1#region Copyright notice and license
2// Protocol Buffers - Google's data interchange format
3// Copyright 2008 Google Inc.  All rights reserved.
4// https://developers.google.com/protocol-buffers/
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met:
9//
10//     * Redistributions of source code must retain the above copyright
11// notice, this list of conditions and the following disclaimer.
12//     * Redistributions in binary form must reproduce the above
13// copyright notice, this list of conditions and the following disclaimer
14// in the documentation and/or other materials provided with the
15// distribution.
16//     * Neither the name of Google Inc. nor the names of its
17// contributors may be used to endorse or promote products derived from
18// this software without specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31#endregion
32
33using Google.Protobuf.Collections;
34using System;
35using System.Collections.Generic;
36using System.IO;
37using System.Runtime.CompilerServices;
38using System.Runtime.InteropServices;
39using System.Security;
40
41namespace Google.Protobuf
42{
43    /// <summary>
44    /// Reads and decodes protocol message fields.
45    /// </summary>
46    /// <remarks>
47    /// <para>
48    /// This class is generally used by generated code to read appropriate
49    /// primitives from the stream. It effectively encapsulates the lowest
50    /// levels of protocol buffer format.
51    /// </para>
52    /// <para>
53    /// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/>
54    /// and <see cref="MapField{TKey, TValue}"/> to serialize such fields.
55    /// </para>
56    /// </remarks>
57    [SecuritySafeCritical]
58    public sealed class CodedInputStream : IDisposable
59    {
60        /// <summary>
61        /// Whether to leave the underlying stream open when disposing of this stream.
62        /// This is always true when there's no stream.
63        /// </summary>
64        private readonly bool leaveOpen;
65
66        /// <summary>
67        /// Buffer of data read from the stream or provided at construction time.
68        /// </summary>
69        private readonly byte[] buffer;
70
71        /// <summary>
72        /// The stream to read further input from, or null if the byte array buffer was provided
73        /// directly on construction, with no further data available.
74        /// </summary>
75        private readonly Stream input;
76
77        /// <summary>
78        /// The parser state is kept separately so that other parse implementations can reuse the same
79        /// parsing primitives.
80        /// </summary>
81        private ParserInternalState state;
82
83        internal const int DefaultRecursionLimit = 100;
84        internal const int DefaultSizeLimit = Int32.MaxValue;
85        internal const int BufferSize = 4096;
86
87        #region Construction
88        // Note that the checks are performed such that we don't end up checking obviously-valid things
89        // like non-null references for arrays we've just created.
90
91        /// <summary>
92        /// Creates a new CodedInputStream reading data from the given byte array.
93        /// </summary>
94        public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length, true)
95        {
96        }
97
98        /// <summary>
99        /// Creates a new <see cref="CodedInputStream"/> that reads from the given byte array slice.
100        /// </summary>
101        public CodedInputStream(byte[] buffer, int offset, int length)
102            : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length, true)
103        {
104            if (offset < 0 || offset > buffer.Length)
105            {
106                throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer");
107            }
108            if (length < 0 || offset + length > buffer.Length)
109            {
110                throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer");
111            }
112        }
113
114        /// <summary>
115        /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream, which will be disposed
116        /// when the returned object is disposed.
117        /// </summary>
118        /// <param name="input">The stream to read from.</param>
119        public CodedInputStream(Stream input) : this(input, false)
120        {
121        }
122
123        /// <summary>
124        /// Creates a new <see cref="CodedInputStream"/> reading data from the given stream.
125        /// </summary>
126        /// <param name="input">The stream to read from.</param>
127        /// <param name="leaveOpen"><c>true</c> to leave <paramref name="input"/> open when the returned
128        /// <c cref="CodedInputStream"/> is disposed; <c>false</c> to dispose of the given stream when the
129        /// returned object is disposed.</param>
130        public CodedInputStream(Stream input, bool leaveOpen)
131            : this(ProtoPreconditions.CheckNotNull(input, "input"), new byte[BufferSize], 0, 0, leaveOpen)
132        {
133        }
134
135        /// <summary>
136        /// Creates a new CodedInputStream reading data from the given
137        /// stream and buffer, using the default limits.
138        /// </summary>
139        internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, bool leaveOpen)
140        {
141            this.input = input;
142            this.buffer = buffer;
143            this.state.bufferPos = bufferPos;
144            this.state.bufferSize = bufferSize;
145            this.state.sizeLimit = DefaultSizeLimit;
146            this.state.recursionLimit = DefaultRecursionLimit;
147            SegmentedBufferHelper.Initialize(this, out this.state.segmentedBufferHelper);
148            this.leaveOpen = leaveOpen;
149
150            this.state.currentLimit = int.MaxValue;
151        }
152
153        /// <summary>
154        /// Creates a new CodedInputStream reading data from the given
155        /// stream and buffer, using the specified limits.
