by field name. The provided field name should be a 672 * string. 673 */ 674VALUE Message_index(VALUE _self, VALUE field_name) { 675 MessageHeader* self; 676 const upb_fielddef* field; 677 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 678 Check_Type(field_name, T_STRING); 679 field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); 680 if (field == NULL) { 681 return Qnil; 682 } 683 return layout_get(self->descriptor->layout, Message_data(self), field); 684} 685 686/* 687 * call-seq: 688 * Message.[]=(index, value) 689 * 690 * Sets a field's value by field name. The provided field name should be a 691 * string. 692 */ 693VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) { 694 MessageHeader* self; 695 const upb_fielddef* field; 696 TypedData_Get_Struct(_self, MessageHeader, &Message_type, self); 697 Check_Type(field_name, T_STRING); 698 field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name)); 699 if (field == NULL) { 700 rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name)); 701 } 702 layout_set(self->descriptor->layout, Message_data(self), field, value); 703 return Qnil; 704} 705 706/* 707 * call-seq: 708 * Message.descriptor => descriptor 709 * 710 * Class method that returns the Descriptor instance corresponding to this 711 * message class's type. 712 */ 713VALUE Message_descriptor(VALUE klass) { 714 return rb_ivar_get(klass, descriptor_instancevar_interned); 715} 716 717VALUE build_class_from_descriptor(VALUE descriptor) { 718 Descriptor* desc = ruby_to_Descriptor(descriptor); 719 const char *name; 720 VALUE klass; 721 722 name = upb_msgdef_fullname(desc->msgdef); 723 if (name == NULL) { 724 rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name."); 725 } 726 727 klass = rb_define_class_id( 728 // Docs say this parameter is ignored. User will assign return value to 729 // their own toplevel constant class name. 730 rb_intern("Message"), 731 rb_cObject); 732 rb_ivar_set(klass, descriptor_instancevar_interned, descriptor); 733 rb_define_alloc_func(klass, Message_alloc); 734 rb_require("google/protobuf/message_exts"); 735 rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts")); 736 rb_extend_object( 737 klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods")); 738 739 rb_define_method(klass, "method_missing", 740 Message_method_missing, -1); 741 rb_define_method(klass, "respond_to_missing?", 742 Message_respond_to_missing, -1); 743 rb_define_method(klass, "initialize", Message_initialize, -1); 744 rb_define_method(klass, "dup", Message_dup, 0); 745 // Also define #clone so that we don't inherit Object#clone. 746 rb_define_method(klass, "clone", Message_dup, 0); 747 rb_define_method(klass, "==", Message_eq, 1); 748 rb_define_method(klass, "eql?", Message_eq, 1); 749 rb_define_method(klass, "hash", Message_hash, 0); 750 rb_define_method(klass, "to_h", Message_to_h, 0); 751 rb_define_method(klass, "inspect", Message_inspect, 0); 752 rb_define_method(klass, "to_s", Message_inspect, 0); 753 rb_define_method(klass, "[]", Message_index, 1); 754 rb_define_method(klass, "[]=", Message_index_set, 2); 755 rb_define_singleton_method(klass, "decode", Message_decode, 1); 756 rb_define_singleton_method(klass, "encode", Message_encode, 1); 757 rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1); 758 rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1); 759 rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0); 760 761 return klass; 762} 763 764/* 765 * call-seq: 766 * Enum.lookup(number) => name 767 * 768 * This module method, provided on each generated enum module, looks up an enum 769 * value by number and returns its name as a Ruby symbol, or nil if not found. 770 */ 771VALUE enum_lookup(VALUE self, VALUE number) { 772 int32_t num = NUM2INT(number); 773 VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); 774 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); 775 776 const char* name = upb_enumdef_iton(enumdesc->enumdef, num); 777 if (name == NULL) { 778 return Qnil; 779 } else { 780 return ID2SYM(rb_intern(name)); 781 } 782} 783 784/* 785 * call-seq: 786 * Enum.resolve(name) => number 787 * 788 * This module method, provided on each generated enum module, looks up an enum 789 * value by name (as a Ruby symbol) and returns its name, or nil if not found. 790 */ 791VALUE enum_resolve(VALUE self, VALUE sym) { 792 const char* name = rb_id2name(SYM2ID(sym)); 793 VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); 794 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc); 795 796 int32_t num = 0; 797 bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num); 798 if (!found) { 799 return Qnil; 800 } else { 801 return INT2NUM(num); 802 } 803} 804 805/* 806 * call-seq: 807 * Enum.descriptor 808 * 809 * This module method, provided on each generated enum module, returns the 810 * EnumDescriptor corresponding to this enum type. 811 */ 812VALUE enum_descriptor(VALUE self) { 813 return rb_ivar_get(self, descriptor_instancevar_interned); 814} 815 816VALUE build_module_from_enumdesc(VALUE _enumdesc) { 817 EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(_enumdesc); 818 VALUE mod = rb_define_module_id( 819 rb_intern(upb_enumdef_fullname(enumdesc->enumdef))); 820 821 upb_enum_iter it; 822 for (upb_enum_begin(&it, enumdesc->enumdef); 823 !upb_enum_done(&it); 824 upb_enum_next(&it)) { 825 const char* name = upb_enum_iter_name(&it); 826 int32_t value = upb_enum_iter_number(&it); 827 if (name[0] < 'A' || name[0] > 'Z') { 828 rb_warn("Enum value '%s' does not start with an uppercase letter " 829 "as is required for Ruby constants.", 830 name); 831 } 832 rb_define_const(mod, name, INT2NUM(value)); 833 } 834 835 rb_define_singleton_method(mod, "lookup", enum_lookup, 1); 836 rb_define_singleton_method(mod, "resolve", enum_resolve, 1); 837 rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0); 838 rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc); 839 840 return mod; 841} 842 843/* 844 * call-seq: 845 * Google::Protobuf.deep_copy(obj) => copy_of_obj 846 * 847 * Performs a deep copy of a RepeatedField instance, a Map instance, or a 848 * message object, recursively copying its members. 849 */ 850VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) { 851 VALUE klass = CLASS_OF(obj); 852 if (klass == cRepeatedField) { 853 return RepeatedField_deep_copy(obj); 854 } else if (klass == cMap) { 855 return Map_deep_copy(obj); 856 } else { 857 return Message_deep_copy(obj); 858 } 859} 860