1// Protocol Buffers - Google's data interchange format
2// Copyright 2014 Google Inc.  All rights reserved.
3// https://developers.google.com/protocol-buffers/
4//
5// Redistribution and use in source and binary forms, with or without
6// modification, are permitted provided that the following conditions are
7// met:
8//
9//     * Redistributions of source code must retain the above copyright
10// notice, this list of conditions and the following disclaimer.
11//     * Redistributions in binary form must reproduce the above
12// copyright notice, this list of conditions and the following disclaimer
13// in the documentation and/or other materials provided with the
14// distribution.
15//     * Neither the name of Google Inc. nor the names of its
16// contributors may be used to endorse or promote products derived from
17// this software without specific prior written permission.
18//
19// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31#include "protobuf.h"
32
33// -----------------------------------------------------------------------------
34// Class/module creation from msgdefs and enumdefs, respectively.
35// -----------------------------------------------------------------------------
36
37void* Message_data(void* msg) {
38  return ((uint8_t *)msg) + sizeof(MessageHeader);
39}
40
41void Message_mark(void* _self) {
42  MessageHeader* self = (MessageHeader *)_self;
43  layout_mark(self->descriptor->layout, Message_data(self));
44}
45
46void Message_free(void* self) {
47  stringsink* unknown = ((MessageHeader *)self)->unknown_fields;
48  if (unknown != NULL) {
49    stringsink_uninit(unknown);
50    free(unknown);
51  }
52  xfree(self);
53}
54
55rb_data_type_t Message_type = {
56  "Message",
57  { Message_mark, Message_free, NULL },
58};
59
60VALUE Message_alloc(VALUE klass) {
61  VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
62  Descriptor* desc = ruby_to_Descriptor(descriptor);
63  MessageHeader* msg;
64  VALUE ret;
65
66  if (desc->layout == NULL) {
67    create_layout(desc);
68  }
69
70  msg = (void*)ALLOC_N(uint8_t, sizeof(MessageHeader) + desc->layout->size);
71  msg->descriptor = desc;
72  msg->unknown_fields = NULL;
73  memcpy(Message_data(msg), desc->layout->empty_template, desc->layout->size);
74
75  ret = TypedData_Wrap_Struct(klass, &Message_type, msg);
76  rb_ivar_set(ret, descriptor_instancevar_interned, descriptor);
77
78  return ret;
79}
80
81static const upb_fielddef* which_oneof_field(MessageHeader* self, const upb_oneofdef* o) {
82  uint32_t oneof_case;
83  const upb_fielddef* f;
84
85  oneof_case =
86      slot_read_oneof_case(self->descriptor->layout, Message_data(self), o);
87
88  if (oneof_case == ONEOF_CASE_NONE) {
89    return NULL;
90  }
91
92  // oneof_case is a field index, so find that field.