156        /// </summary>
157        /// <remarks>
158        /// This chains to the version with the default limits instead of vice versa to avoid
159        /// having to check that the default values are valid every time.
160        /// </remarks>
161        internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit, bool leaveOpen)
162            : this(input, buffer, bufferPos, bufferSize, leaveOpen)
163        {
164            if (sizeLimit <= 0)
165            {
166                throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive");
167            }
168            if (recursionLimit <= 0)
169            {
170                throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive");
171            }
172            this.state.sizeLimit = sizeLimit;
173            this.state.recursionLimit = recursionLimit;
174        }
175        #endregion
176
177        /// <summary>
178        /// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading
179        /// from an input stream.
180        /// </summary>
181        /// <remarks>
182        /// This method exists separately from the constructor to reduce the number of constructor overloads.
183        /// It is likely to be used considerably less frequently than the constructors, as the default limits
184        /// are suitable for most use cases.
185        /// </remarks>
186        /// <param name="input">The input stream to read from</param>
187        /// <param name="sizeLimit">The total limit of data to read from the stream.</param>
188        /// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param>
189        /// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size
190        /// and recursion limits.</returns>
191        public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit)
192        {
193            // Note: we may want an overload accepting leaveOpen
194            return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit, false);
195        }
196
197        /// <summary>
198        /// Returns the current position in the input stream, or the position in the input buffer
199        /// </summary>
200        public long Position
201        {
202            get
203            {
204                if (input != null)
205                {
206                    return input.Position - ((state.bufferSize + state.bufferSizeAfterLimit) - state.bufferPos);
207                }
208                return state.bufferPos;
209            }
210        }
211
212        /// <summary>
213        /// Returns the last tag read, or 0 if no tags have been read or we've read beyond
214        /// the end of the stream.
215        /// </summary>
216        internal uint LastTag { get { return state.lastTag; } }
217
218        /// <summary>
219        /// Returns the size limit for this stream.
220        /// </summary>
221        /// <remarks>
222        /// This limit is applied when reading from the underlying stream, as a sanity check. It is
223        /// not applied when reading from a byte array data source without an underlying stream.
224        /// The default value is Int32.MaxValue.
225        /// </remarks>
226        /// <value>
227        /// The size limit.
228        /// </value>
229        public int SizeLimit { get { return state.sizeLimit; } }
230
231        /// <summary>
232        /// Returns the recursion limit for this stream. This limit is applied whilst reading messages,
233        /// to avoid maliciously-recursive data.
234        /// </summary>
235        /// <remarks>
236        /// The default limit is 100.
237        /// </remarks>
238        /// <value>
239        /// The recursion limit for this stream.
240        /// </value>
241        public int RecursionLimit { get { return state.recursionLimit; } }
242
243        /// <summary>
244        /// Internal-only property; when set to true, unknown fields will be discarded while parsing.
245        /// </summary>
246        internal bool DiscardUnknownFields
247        {
248            get { return state.DiscardUnknownFields; }
249            set { state.DiscardUnknownFields = value; }
250        }
251
252        /// <summary>
253        /// Internal-only property; provides extension identifiers to compatible messages while parsing.
254        /// </summary>
255        internal ExtensionRegistry ExtensionRegistry
256        {
257            get { return state.ExtensionRegistry; }
258            set { state.ExtensionRegistry = value; }
259        }
260
261        internal byte[] InternalBuffer => buffer;
262
263        internal Stream InternalInputStream => input;
264
265        internal ref ParserInternalState InternalState => ref state;
266
267        /// <summary>
268        /// Disposes of this instance, potentially closing any underlying stream.
269        /// </summary>
270        /// <remarks>
271        /// As there is no flushing to perform here, disposing of a <see cref="CodedInputStream"/> which
272        /// was constructed with the <c>leaveOpen</c> option parameter set to <c>true</c> (or one which
273        /// was constructed to read from a byte array) has no effect.
274        /// </remarks>
275        public void Dispose()
276        {
277            if (!leaveOpen)
278            {
279                input.Dispose();
280            }
281        }
282
283        #region Validation
284        /// <summary>
285        /// Verifies that the last call to ReadTag() returned tag 0 - in other words,
286        /// we've reached the end of the stream when we expected to.
