1bbbf1280Sopenharmony_ci// polynomial for approximating 2^x
2bbbf1280Sopenharmony_ci//
3bbbf1280Sopenharmony_ci// Copyright (c) 2019, Arm Limited.
4bbbf1280Sopenharmony_ci// SPDX-License-Identifier: MIT
5bbbf1280Sopenharmony_ci
6bbbf1280Sopenharmony_ci// exp2f parameters
7bbbf1280Sopenharmony_cideg = 3; // poly degree
8bbbf1280Sopenharmony_ciN = 32;  // table entries
9bbbf1280Sopenharmony_cib = 1/(2*N); // interval
10bbbf1280Sopenharmony_cia = -b;
11bbbf1280Sopenharmony_ci
12bbbf1280Sopenharmony_ci//// exp2 parameters
13bbbf1280Sopenharmony_ci//deg = 5; // poly degree
14bbbf1280Sopenharmony_ci//N = 128; // table entries
15bbbf1280Sopenharmony_ci//b = 1/(2*N); // interval
16bbbf1280Sopenharmony_ci//a = -b;
17bbbf1280Sopenharmony_ci
18bbbf1280Sopenharmony_ci// find polynomial with minimal relative error
19bbbf1280Sopenharmony_ci
20bbbf1280Sopenharmony_cif = 2^x;
21bbbf1280Sopenharmony_ci
22bbbf1280Sopenharmony_ci// return p that minimizes |f(x) - poly(x) - x^d*p(x)|/|f(x)|
23bbbf1280Sopenharmony_ciapprox = proc(poly,d) {
24bbbf1280Sopenharmony_ci  return remez(1 - poly(x)/f(x), deg-d, [a;b], x^d/f(x), 1e-10);
25bbbf1280Sopenharmony_ci};
26bbbf1280Sopenharmony_ci// return p that minimizes |f(x) - poly(x) - x^d*p(x)|
27bbbf1280Sopenharmony_ciapprox_abs = proc(poly,d) {
28bbbf1280Sopenharmony_ci  return remez(f(x) - poly(x), deg-d, [a;b], x^d, 1e-10);
29bbbf1280Sopenharmony_ci};
30bbbf1280Sopenharmony_ci
31bbbf1280Sopenharmony_ci// first coeff is fixed, iteratively find optimal double prec coeffs
32bbbf1280Sopenharmony_cipoly = 1;
33bbbf1280Sopenharmony_cifor i from 1 to deg do {
34bbbf1280Sopenharmony_ci  p = roundcoefficients(approx(poly,i), [|D ...|]);
35bbbf1280Sopenharmony_ci//  p = roundcoefficients(approx_abs(poly,i), [|D ...|]);
36bbbf1280Sopenharmony_ci  poly = poly + x^i*coeff(p,0);
37bbbf1280Sopenharmony_ci};
38bbbf1280Sopenharmony_ci
39bbbf1280Sopenharmony_cidisplay = hexadecimal;
40bbbf1280Sopenharmony_ciprint("rel error:", accurateinfnorm(1-poly(x)/2^x, [a;b], 30));
41bbbf1280Sopenharmony_ciprint("abs error:", accurateinfnorm(2^x-poly(x), [a;b], 30));
42bbbf1280Sopenharmony_ciprint("in [",a,b,"]");
43bbbf1280Sopenharmony_ci// double interval error for non-nearest rounding:
44bbbf1280Sopenharmony_ciprint("rel2 error:", accurateinfnorm(1-poly(x)/2^x, [2*a;2*b], 30));
45bbbf1280Sopenharmony_ciprint("abs2 error:", accurateinfnorm(2^x-poly(x), [2*a;2*b], 30));
46bbbf1280Sopenharmony_ciprint("in [",2*a,2*b,"]");
47bbbf1280Sopenharmony_ciprint("coeffs:");
48bbbf1280Sopenharmony_cifor i from 0 to deg do coeff(poly,i);
49