93  f = upb_oneofdef_itof(o, oneof_case);
94  assert(f != NULL);
95
96  return f;
97}
98
99enum {
100  METHOD_UNKNOWN = 0,
101  METHOD_GETTER = 1,
102  METHOD_SETTER = 2,
103  METHOD_CLEAR = 3,
104  METHOD_PRESENCE = 4,
105  METHOD_ENUM_GETTER = 5,
106  METHOD_WRAPPER_GETTER = 6,
107  METHOD_WRAPPER_SETTER = 7
108};
109
110// Check if the field is a well known wrapper type
111bool is_wrapper_type_field(const upb_fielddef* field) {
112  const upb_msgdef *m;
113  if (upb_fielddef_type(field) != UPB_TYPE_MESSAGE) {
114    return false;
115  }
116  m = upb_fielddef_msgsubdef(field);
117  switch (upb_msgdef_wellknowntype(m)) {
118    case UPB_WELLKNOWN_DOUBLEVALUE:
119    case UPB_WELLKNOWN_FLOATVALUE:
120    case UPB_WELLKNOWN_INT64VALUE:
121    case UPB_WELLKNOWN_UINT64VALUE:
122    case UPB_WELLKNOWN_INT32VALUE:
123    case UPB_WELLKNOWN_UINT32VALUE:
124    case UPB_WELLKNOWN_STRINGVALUE:
125    case UPB_WELLKNOWN_BYTESVALUE:
126    case UPB_WELLKNOWN_BOOLVALUE:
127      return true;
128    default:
129      return false;
130  }
131}
132
133// Get a new Ruby wrapper type and set the initial value
134VALUE ruby_wrapper_type(VALUE type_class, VALUE value) {
135  if (value != Qnil) {
136    VALUE hash = rb_hash_new();
137    rb_hash_aset(hash, rb_str_new2("value"), value);
138    {
139      VALUE args[1] = {hash};
140      return rb_class_new_instance(1, args, type_class);
141    }
142  }
143  return Qnil;
144}
145
146static int extract_method_call(VALUE method_name, MessageHeader* self,
147                            const upb_fielddef **f, const upb_oneofdef **o) {
148  VALUE method_str;
149  char* name;
150  size_t name_len;
151  int accessor_type;
152  const upb_oneofdef* test_o;
153  const upb_fielddef* test_f;
154  bool has_field;
155
156  Check_Type(method_name, T_SYMBOL);
157
158  method_str = rb_id2str(SYM2ID(method_name));
159  name = RSTRING_PTR(method_str);
160  name_len = RSTRING_LEN(method_str);
161
162  if (name[name_len - 1] == '=') {
163    accessor_type = METHOD_SETTER;
164    name_len--;
165    // We want to ensure if the proto has something named clear_foo or has_foo?,
166    // we don't strip the prefix.
167  } else if (strncmp("clear_", name, 6) == 0 &&
168             !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
169                                    &test_f, &test_o)) {
170    accessor_type = METHOD_CLEAR;
171    name = name + 6;
172    name_len = name_len - 6;
173  } else if (strncmp("has_", name, 4) == 0 && name[name_len - 1] == '?' &&
174             !upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
175                                    &test_f, &test_o)) {
176    accessor_type = METHOD_PRESENCE;
177    name = name + 4;
178    name_len = name_len - 5;
179  } else {
180    accessor_type = METHOD_GETTER;
181  }
182
183  has_field = upb_msgdef_lookupname(self->descriptor->msgdef, name, name_len,
184                                    &test_f, &test_o);
185
186  // Look for wrapper type accessor of the form <field_name>_as_value
187  if (!has_field &&
188      (accessor_type == METHOD_GETTER || accessor_type == METHOD_SETTER) &&
189      name_len > 9 && strncmp(name + name_len - 9, "_as_value", 9) == 0) {
190    const upb_oneofdef* test_o_wrapper;
191    const upb_fielddef* test_f_wrapper;
192    char wrapper_field_name[name_len - 8];
193
194    // Find the field name
195    strncpy(wrapper_field_name, name, name_len - 9);
196    wrapper_field_name[name_len - 9] = '\0';
197
198    // Check if field exists and is a wrapper type
199    if (upb_msgdef_lookupname(self->descriptor->msgdef, wrapper_field_name,
200                              name_len - 9, &test_f_wrapper, &test_o_wrapper) &&
201        is_wrapper_type_field(test_f_wrapper)) {
202      // It does exist!