287        /// </summary>
288        /// <exception cref="InvalidProtocolBufferException">The
289        /// tag read was not the one specified</exception>
290        internal void CheckReadEndOfStreamTag()
291        {
292            ParsingPrimitivesMessages.CheckReadEndOfStreamTag(ref state);
293        }
294        #endregion
295
296        #region Reading of tags etc
297
298        /// <summary>
299        /// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the
300        /// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the
301        /// same value.)
302        /// </summary>
303        public uint PeekTag()
304        {
305            var span = new ReadOnlySpan<byte>(buffer);
306            return ParsingPrimitives.PeekTag(ref span, ref state);
307        }
308
309        /// <summary>
310        /// Reads a field tag, returning the tag of 0 for "end of stream".
311        /// </summary>
312        /// <remarks>
313        /// If this method returns 0, it doesn't necessarily mean the end of all
314        /// the data in this CodedInputStream; it may be the end of the logical stream
315        /// for an embedded message, for example.
316        /// </remarks>
317        /// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns>
318        public uint ReadTag()
319        {
320            var span = new ReadOnlySpan<byte>(buffer);
321            return ParsingPrimitives.ParseTag(ref span, ref state);
322        }
323
324        /// <summary>
325        /// Skips the data for the field with the tag we've just read.
326        /// This should be called directly after <see cref="ReadTag"/>, when
327        /// the caller wishes to skip an unknown field.
328        /// </summary>
329        /// <remarks>
330        /// This method throws <see cref="InvalidProtocolBufferException"/> if the last-read tag was an end-group tag.
331        /// If a caller wishes to skip a group, they should skip the whole group, by calling this method after reading the
332        /// start-group tag. This behavior allows callers to call this method on any field they don't understand, correctly
333        /// resulting in an error if an end-group tag has not been paired with an earlier start-group tag.
334        /// </remarks>
335        /// <exception cref="InvalidProtocolBufferException">The last tag was an end-group tag</exception>
336        /// <exception cref="InvalidOperationException">The last read operation read to the end of the logical stream</exception>
337        public void SkipLastField()
338        {
339            var span = new ReadOnlySpan<byte>(buffer);
340            ParsingPrimitivesMessages.SkipLastField(ref span, ref state);
341        }
342
343        /// <summary>
344        /// Skip a group.
345        /// </summary>
346        internal void SkipGroup(uint startGroupTag)
347        {
348            var span = new ReadOnlySpan<byte>(buffer);
349            ParsingPrimitivesMessages.SkipGroup(ref span, ref state, startGroupTag);
350        }
351
352        /// <summary>
353        /// Reads a double field from the stream.
354        /// </summary>
355        public double ReadDouble()
356        {
357            var span = new ReadOnlySpan<byte>(buffer);
358            return ParsingPrimitives.ParseDouble(ref span, ref state);
359        }
360
361        /// <summary>
362        /// Reads a float field from the stream.
363        /// </summary>
364        public float ReadFloat()
365        {
366            var span = new ReadOnlySpan<byte>(buffer);
367            return ParsingPrimitives.ParseFloat(ref span, ref state);
368        }
369
370        /// <summary>
371        /// Reads a uint64 field from the stream.
372        /// </summary>
373        public ulong ReadUInt64()
374        {
375            return ReadRawVarint64();
376        }
377
378        /// <summary>
379        /// Reads an int64 field from the stream.
380        /// </summary>
381        public long ReadInt64()
382        {
383            return (long) ReadRawVarint64();
384        }
385
386        /// <summary>
387        /// Reads an int32 field from the stream.
388        /// </summary>
389        public int ReadInt32()
390        {
391            return (int) ReadRawVarint32();
392        }
393
394        /// <summary>
395        /// Reads a fixed64 field from the stream.
396        /// </summary>
397        public ulong ReadFixed64()
398        {
399            return ReadRawLittleEndian64();
400        }
401
402        /// <summary>
403        /// Reads a fixed32 field from the stream.
404        /// </summary>
405        public uint ReadFixed32()
406        {
407            return ReadRawLittleEndian32();
408        }
409
410        /// <summary>
411        /// Reads a bool field from the stream.
412        /// </summary>
413        public bool ReadBool()
414        {
415            return ReadRawVarint64() != 0;
416        }
417
418        /// <summary>
419        /// Reads a string field from the stream.
420        /// </summary>
421        public string ReadString()
422        {
423            var span = new ReadOnlySpan<byte>(buffer);
424            return ParsingPrimitives.ReadString(ref span, ref state);
425        }
426
427        /// <summary>
428        /// Reads an embedded message field value from the stream.