203      has_field = true;
204      if (accessor_type == METHOD_SETTER) {
205        accessor_type = METHOD_WRAPPER_SETTER;
206      } else {
207        accessor_type = METHOD_WRAPPER_GETTER;
208      }
209      test_o = test_o_wrapper;
210      test_f = test_f_wrapper;
211    }
212  }
213
214  // Look for enum accessor of the form <enum_name>_const
215  if (!has_field && accessor_type == METHOD_GETTER &&
216      name_len > 6 && strncmp(name + name_len - 6, "_const", 6) == 0) {
217    const upb_oneofdef* test_o_enum;
218    const upb_fielddef* test_f_enum;
219    char enum_name[name_len - 5];
220
221    // Find enum field name
222    strncpy(enum_name, name, name_len - 6);
223    enum_name[name_len - 6] = '\0';
224
225    // Check if enum field exists
226    if (upb_msgdef_lookupname(self->descriptor->msgdef, enum_name, name_len - 6,
227                                             &test_f_enum, &test_o_enum) &&
228        upb_fielddef_type(test_f_enum) == UPB_TYPE_ENUM) {
229      // It does exist!
230      has_field = true;
231      accessor_type = METHOD_ENUM_GETTER;
232      test_o = test_o_enum;
233      test_f = test_f_enum;
234    }
235  }
236
237  // Verify the name corresponds to a oneof or field in this message.
238  if (!has_field) {
239    return METHOD_UNKNOWN;
240  }
241
242  // Method calls like 'has_foo?' are not allowed if field "foo" does not have
243  // a hasbit (e.g. repeated fields or non-message type fields for proto3
244  // syntax).
245  if (accessor_type == METHOD_PRESENCE && test_f != NULL) {
246    if (!upb_fielddef_haspresence(test_f)) return METHOD_UNKNOWN;
247
248    // TODO(haberman): remove this case, allow for proto3 oneofs.
249    if (upb_fielddef_realcontainingoneof(test_f) &&
250        upb_filedef_syntax(upb_fielddef_file(test_f)) == UPB_SYNTAX_PROTO3) {
251      return METHOD_UNKNOWN;
252    }
253  }
254
255  *o = test_o;
256  *f = test_f;
257  return accessor_type;
258}
259
260/*
261 * call-seq:
262 *     Message.method_missing(*args)
263 *
264 * Provides accessors and setters and methods to clear and check for presence of
265 * message fields according to their field names.
266 *
267 * For any field whose name does not conflict with a built-in method, an
268 * accessor is provided with the same name as the field, and a setter is
269 * provided with the name of the field plus the '=' suffix. Thus, given a
270 * message instance 'msg' with field 'foo', the following code is valid:
271 *
272 *     msg.foo = 42
273 *     puts msg.foo
274 *
275 * This method also provides read-only accessors for oneofs. If a oneof exists
276 * with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to
277 * the name of the field in that oneof that is currently set, or nil if none.
278 *
279 * It also provides methods of the form 'clear_fieldname' to clear the value
280 * of the field 'fieldname'. For basic data types, this will set the default
281 * value of the field.
282 *
283 * Additionally, it provides methods of the form 'has_fieldname?', which returns
284 * true if the field 'fieldname' is set in the message object, else false. For
285 * 'proto3' syntax, calling this for a basic type field will result in an error.
286 */
287VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) {
288  MessageHeader* self;
289  const upb_oneofdef* o;
290  const upb_fielddef* f;
291  int accessor_type;
292
293  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
294  if (argc < 1) {
295    rb_raise(rb_eArgError, "Expected method name as first argument.");
296  }
297
298  accessor_type = extract_method_call(argv[0], self, &f, &o);
299  if (accessor_type == METHOD_UNKNOWN || (o == NULL && f == NULL) ) {
300    return rb_call_super(argc, argv);
301  } else if (accessor_type == METHOD_SETTER || accessor_type == METHOD_WRAPPER_SETTER) {
302    if (argc != 2) {
303      rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc);
304    }
305    rb_check_frozen(_self);
306  } else if (argc != 1) {
307    rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc);
308  }
309
310  // Return which of the oneof fields are set
311  if (o != NULL) {
312    const upb_fielddef* oneof_field = which_oneof_field(self, o);
313
314    if (accessor_type == METHOD_SETTER) {
315      rb_raise(rb_eRuntimeError, "Oneof accessors are read-only.");
316    }
317
318    if (accessor_type == METHOD_PRESENCE) {
319      return oneof_field == NULL ? Qfalse : Qtrue;
320    } else if (accessor_type == METHOD_CLEAR) {
321      if (oneof_field != NULL) {
322        layout_clear(self->descriptor->layout, Message_data(self), oneof_field);
323      }
324      return Qnil;
325    } else {
326      // METHOD_ACCESSOR
327      return oneof_field == NULL ? Qnil :
328        ID2SYM(rb_intern(upb_fielddef_name(oneof_field)));
329    }
330  // Otherwise we're operating on a single proto field
331  } else if (accessor_type == METHOD_SETTER) {
332    layout_set(self->descriptor->layout, Message_data(self), f, argv[1]);
333    return Qnil;
334  } else if (accessor_type == METHOD_CLEAR) {
335    layout_clear(self->descriptor->layout, Message_data(self), f);
336    return Qnil;
337  } else if (accessor_type == METHOD_PRESENCE) {
338    return layout_has(self->descriptor->layout, Message_data(self), f);
339  } else if (accessor_type == METHOD_WRAPPER_GETTER) {
340    VALUE value = layout_get(self->descriptor->layout, Message_data(self), f);
341    switch (TYPE(value)) {
342      case T_DATA:
343        return rb_funcall(value, rb_intern("value"), 0);
344      case T_NIL:
345        return Qnil;
346      default:
347        return value;
348    }
349  } else if (accessor_type == METHOD_WRAPPER_SETTER) {
350    VALUE wrapper = ruby_wrapper_type(
351        field_type_class(self->descriptor->layout, f), argv[1]);
352    layout_set(self->descriptor->layout, Message_data(self), f, wrapper);
353    return Qnil;
354  } else if (accessor_type == METHOD_ENUM_GETTER) {
355    VALUE enum_type = field_type_class(self->descriptor->layout, f);
356    VALUE method = rb_intern("const_get");
357    VALUE raw_value = layout_get(self->descriptor->layout, Message_data(self), f);
358
359    // Map repeated fields to a new type with ints
360    if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
361      int array_size = FIX2INT(rb_funcall(raw_value, rb_intern("length"), 0));
362      int i;
363      VALUE array_args[1] = { ID2SYM(rb_intern("int64")) };
364      VALUE array = rb_class_new_instance(1, array_args, CLASS_OF(raw_value));
365      for (i = 0; i < array_size; i++) {
366        VALUE entry = rb_funcall(enum_type, method, 1, rb_funcall(raw_value,
367                                 rb_intern("at"), 1, INT2NUM(i)));
368        rb_funcall(array, rb_intern("push"), 1, entry);
369      }
370      return array;
371    }
372    // Convert the value for singular fields
373    return rb_funcall(enum_type, method, 1, raw_value);
374  } else {
375    return layout_get(self->descriptor->layout, Message_data(self), f);
376  }
377}
378
379
380VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) {
381  MessageHeader* self;
382  const upb_oneofdef* o;
383  const upb_fielddef* f;
384  int accessor_type;
385
386  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
387  if (argc < 1) {
388    rb_raise(rb_eArgError, "Expected method name as first argument.");
389  }
390
391  accessor_type = extract_method_call(argv[0], self, &f, &o);
392  if (accessor_type == METHOD_UNKNOWN) {
393    return rb_call_super(argc, argv);