429        /// </summary>
430        public void ReadMessage(IMessage builder)
431        {
432            // TODO(jtattermusch): if the message doesn't implement IBufferMessage (and thus does not provide the InternalMergeFrom method),
433            // what we're doing here works fine, but could be more efficient.
434            // What happends is that we first initialize a ParseContext from the current coded input stream only to parse the length of the message, at which point
435            // we will need to switch back again to CodedInputStream-based parsing (which involves copying and storing the state) to be able to
436            // invoke the legacy MergeFrom(CodedInputStream) method.
437            // For now, this inefficiency is fine, considering this is only a backward-compatibility scenario (and regenerating the code fixes it).
438            var span = new ReadOnlySpan<byte>(buffer);
439            ParseContext.Initialize(ref span, ref state, out ParseContext ctx);
440            try
441            {
442                ParsingPrimitivesMessages.ReadMessage(ref ctx, builder);
443            }
444            finally
445            {
446                ctx.CopyStateTo(this);
447            }
448        }
449
450        /// <summary>
451        /// Reads an embedded group field from the stream.
452        /// </summary>
453        public void ReadGroup(IMessage builder)
454        {
455            ParseContext.Initialize(this, out ParseContext ctx);
456            try
457            {
458                ParsingPrimitivesMessages.ReadGroup(ref ctx, builder);
459            }
460            finally
461            {
462                ctx.CopyStateTo(this);
463            }
464        }
465
466        /// <summary>
467        /// Reads a bytes field value from the stream.
468        /// </summary>
469        public ByteString ReadBytes()
470        {
471            var span = new ReadOnlySpan<byte>(buffer);
472            return ParsingPrimitives.ReadBytes(ref span, ref state);
473        }
474
475        /// <summary>
476        /// Reads a uint32 field value from the stream.
477        /// </summary>
478        public uint ReadUInt32()
479        {
480            return ReadRawVarint32();
481        }
482
483        /// <summary>
484        /// Reads an enum field value from the stream.
485        /// </summary>
486        public int ReadEnum()
487        {
488            // Currently just a pass-through, but it's nice to separate it logically from WriteInt32.
489            return (int) ReadRawVarint32();
490        }
491
492        /// <summary>
493        /// Reads an sfixed32 field value from the stream.
494        /// </summary>
495        public int ReadSFixed32()
496        {
497            return (int) ReadRawLittleEndian32();
498        }
499
500        /// <summary>
501        /// Reads an sfixed64 field value from the stream.
502        /// </summary>
503        public long ReadSFixed64()
504        {
505            return (long) ReadRawLittleEndian64();
506        }
507
508        /// <summary>
509        /// Reads an sint32 field value from the stream.
510        /// </summary>
511        public int ReadSInt32()
512        {
513            return ParsingPrimitives.DecodeZigZag32(ReadRawVarint32());
514        }
515
516        /// <summary>
517        /// Reads an sint64 field value from the stream.
518        /// </summary>
519        public long ReadSInt64()
520        {
521            return ParsingPrimitives.DecodeZigZag64(ReadRawVarint64());
522        }
523
524        /// <summary>
525        /// Reads a length for length-delimited data.
526        /// </summary>
527        /// <remarks>
528        /// This is internally just reading a varint, but this method exists
529        /// to make the calling code clearer.
530        /// </remarks>
531        public int ReadLength()
532        {
533            var span = new ReadOnlySpan<byte>(buffer);
534            return ParsingPrimitives.ParseLength(ref span, ref state);
535        }
536
537        /// <summary>
538        /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>,
539        /// the tag is consumed and the method returns <c>true</c>; otherwise, the
540        /// stream is left in the original position and the method returns <c>false</c>.
541        /// </summary>
542        public bool MaybeConsumeTag(uint tag)
543        {
544            var span = new ReadOnlySpan<byte>(buffer);
545            return ParsingPrimitives.MaybeConsumeTag(ref span, ref state, tag);
546        }
547
548#endregion
549
550        #region Underlying reading primitives
551
552        /// <summary>
553        /// Reads a raw Varint from the stream.  If larger than 32 bits, discard the upper bits.
554        /// This method is optimised for the case where we've got lots of data in the buffer.
555        /// That means we can check the size just once, then just read directly from the buffer
556        /// without constant rechecking of the buffer length.
557        /// </summary>
558        internal uint ReadRawVarint32()
559        {
560            var span = new ReadOnlySpan<byte>(buffer);
561            return ParsingPrimitives.ParseRawVarint32(ref span, ref state);
562        }
563
564        /// <summary>
565        /// Reads a varint from the input one byte at a time, so that it does not
566        /// read any bytes after the end of the varint. If you simply wrapped the
567        /// stream in a CodedInputStream and used ReadRawVarint32(Stream)
568        /// then you would probably end up reading past the end of the varint since
569        /// CodedInputStream buffers its input.