394  } else if (o != NULL) {
395    return accessor_type == METHOD_SETTER ? Qfalse : Qtrue;
396  } else {
397    return Qtrue;
398  }
399}
400
401VALUE create_submsg_from_hash(const MessageLayout* layout,
402                              const upb_fielddef* f, VALUE hash) {
403  VALUE args[1] = { hash };
404  return rb_class_new_instance(1, args, field_type_class(layout, f));
405}
406
407int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
408  MessageHeader* self;
409  char *name;
410  const upb_fielddef* f;
411  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
412
413  if (TYPE(key) == T_STRING) {
414    name = RSTRING_PTR(key);
415  } else if (TYPE(key) == T_SYMBOL) {
416    name = RSTRING_PTR(rb_id2str(SYM2ID(key)));
417  } else {
418    rb_raise(rb_eArgError,
419             "Expected string or symbols as hash keys when initializing proto from hash.");
420  }
421
422  f = upb_msgdef_ntofz(self->descriptor->msgdef, name);
423  if (f == NULL) {
424    rb_raise(rb_eArgError,
425             "Unknown field name '%s' in initialization map entry.", name);
426  }
427
428  if (TYPE(val) == T_NIL) {
429    return 0;
430  }
431
432  if (is_map_field(f)) {
433    VALUE map;
434
435    if (TYPE(val) != T_HASH) {
436      rb_raise(rb_eArgError,
437               "Expected Hash object as initializer value for map field '%s' (given %s).",
438               name, rb_class2name(CLASS_OF(val)));
439    }
440    map = layout_get(self->descriptor->layout, Message_data(self), f);
441    Map_merge_into_self(map, val);
442  } else if (upb_fielddef_label(f) == UPB_LABEL_REPEATED) {
443    VALUE ary;
444    int i;
445
446    if (TYPE(val) != T_ARRAY) {
447      rb_raise(rb_eArgError,
448               "Expected array as initializer value for repeated field '%s' (given %s).",
449               name, rb_class2name(CLASS_OF(val)));
450    }
451    ary = layout_get(self->descriptor->layout, Message_data(self), f);
452    for (i = 0; i < RARRAY_LEN(val); i++) {
453      VALUE entry = rb_ary_entry(val, i);
454      if (TYPE(entry) == T_HASH && upb_fielddef_issubmsg(f)) {
455        entry = create_submsg_from_hash(self->descriptor->layout, f, entry);
456      }
457
458      RepeatedField_push(ary, entry);
459    }
460  } else {
461    if (TYPE(val) == T_HASH && upb_fielddef_issubmsg(f)) {
462      val = create_submsg_from_hash(self->descriptor->layout, f, val);
463    }
464
465    layout_set(self->descriptor->layout, Message_data(self), f, val);
466  }
467  return 0;
468}
469
470/*
471 * call-seq:
472 *     Message.new(kwargs) => new_message
473 *
474 * Creates a new instance of the given message class. Keyword arguments may be
475 * provided with keywords corresponding to field names.
476 *
477 * Note that no literal Message class exists. Only concrete classes per message
478 * type exist, as provided by the #msgclass method on Descriptors after they
479 * have been added to a pool. The method definitions described here on the
480 * Message class are provided on each concrete message class.
481 */
482VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) {
483  MessageHeader* self;
484  VALUE hash_args;
485  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
486
487  layout_init(self->descriptor->layout, Message_data(self));
488
489  if (argc == 0) {
490    return Qnil;
491  }
492  if (argc != 1) {
493    rb_raise(rb_eArgError, "Expected 0 or 1 arguments.");
494  }
495  hash_args = argv[0];
496  if (TYPE(hash_args) != T_HASH) {
497    rb_raise(rb_eArgError, "Expected hash arguments.");
498  }
499
500  rb_hash_foreach(hash_args, Message_initialize_kwarg, _self);
501  return Qnil;
502}
503
504/*
505 * call-seq:
506 *     Message.dup => new_message
507 *
508 * Performs a shallow copy of this message and returns the new copy.
509 */
510VALUE Message_dup(VALUE _self) {
511  MessageHeader* self;
512  VALUE new_msg;
513  MessageHeader* new_msg_self;
514  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
515
516  new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
517  TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
518
519  layout_dup(self->descriptor->layout,
520             Message_data(new_msg_self),
521             Message_data(self));
522
523  return new_msg;
524}
525
526// Internal only; used by Google::Protobuf.deep_copy.
527VALUE Message_deep_copy(VALUE _self) {
528  MessageHeader* self;
529  MessageHeader* new_msg_self;
530  VALUE new_msg;
531  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
532
533  new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
534  TypedData_Get_Struct(new_msg, MessageHeader, &Message_type, new_msg_self);
535
536  layout_deep_copy(self->descriptor->layout,
537                   Message_data(new_msg_self),
538                   Message_data(self));
539
540  return new_msg;
541}
542
543/*
544 * call-seq:
545 *     Message.==(other) => boolean
546 *
547 * Performs a deep comparison of this message with another. Messages are equal
548 * if they have the same type and if each field is equal according to the :==
549 * method's semantics (a more efficient comparison may actually be done if the
550 * field is of a primitive type).
551 */
552VALUE Message_eq(VALUE _self, VALUE _other) {
553  MessageHeader* self;
554  MessageHeader* other;
555  if (TYPE(_self) != TYPE(_other)) {
556    return Qfalse;
557  }
558  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
559  TypedData_Get_Struct(_other, MessageHeader, &Message_type, other);
560
561  if (self->descriptor != other->descriptor) {
562    return Qfalse;
563  }
564
565  return layout_eq(self->descriptor->layout,
566                   Message_data(self),
567                   Message_data(other));
568}
569
570/*
571 * call-seq:
572 *     Message.hash => hash_value
573 *
574 * Returns a hash value that represents this message's field values.
575 */
576VALUE Message_hash(VALUE _self) {
577  MessageHeader* self;
578  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
579
580  return layout_hash(self->descriptor->layout, Message_data(self));
581}
582
583/*
584 * call-seq:
585 *     Message.inspect => string
586 *
587 * Returns a human-readable string representing this message. It will be
588 * formatted as "<MessageType: field1: value1, field2: value2, ...>". Each
589 * field's value is represented according to its own #inspect method.
590 */
591VALUE Message_inspect(VALUE _self) {
592  MessageHeader* self;
593  VALUE str;
594  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
595
596  str = rb_str_new2("<");
597  str = rb_str_append(str, rb_str_new2(rb_class2name(CLASS_OF(_self))));
598  str = rb_str_cat2(str, ": ");
599  str = rb_str_append(str, layout_inspect(
600      self->descriptor->layout, Message_data(self)));
601  str = rb_str_cat2(str, ">");
602  return str;
603}
604
605/*
606 * call-seq:
607 *     Message.to_h => {}
608 *
609 * Returns the message as a Ruby Hash object, with keys as symbols.
610 */
611VALUE Message_to_h(VALUE _self) {
612  MessageHeader* self;
613  VALUE hash = rb_hash_new();
614  upb_msg_field_iter it;
615  bool is_proto2;
616  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
617
618  // We currently have a few behaviors that are specific to proto2.
619  // This is unfortunate, we should key behaviors off field attributes (like
620  // whether a field has presence), not proto2 vs. proto3. We should see if we
621  // can change this without breaking users.
622  is_proto2 =
623      upb_msgdef_syntax(self->descriptor->msgdef) == UPB_SYNTAX_PROTO2;
624
625  for (upb_msg_field_begin(&it, self->descriptor->msgdef);
626       !upb_msg_field_done(&it);
627       upb_msg_field_next(&it)) {
628    const upb_fielddef* field = upb_msg_iter_field(&it);
629    VALUE msg_value;
630    VALUE msg_key;
631
632    // Do not include fields that are not present (oneof or optional fields).