570        /// </summary>
571        /// <param name="input"></param>
572        /// <returns></returns>
573        internal static uint ReadRawVarint32(Stream input)
574        {
575            return ParsingPrimitives.ReadRawVarint32(input);
576        }
577
578        /// <summary>
579        /// Reads a raw varint from the stream.
580        /// </summary>
581        internal ulong ReadRawVarint64()
582        {
583            var span = new ReadOnlySpan<byte>(buffer);
584            return ParsingPrimitives.ParseRawVarint64(ref span, ref state);
585        }
586
587        /// <summary>
588        /// Reads a 32-bit little-endian integer from the stream.
589        /// </summary>
590        internal uint ReadRawLittleEndian32()
591        {
592            var span = new ReadOnlySpan<byte>(buffer);
593            return ParsingPrimitives.ParseRawLittleEndian32(ref span, ref state);
594        }
595
596        /// <summary>
597        /// Reads a 64-bit little-endian integer from the stream.
598        /// </summary>
599        internal ulong ReadRawLittleEndian64()
600        {
601            var span = new ReadOnlySpan<byte>(buffer);
602            return ParsingPrimitives.ParseRawLittleEndian64(ref span, ref state);
603        }
604        #endregion
605
606        #region Internal reading and buffer management
607
608        /// <summary>
609        /// Sets currentLimit to (current position) + byteLimit. This is called
610        /// when descending into a length-delimited embedded message. The previous
611        /// limit is returned.
612        /// </summary>
613        /// <returns>The old limit.</returns>
614        internal int PushLimit(int byteLimit)
615        {
616            return SegmentedBufferHelper.PushLimit(ref state, byteLimit);
617        }
618
619        /// <summary>
620        /// Discards the current limit, returning the previous limit.
621        /// </summary>
622        internal void PopLimit(int oldLimit)
623        {
624            SegmentedBufferHelper.PopLimit(ref state, oldLimit);
625        }
626
627        /// <summary>
628        /// Returns whether or not all the data before the limit has been read.
629        /// </summary>
630        /// <returns></returns>
631        internal bool ReachedLimit
632        {
633            get
634            {
635                return SegmentedBufferHelper.IsReachedLimit(ref state);
636            }
637        }
638
639        /// <summary>
640        /// Returns true if the stream has reached the end of the input. This is the
641        /// case if either the end of the underlying input source has been reached or
642        /// the stream has reached a limit created using PushLimit.
643        /// </summary>
644        public bool IsAtEnd
645        {
646            get
647            {
648                var span = new ReadOnlySpan<byte>(buffer);
649                return SegmentedBufferHelper.IsAtEnd(ref span, ref state);
650            }
651        }
652
653        /// <summary>
654        /// Called when buffer is empty to read more bytes from the
655        /// input.  If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that
656        /// either there will be at least one byte in the buffer when it returns
657        /// or it will throw an exception.  If <paramref name="mustSucceed"/> is false,
658        /// RefillBuffer() returns false if no more bytes were available.
659        /// </summary>
660        /// <param name="mustSucceed"></param>
661        /// <returns></returns>
662        private bool RefillBuffer(bool mustSucceed)
663        {
664            var span = new ReadOnlySpan<byte>(buffer);
665            return state.segmentedBufferHelper.RefillBuffer(ref span, ref state, mustSucceed);
666        }
667
668        /// <summary>
669        /// Reads a fixed size of bytes from the input.
670        /// </summary>
671        /// <exception cref="InvalidProtocolBufferException">
672        /// the end of the stream or the current limit was reached
673        /// </exception>
674        internal byte[] ReadRawBytes(int size)
675        {
676            var span = new ReadOnlySpan<byte>(buffer);
677            return ParsingPrimitives.ReadRawBytes(ref span, ref state, size);
678        }
679
680        /// <summary>
681        /// Reads a top-level message or a nested message after the limits for this message have been pushed.
682        /// (parser will proceed until the end of the current limit)
683        /// NOTE: this method needs to be public because it's invoked by the generated code - e.g. msg.MergeFrom(CodedInputStream input) method
684        /// </summary>
685        public void ReadRawMessage(IMessage message)
686        {
687            ParseContext.Initialize(this, out ParseContext ctx);
688            try
689            {
690                ParsingPrimitivesMessages.ReadRawMessage(ref ctx, message);
691            }
692            finally
693            {
694                ctx.CopyStateTo(this);
695            }
696        }
697#endregion
698    }
699}
700