633    if (is_proto2 && upb_fielddef_haspresence(field) &&
634        !layout_has(self->descriptor->layout, Message_data(self), field)) {
635      continue;
636    }
637
638    msg_value = layout_get(self->descriptor->layout, Message_data(self), field);
639    msg_key = ID2SYM(rb_intern(upb_fielddef_name(field)));
640    if (is_map_field(field)) {
641      msg_value = Map_to_h(msg_value);
642    } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) {
643      msg_value = RepeatedField_to_ary(msg_value);
644      if (is_proto2 && RARRAY_LEN(msg_value) == 0) {
645        continue;
646      }
647
648      if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
649        int i;
650        for (i = 0; i < RARRAY_LEN(msg_value); i++) {
651          VALUE elem = rb_ary_entry(msg_value, i);
652          rb_ary_store(msg_value, i, Message_to_h(elem));
653        }
654      }
655
656    } else if (msg_value != Qnil &&
657               upb_fielddef_type(field) == UPB_TYPE_MESSAGE) {
658      msg_value = Message_to_h(msg_value);
659    }
660    rb_hash_aset(hash, msg_key, msg_value);
661  }
662  return hash;
663}
664
665
666
667/*
668 * call-seq:
669 *     Message.[](index) => value
670 *
671 * Accesses a field's value by field name. The provided field name should be a
672 * string.
673 */
674VALUE Message_index(VALUE _self, VALUE field_name) {
675  MessageHeader* self;
676  const upb_fielddef* field;
677  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
678  Check_Type(field_name, T_STRING);
679  field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
680  if (field == NULL) {
681    return Qnil;
682  }
683  return layout_get(self->descriptor->layout, Message_data(self), field);
684}
685
686/*
687 * call-seq:
688 *     Message.[]=(index, value)
689 *
690 * Sets a field's value by field name. The provided field name should be a
691 * string.
692 */
693VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) {
694  MessageHeader* self;
695  const upb_fielddef* field;
696  TypedData_Get_Struct(_self, MessageHeader, &Message_type, self);
697  Check_Type(field_name, T_STRING);
698  field = upb_msgdef_ntofz(self->descriptor->msgdef, RSTRING_PTR(field_name));
699  if (field == NULL) {
700    rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name));
701  }
702  layout_set(self->descriptor->layout, Message_data(self), field, value);
703  return Qnil;
704}
705
706/*
707 * call-seq:
708 *     Message.descriptor => descriptor
709 *
710 * Class method that returns the Descriptor instance corresponding to this
711 * message class's type.
712 */
713VALUE Message_descriptor(VALUE klass) {
714  return rb_ivar_get(klass, descriptor_instancevar_interned);
715}
716
717VALUE build_class_from_descriptor(VALUE descriptor) {
718  Descriptor* desc = ruby_to_Descriptor(descriptor);
719  const char *name;
720  VALUE klass;
721
722  name = upb_msgdef_fullname(desc->msgdef);
723  if (name == NULL) {
724    rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name.");
725  }
726
727  klass = rb_define_class_id(
728      // Docs say this parameter is ignored. User will assign return value to
729      // their own toplevel constant class name.
730      rb_intern("Message"),
731      rb_cObject);
732  rb_ivar_set(klass, descriptor_instancevar_interned, descriptor);
733  rb_define_alloc_func(klass, Message_alloc);
734  rb_require("google/protobuf/message_exts");
735  rb_include_module(klass, rb_eval_string("::Google::Protobuf::MessageExts"));
736  rb_extend_object(
737      klass, rb_eval_string("::Google::Protobuf::MessageExts::ClassMethods"));
738
739  rb_define_method(klass, "method_missing",
740                   Message_method_missing, -1);
741  rb_define_method(klass, "respond_to_missing?",
742                   Message_respond_to_missing, -1);
743  rb_define_method(klass, "initialize", Message_initialize, -1);
744  rb_define_method(klass, "dup", Message_dup, 0);
745  // Also define #clone so that we don't inherit Object#clone.
746  rb_define_method(klass, "clone", Message_dup, 0);
747  rb_define_method(klass, "==", Message_eq, 1);
748  rb_define_method(klass, "eql?", Message_eq, 1);
749  rb_define_method(klass, "hash", Message_hash, 0);
750  rb_define_method(klass, "to_h", Message_to_h, 0);
751  rb_define_method(klass, "inspect", Message_inspect, 0);
752  rb_define_method(klass, "to_s", Message_inspect, 0);
753  rb_define_method(klass, "[]", Message_index, 1);
754  rb_define_method(klass, "[]=", Message_index_set, 2);
755  rb_define_singleton_method(klass, "decode", Message_decode, 1);
756  rb_define_singleton_method(klass, "encode", Message_encode, 1);
757  rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1);
758  rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1);
759  rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0);
760
761  return klass;
762}
763
764/*
765 * call-seq:
766 *     Enum.lookup(number) => name
767 *
768 * This module method, provided on each generated enum module, looks up an enum
769 * value by number and returns its name as a Ruby symbol, or nil if not found.
770 */
771VALUE enum_lookup(VALUE self, VALUE number) {
772  int32_t num = NUM2INT(number);
773  VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
774  EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
775
776  const char* name = upb_enumdef_iton(enumdesc->enumdef, num);
777  if (name == NULL) {
778    return Qnil;
779  } else {
780    return ID2SYM(rb_intern(name));
781  }
782}
783
784/*
785 * call-seq:
786 *     Enum.resolve(name) => number
787 *
788 * This module method, provided on each generated enum module, looks up an enum
789 * value by name (as a Ruby symbol) and returns its name, or nil if not found.
790 */
791VALUE enum_resolve(VALUE self, VALUE sym) {
792  const char* name = rb_id2name(SYM2ID(sym));
793  VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
794  EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(desc);
795
796  int32_t num = 0;
797  bool found = upb_enumdef_ntoiz(enumdesc->enumdef, name, &num);
798  if (!found) {
799    return Qnil;
800  } else {
801    return INT2NUM(num);
802  }
803}
804
805/*
806 * call-seq:
807 *     Enum.descriptor
808 *
809 * This module method, provided on each generated enum module, returns the
810 * EnumDescriptor corresponding to this enum type.
811 */
812VALUE enum_descriptor(VALUE self) {
813  return rb_ivar_get(self, descriptor_instancevar_interned);
814}
815
816VALUE build_module_from_enumdesc(VALUE _enumdesc) {
817  EnumDescriptor* enumdesc = ruby_to_EnumDescriptor(_enumdesc);
818  VALUE mod = rb_define_module_id(
819      rb_intern(upb_enumdef_fullname(enumdesc->enumdef)));
820
821  upb_enum_iter it;
822  for (upb_enum_begin(&it, enumdesc->enumdef);
823       !upb_enum_done(&it);
824       upb_enum_next(&it)) {
825    const char* name = upb_enum_iter_name(&it);
826    int32_t value = upb_enum_iter_number(&it);
827    if (name[0] < 'A' || name[0] > 'Z') {
828      rb_warn("Enum value '%s' does not start with an uppercase letter "
829              "as is required for Ruby constants.",
830              name);
831    }
832    rb_define_const(mod, name, INT2NUM(value));
833  }
834
835  rb_define_singleton_method(mod, "lookup", enum_lookup, 1);
836  rb_define_singleton_method(mod, "resolve", enum_resolve, 1);
837  rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0);
838  rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc);
839
840  return mod;
841}
842
843/*
844 * call-seq:
845 *     Google::Protobuf.deep_copy(obj) => copy_of_obj
846 *
847 * Performs a deep copy of a RepeatedField instance, a Map instance, or a
848 * message object, recursively copying its members.
849 */
850VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) {
851  VALUE klass = CLASS_OF(obj);
852  if (klass == cRepeatedField) {
853    return RepeatedField_deep_copy(obj);
854  } else if (klass == cMap) {
855    return Map_deep_copy(obj);
856  } else {
857    return Message_deep_copy(obj);
858  }
859}
860